Skip to main content
Log in

Passerine MHC: genetic variation and disease resistance in the wild

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

The passerine major histocompatibility complex (MHC) class I and IIB genes are different from those of the avian model species the chicken because passerines have (1) a larger number of MHC genes, (2) MHC genes with longer introns, and (3) MHC genes that are pseudogenes. Most passerine MHC genes are transcribed (coding), extremely variable and subject to balancing selection. The high genetic diversity of the MHC genes of passerines is most likely maintained by selection from a large number of different pathogens. Association between MHC alleles and resistance to avian malaria infections have been reported in House Sparrows and Great Reed Warblers. Passerines are infected by a large number of different avian malaria infections. Therefore passerines and avian malaria is a study system that is well-suited to investigations of balancing selection and associations between MHC genes and disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–b

Similar content being viewed by others

References

  • Abbas AK, Lichtman AH, Pober JS (1994) Cellular and molecular immunology. WB Saunders, Philadelphia, PA

  • Aguilar A, Edwards SV, Smith TB, Wayne RK (2006) Patterns of variation in MHC class II ß loci of the little greenbul (Andropadus virens) with comments on MHC evolution in birds. J Hered 97:133–142

    Google Scholar 

  • Atkinson CT, van Riper C (1991) Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon and Haemoproteus. In: Loye JE, Zuk M (eds) Bird−parasite interactions. Oxford University Press, New York

    Google Scholar 

  • Atkinson CT, Dusek RJ, Lease JK (2001) Serological responses and immunity to superinfection with avian malaria in experimentally-infected Hawaii amakihi. J Wildl Dis 37:20–27

    PubMed  CAS  Google Scholar 

  • Bensch S, Åkesson S (2003) Temporal and spatial variation of hematozoans in Scandinavian willow warblers. J Parasitol 89:388–391

    Article  PubMed  Google Scholar 

  • Bensch S, Stjernman M, Hasselquist D, Ostman O, Hansson B, Westerdahl H, Pinheiro RT (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc Lond B 267:1583–1589

    Article  CAS  Google Scholar 

  • Bensch S, Waldenström J, Jonzén N, Westerdahl H, Hansson B, Sejberg D, Haselquist D (2007) Temporal dynamics and diversity of avian malaria parasites in a single host species. J Anim Ecol 76:112–122

    Article  PubMed  Google Scholar 

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377

    Article  PubMed  CAS  Google Scholar 

  • Bodmer WF (1972) Evolutionary significance of the HLA system. Nature 237:139–145

    Article  PubMed  CAS  Google Scholar 

  • Bollmer JL, Vargas FH, Parker RG (2007) Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus). Immunogenetics 59:593–602

    Google Scholar 

  • Bonneaud C, Sorci G, Morin V, Westerdahl H, Zoorob R, Wittzell H (2004) Diversity of MHC class I and IIB genes in house sparrows (Passer domesticus). Immunogenetics 55:855–865

    Article  PubMed  CAS  Google Scholar 

  • Bonneaud C, Richard M, Faivre B, Westerdahl H, Sorci G (2006a) Complex MHC-based mate choice in a wild passerine. Proc R Soc Lond B 273:1111–1116

    Article  CAS  Google Scholar 

  • Bonneaud C, Perez-Tris J, Federici P, Chastel O, Sorci G. (2006b) MHC alleles confer local resistance to malaria in a wild passerine. Evolution 60:383–389

    PubMed  CAS  Google Scholar 

  • Borghans JAM, Beltman JB, De Boer RJ (2004) MHC polymorphism under host–pathogen coevolution. Immunogenetics 55:732–739

    Google Scholar 

  • Doherty PC, Zinkernagel RM (1975a) A biological role for the major histocompatibility antigens. Lancet 1:1406

    Article  PubMed  CAS  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975b) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52

    Article  PubMed  CAS  Google Scholar 

  • Edwards SV, Grahn M, Potts WK (1995) Dynamics of MHC evolution in birds and crocodilians: amplification of class II genes with degenerate primers. Mol Ecol 4:719–729

    Article  PubMed  CAS  Google Scholar 

  • Edwards SV, Gasper J, March M (1998) Genomics and polymorphism of Agph-DAB1, an MHC class II B gene in red-winged blackbirds (Agelaius phoeniceus). Mol Biol Evol 15:236–50

    PubMed  CAS  Google Scholar 

  • Edwards SV, Gasper J, Garrigan D, Martindale D, Koop BF (2000) A 39-kb sequence around a blackbird MHC class II gene: ghost of selection past and songbird genome architecture. Mol Biol Evol 17:1384–95

    PubMed  CAS  Google Scholar 

  • Edwards SV, Hedrick PW (1998) Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends Ecol Evol 13:305–311

    Article  Google Scholar 

  • Ekblom R, Grahn M, Höglund J (2003) Patterns of polymorphism in the MHC class II of a non-passerine bird, the great snipe (Gallinago media). Immunogenetics 54:734–741

    Google Scholar 

  • Eklund AC, Belchak MM, Lapidos K, Raha-Chowdhury R, Ober C (2000) Polymorphisms in the HLA-linked olfactory receptor genes in the Hutterites. Hum Immunol 61:711–717

    Article  PubMed  CAS  Google Scholar 

  • Freeman-Gallant CR, Johnson EM, Saponara F, Stanger M (2002) Variation at the MHC in Savannah sparrows. Mol Ecol 11:1125–1130

    Article  PubMed  CAS  Google Scholar 

  • Freeman-Gallant CR, Meguerdichian M, Wheelwright NT, Sollecito SV (2003) Social pairing and female mating fidelity predicted by RFLP similarity at the major histocompatibility complex in a songbird. Mol Ecol 12:3077–3083

    Article  PubMed  Google Scholar 

  • Gasper JS, Shiina T, Inoko H, Edwards SV (2001) Songbird genomics: analysis of 45 kb upstream of a polymorphic MHC class II gene in red-winged blackbirds (Agelaius phoeniceus). Genomics 75:26–34

    Article  PubMed  CAS  Google Scholar 

  • Hansson B, Bensch S, Hasselquist D, Akesson M (2001) Microsatellite diversity predicts recruitment of sibling great reed warblers. Proc R Soc Lond B 268:1287–1291

    Article  CAS  Google Scholar 

  • Hayworth AM, van Riper C III, Weathers WW (1987) Effects of plasmodium relictum on the metabolic rate and body temperature in canaries (Serinus canarius). J Parasitol 73:850–853

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW (2002) Pathogen resistance and genetic variation at MHC loci. Evolution 56:1902–1908

    PubMed  Google Scholar 

  • Hess CM, Edwards SV (2002) The evolution of the major histocompatibility complex in birds. Bioscience 52:423–431

    Article  Google Scholar 

  • Hess CM, Gasper J, Hoekstra HE, Hill CE, Edwards SV (2000) MHC class II pseudogene and genomic signature of a 32-kb cosmid in the house finch (Carpodacus mexicanus). Genome Res 10:613–23

    Article  PubMed  CAS  Google Scholar 

  • Hill AVS, Allsopp CEM, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, McMichael AJ, Greenwood BM (1991) Common West African HLA antigens are associated with protection from severe malaria. Nature 352:595–600

    Article  PubMed  CAS  Google Scholar 

  • Hill AVS, Jepson A, Plebanski M, Gilbert SC (1997) Genetic analysis of host–parasite coevolution in human malaria. Philos Trans R Soc Lond B 352:1317–1325

    Google Scholar 

  • Hughes AL, Hughes MK (1995) Natural selection on the peptide-binding regions of major histocompatibility complex molecules. Immunogenetics 42:233–43

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–35

    Article  PubMed  CAS  Google Scholar 

  • Högstrand K, Böhme J (1999) Gene conversion can create new MHC alleles. Immunol Rev 167:305–317

    Article  PubMed  Google Scholar 

  • Jarvi SI, Schultz JJ, Atkinson CT (2002) PCR diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines. J Parasitol 88:153–8

    PubMed  Google Scholar 

  • Jarvi SI, Tarr CL, McIntosh CE, Atkinson CT, Fleischer RC (2004) Natural selection of the major histocompatibility complex (MHC) in Hawaiian honeycreepers (Drepanidinae). Mol Ecol 13:2157–2168

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J (1999) Co-evolving genes in MHC haplotypes: the “rule” for nonmammalian vertebrates? Immunogenetics 50:228–236

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Jacob J, Shaw I, Walker B, Milne S, Beck S, Salomonsen J (1999) Gene organisation determines evolution of function in the chicken MHC. Immunol Rev 167:101–117

    Article  PubMed  CAS  Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New York

    Google Scholar 

  • Kurtz J, Kalbe M, Aeschlimann PB, Haberli MA, Wegner KM, Reusch TB, Milinski M (2004) Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks. Proc R Soc Lond B 271:197–204

    Article  CAS  Google Scholar 

  • Li W-H (1997) Molecular evolution. Sinauer, Sunderland, MA

  • Madsen T, Ujvari B (2006) MHC class I variation associates with parasite resistance and longevity in tropical pythons. J Evol Biol 19:1973–1978

    Article  PubMed  CAS  Google Scholar 

  • Marzal A, de Lope F, Navarro C, Pape Møller A (2005) Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142:541–45

    Article  PubMed  Google Scholar 

  • Meyer-Lucht Y, Sommer S (2005) MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). Mol Ecol 14:2233–2243

    Article  PubMed  CAS  Google Scholar 

  • Miller HC, Lambert DM (2004a) Gene duplication and gene conversion in class II MHC genes of New Zealand robins (Petroicidae). Immunogenetics 56:178–91

    PubMed  CAS  Google Scholar 

  • Miller HC, Lambert DM (2004b) Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol Ecol 13:3709–3721

    Article  CAS  Google Scholar 

  • Miller MM, Bacon LD, Hala K, Hunt HD, Ewald SJ, Kaufman J, Zoorob R, Briles WE (2004) Nomenclature for the chicken major histocompatibility (B and Y) complex. Immunogenetics 56:261–279

    PubMed  CAS  Google Scholar 

  • Nordling D, Andersson M, Zohari S, Gustafsson L (1998) Reproductive effort reduces specific immune response and parasite resistance. Proc R Soc Lond B 265:1291–1298

    Article  Google Scholar 

  • Oppliger A, Christe P, Richner H (1996) Clutch size and malaria resistance. Nature 381:565

    Article  PubMed  CAS  Google Scholar 

  • Parham P, Ohta T (1996) Population biology of antigen presentation by MHC class I molecules. Immunogenetics 272:67–74

    CAS  Google Scholar 

  • Penn DJ, Potts WK (1999) The evolution of mating preferences and major histocompatibility complex genes. Am Nat 153:145–164

    Article  Google Scholar 

  • Piertney SB, Oliver MK (2006) The evolutionary ecology of the majotr histocompatibility complex. Heredity 96:7–21

    PubMed  CAS  Google Scholar 

  • Potts WK, Wakeland EK (1990) Evolution of diversity at the major histocompatibility complex. Trends Ecol Evol 5:181–187

    Article  Google Scholar 

  • Raberg L, de Roode JC, Bell AS, Stamou P, Gray D, Read AF (2006) The role of immune-mediated apparent competition in genetically diverse malaria infections. Am Nat 168:41–53

    Article  PubMed  Google Scholar 

  • Richardson DS, Westerdahl H (2003) MHC diversity in two Acrocephalus species: the outbred great reed warbler and the inbred Seychelles warbler. Mol Ecol 12:3523–3529

    Article  PubMed  CAS  Google Scholar 

  • Richner H, Christe P, Oppliger A (1995) Paternal investment affects prevalence of malaria. Proc Natl Acad Sci USA 92:1192–1194

    Article  PubMed  CAS  Google Scholar 

  • Richardson DS, Komdeur J, Burke T, von Schantz T (2005) MHC-based patterns of social and extra-pair mate choice in the Seychelles warbler. Proc R Soc Lond B 272:759–767

    Article  Google Scholar 

  • Ricklefs RE, Fallon SM (2002) Diversification and host switching in avian malaria parasites. Proc R Soc Lond B 269:885–892

    Article  Google Scholar 

  • de Roode JC, Helinski ME, Anwar MA, Read AF (2005) Dynamics of multiple infection and within-host competition in genetically diverse malaria infections. Am Nat 166:531–542

    Article  PubMed  Google Scholar 

  • Schad J, Ganzhorn JU, Sommer S (2005) Parasite burden and constitution of major histocompatibility complex in the Malagasy mouse lemur, Microcebus murinus. Evolution 59:439–450

    PubMed  CAS  Google Scholar 

  • Sol D, Jovani R, Torres J (2003) Parasite mediated mortality and host immune response explain age-related differences in blood parasitism in birds. Oecologia 135:542–547

    PubMed  Google Scholar 

  • Strand T, Westerdahl H, Höglund J, Alatalo R, Siitari H (2007) The Mhc class II of the black grouse (Tetrao tetrix) consists of low numbers of B and Y genes with variable diversity and expression. Immunogenetics 59:725–734

    Google Scholar 

  • Tomas G, Merino S, Moreno J, Morales J, Martinez-De la Puente J (2007) Impact of blood parasites on immunoglobulin level and parental effort: a medication field experiment on a wild passerine. Funct Ecol 21:125–1323

    Article  Google Scholar 

  • Tregenza T, Wedell N (2000) Genetic compatibility, mate choice and patterns of parentage: invited review. Mol Ecol 9:1013–1027

    Article  PubMed  CAS  Google Scholar 

  • Vincek V, Klein D, Graser RT, Figueroa F, O'Huigin C, Klein J (1995) Molecular cloning of major histocompatibility complex class II B gene cDNA from the Bengalese finch Lonchura striata. Immunogenetics 42:262–267

    Google Scholar 

  • Vincek V, O’Huigin C, Satta Y, Takahata N, Boag PT, Grant PR, Grant BR, Klein J (1997) How large was the founding population of Darwin’s finches? Proc R Soc Lond B 264:111–118

  • Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ottosson U (2002) Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol 11:1545–1554

    Article  PubMed  Google Scholar 

  • Waldenström J, Bensch S, Hasselquist D, Östman Ö (2004) A new nested PCR method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194

    Article  PubMed  Google Scholar 

  • Wedekind C, Seebeck T, Bettens F, Paepke AJ (1995) MHC-dependent mate preferences in humans. Proc R Soc Lond B 260:245–249

    Article  CAS  Google Scholar 

  • Wedekind C, Walker M, Little TJ (2005) The course of malaria in mice: major histocompatibility complex (MHC) effects, but no general MHC heterozygote advantage in single-strain infections. Genetics 170:1427–1430

    Article  PubMed  CAS  Google Scholar 

  • Westerdahl H (2004) No evidence of an MHC based mate choice in the great reed warbler. Mol Ecol 13:2465–2470

    Article  PubMed  CAS  Google Scholar 

  • Westerdahl H, Wittzell H, von Schantz T (1999) Polymorphism and transcription of MHC class I genes in a passerine bird, the great reed warbler. Immunogenetics 49:158–170

    Article  PubMed  CAS  Google Scholar 

  • Westerdahl H, Wittzell H, von Schantz T (2000) MHC diversity in two passerine birds: no evidence for a minimal essential MHC. Immunogenetics 52:92–100

    Article  PubMed  CAS  Google Scholar 

  • Westerdahl H, Hanssson B, Bensch S, Hasselquist D (2004a) Between-year variation of MHC allele frequencies in great reed warblers: selection or drift? J Evol Biol 17:485–492

    Article  PubMed  CAS  Google Scholar 

  • Westerdahl H, Wittzell H, von Schantz T, Bensch S (2004b) MHC class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE. Heredity 92:534–542

    Article  PubMed  CAS  Google Scholar 

  • Westerdahl H, Waldenström J, Hansson B, Hasselquist D, Bensch S (2005) An association between malaria infection and MHC in great reed warblers. Proc R Soc Lond B 272:1511–1518

    Article  CAS  Google Scholar 

  • Wittzell H, Bernot A, Auffray C, Zoorob R (1999) Concerted evolution of two MHC class II B loci in pheasants and domestic chickens. Mol Biol Evol 16:479–490

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The present study was financed by grants from the Swedish Research Council, The Royal Swedish Academy of Sciences and Lunds Djurskyddsfond to Helena Westerdahl. I would like to thank Matt Hale, Staffan Bensch and Lars Råberg for reading and improving earlier versions of this manuscript. I also want to thank Terry Burke (my PostDoc Host) and Jarrod Hadfield for helping me to improve the IOC talk on which this manuscript is based.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Westerdahl.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westerdahl, H. Passerine MHC: genetic variation and disease resistance in the wild. J Ornithol 148 (Suppl 2), 469–477 (2007). https://doi.org/10.1007/s10336-007-0230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-007-0230-5

Keywords

Navigation