Skip to main content
Log in

Population genetic models of duplicated genes

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Various population genetic models of duplicated genes are introduced. The problems covered in this review include the fixation process of a duplicated copy, copy number polymorphism, the fates of duplicated genes and single nucleotide polymorphism in duplicated genes. Because of increasing evidence for concerted evolution by gene conversion, this review introduces recently developed gene conversion models. In the first half, models assuming independent evolution of duplicated genes are introduced, and then the effect of gene conversion is considered in the second half.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arguello JR, Chen Y, Yang S, Wang W, Long M (2006) Origination of an X-linked testes chimeric gene by illegitimate recombination in Drosophila. PLoS Genet 2:e77

    Article  PubMed  CAS  Google Scholar 

  • Arnheim N (1983) Concerted evolution of multigene families. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland, pp 38–61

    Google Scholar 

  • Avent ND, Reid ME (2000) The Rh blood group system: a review. Blood 95:375–387

    PubMed  CAS  Google Scholar 

  • Bailey GS, Poulter RTM, Stockwell PA (1978) Gene duplication in tetraploid fish: model for gene silencing at unlinked duplicated loci. Proc Natl Acad Sci USA 75:5575–5579

    Article  PubMed  CAS  Google Scholar 

  • Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams MD, Meyers EW, Li PW, Eichler EE (2002) Recent segmental duplications in the human genome. Science 297:1003–1007

    Article  PubMed  CAS  Google Scholar 

  • Baltimore D (1981) Gene conversion: some implications for immunoglobulin genes. Cell 24:592–594

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Wolf KH (2005) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicated genes. Curr Opin Plant Biol 8:135–141

    Article  CAS  Google Scholar 

  • Brown DD, Wensink PC, Jordan E (1972) A comparison of the ribosomal DNA’s of Xenopus laevis and Xenopus mulleri: the evolution of tandem genes. J Mol Biol 63:57–73

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth D, Mable BK, Schierup MH, Bartolomé C, Awadalla P (2003) Diversity and linkage of genes in the self-incompatibility gene family in Arabidopsis lyrata. Genetics 164(4):1519–1535

    Google Scholar 

  • Clark AG (1994) Invasion and maintenance of a gene duplication. Proc Natl Acad Sci USA 91:2950–2954

    Article  PubMed  CAS  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper & Row, New York

    Google Scholar 

  • Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117

    Article  PubMed  CAS  Google Scholar 

  • Drouin G (2002) Characterization of the gene conversions between the multigene family members of the yeast genome. J Mol Evol 55:14–23

    Article  PubMed  CAS  Google Scholar 

  • Elder Jr JF, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 70:297–320

    Article  PubMed  CAS  Google Scholar 

  • Emerson JJ, Cardoso-Moreira M, Borevitz JO, Long M (2008) Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science 320:1629–1631

    Article  PubMed  CAS  Google Scholar 

  • Ewens WJ (2004) Mathematical population genetics. I. Theoretical introduction. Springer-Verlag, New York

    Google Scholar 

  • Ezawa K, Oota S, Saitou N (2006) Genome-wide search of gene conversions in duplicated genes of mouse and rat. Mol Biol Evol 23:927–940

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford

    Google Scholar 

  • Fisher RA (1935) The sheltering of lethals. Am Nat 69:446–455

    Article  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan Y-I, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  • Fu Y-X, Li W-H (1999) Coalescing into the 21st century: an overview and prospects of coalescent theory. Theor Popul Biol 56:1–10

    Article  PubMed  CAS  Google Scholar 

  • Gangloff S, Zou H, Rothstein R (1996) Gene conversion plays the major role in controlling the stability of large tandem repeats in yeast. EMBO J 15:1715–1725

    PubMed  CAS  Google Scholar 

  • Gao L-Z, Innan H (2004) Very low gene duplication rate in the yeast genome. Science 306:1367–1370

    Article  PubMed  CAS  Google Scholar 

  • Goldman AS, Lichten M (1996) The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location. Genetics 144:43–55

    PubMed  CAS  Google Scholar 

  • Gu Z, Cavalcanti A, Chen F-C, Bouman P, Li WH (2002) Extent of gene duplication in the genomes of Drosophila:nematode, and yeast. Mol Biol Evol 19:256–262

    PubMed  CAS  Google Scholar 

  • Haldane JBS (1933) The part played by recurrent mutation in evolution. Am Nat 67:5–19

    Article  Google Scholar 

  • Harris S, Rudnicki K, Haber J (1993) Gene conversions and crossing over during homologous and homeologous ectopic recombination in Saccharomyces cerevisiae. Genetics 135:5–16

    PubMed  CAS  Google Scholar 

  • Hartl DL, Clark AG (2006) Principles of population genetics. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Hein J, Schierup MH, Wiuf C (2005) Gene genealogies, variation and evolution: a primer in coalescent theory. Oxford University Press, Oxford

    Google Scholar 

  • Hillis DM, Moritz C, Porter CA, Baker RJ (1991) Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science 251:308–310

    Article  PubMed  CAS  Google Scholar 

  • Hudson RR (1983) Testing the constant-rate neutral allele model with protein sequence data. Evolution 37:203–217

    Article  Google Scholar 

  • Hudson RR (1990) Gene genealogies and the coalescent process. In: Futuyma D, Antonovics J (eds) Oxford surveys in evolutionary biology, vol 7. Oxford University Press, Oxford, pp 1–43

    Google Scholar 

  • Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18:337–338

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc R Soc Lond B 256:119–124

    Article  CAS  Google Scholar 

  • Hughes MK, Hughes AL (1993) Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol Biol Evol 10:1360–1369

    PubMed  CAS  Google Scholar 

  • Innan H (2002) A method for estimating the mutation, gene conversion and recombination parameters in small multigene families. Genetics 161:865–872

    PubMed  CAS  Google Scholar 

  • Innan H (2003a) The coalescent and infinite-site model of a small multigene family. Genetics 163:803–810

    PubMed  CAS  Google Scholar 

  • Innan H (2003b) A two-locus gene conversion model with selection and its application to the human RHCE and RHD genes. Proc Natl Acad Sci USA 100:8793–8798

    Article  PubMed  CAS  Google Scholar 

  • Innan H (2004) Theories for analyzing polymorphism data in duplicated genes. Genes Genet Syst 79(2):65–75

    Article  PubMed  CAS  Google Scholar 

  • Jakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, Fung HC, Szpiech ZA, Degnan JH, Wang K, Guerreiro R, Bras JM, Schymick JC, Hernandez DG, Traynor BJ, Simon-Sanchez J, Matarin M, Britton A, van de Leemput J, Rafferty I, Bucan M, Cann HM, Hardy JA, Rosenberg NA, Singleton AB (2008) Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451:998–1003

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys AJ, May CA (2004) Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nat Genet 36:151–156

    Article  PubMed  CAS  Google Scholar 

  • Katju V, LaBeau EM, Lipinski KJ, Bergthorsson U (2008) Sex change by gene conversion in a Caenorhabditis elegans fog-2 mutant. Genetics 180:669–672

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1957) Some problems of stochastic process in genetics. Ann Math Stat 28:882–901

    Article  Google Scholar 

  • Kimura M (1962) On the probability of fixation of mutant genes in a population. Genetics 47:713–719

    PubMed  CAS  Google Scholar 

  • Kimura M (1969) The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61:893–903

    PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kimura M, King JL (1979) Fixation of a deleterious allele at one of two “duplicate” loci by mutation pressure and random drift. Proc Natl Acad Sci USA 76:2858–2861

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Ohta T (1969) The average number of generations until fixation of a mutatnt gene in a finite population. Genetics 61:763–771

    PubMed  Google Scholar 

  • Kingman JFC (1982) The coalescent. Stochast Proc Appl 13:235–248

    Article  Google Scholar 

  • Kondrashov FA, Koonin EV (2004) A common framework for understanding the origin of genetic dominance and evolutionary fates of gene duplication. Trends Genet 20:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV (2002) Selection in the evolution of gene duplications. Genome Biol 3: research0008.1–0008.9

    Google Scholar 

  • Kreitman M (2000) Methods to detect selection in populations with applications to the human. Ann Rev Genomics Hum Genet 1:539–559

    Article  CAS  Google Scholar 

  • Li W-H (1980) Rate of gene silencing at duplicated loci: a theoretical study and interpretation of data from tetraploid fish. Genetics 95:237–258

    PubMed  CAS  Google Scholar 

  • Li WH (1997) Molecular evolution. Sinauer, Sunderland

    Google Scholar 

  • Lin YS, Byrnes JK, Hwang JK, Li WH (2006) Codon-usage bias versus gene conversion in the evolution of yeast duplicate genes. Proc Natl Acad Sci USA 103(39), 14412–14416

    Google Scholar 

  • Liskay RM, Stachelek JL (1983) Evidence for intrachromosomal gene conversion in cultured mouse cells. Cell 35:157–165

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Conery JC (2001) Gene duplication and evolution. Science 293:1551a

    Article  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473

    PubMed  CAS  Google Scholar 

  • Lynch M, O’Hely M, Walsh B, Force A (2001) The probability of preservation of a newly arisen gene duplicate. Genetics 159:1789–1804

    PubMed  CAS  Google Scholar 

  • Mano S, Innan H (2008) The evolutionary rate of duplicated genes under concerted evolution. Genetics 180:493–505

    Article  PubMed  Google Scholar 

  • Marjoram P, Tavaré S (2006) Modern computational approaches for analysing molecular genetic variation data. Nat Rev Genet 7:759–770

    Article  PubMed  CAS  Google Scholar 

  • Martinsohn JT, Sousa AB, Guethlein LA, Howard JC (1999) The gene conversion hypothesis of MHC evolution: a review. Immunogenetics 50(3–4):168–200

    Article  CAS  Google Scholar 

  • Maruyama T (1971) On the fixation probability of mutant genes in a subdivided population. Genet Res 15:221–225

    Article  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  PubMed  CAS  Google Scholar 

  • Moore RC, Purugganan MD (2003) The early stages of duplicate gene evolution. Proc Natl Acad Sci USA 100:15682–15687

    Article  PubMed  CAS  Google Scholar 

  • Nagylaki T (1983) Evolution of a finite population under gene conversion. Proc Natl Acad Sci USA 80:6278–6281

    Article  PubMed  CAS  Google Scholar 

  • Nagylaki T (1984) Evolution of multigene families under interchromosomal gene conversion. Proc Natl Acad Sci USA 81:3796–3800

    Article  PubMed  CAS  Google Scholar 

  • Nagylaki T, Petes TD (1982) Intrachromosomal gene conversion and the maintenance of sequence homogeneity among repeated genes. Genetics 100:315–337

    PubMed  CAS  Google Scholar 

  • Nathans J, Thomas D, Hogness DS (1986) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232(4747):193–202

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Roychoudhury AK (1973) Probability of fixation of nonfunctional genes at duplicate loci. Am Nat 107:362–372

    Article  Google Scholar 

  • Nielsen R (2005) Molecular signatures of matural selection. Ann Rev Genet 39:197–218

    Article  PubMed  CAS  Google Scholar 

  • Nordborg M (2001) Coalescent theory. In: Balding DJ, Bishop MJ, Cannings C (eds) Handbook of statistical genetics. Wiley, Chichester, pp 179–212

    Google Scholar 

  • Nowak MA, Boerlijst MC, Cooke J, Smith JM (1997) Evolution of genetic redundancy. Nature 388:167–171

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New York

    Google Scholar 

  • Ohta T (1976) Simple model for treating evolution of multigene families. Nature 263:74–76

    Article  PubMed  CAS  Google Scholar 

  • Ohta T (1980) Evolution and variation of multigene families. Springer-Verlag, Berlin

    Google Scholar 

  • Ohta T (1982) Allelic and nonallelic homology of a supergene family. Proc Natl Acad Sci USA 79:3251–3254

    Article  PubMed  CAS  Google Scholar 

  • Ohta T (1983) On the evolution of multigene families. Theor Popul Biol 23:216–240

    Article  PubMed  CAS  Google Scholar 

  • Ohta T (1987) Simulating evolution by gene duplication. Genetics 115:207–213

    PubMed  CAS  Google Scholar 

  • Ohta T (1988) Further simulation studies on evolution by gene duplication. Evolution 42:375–386

    Article  Google Scholar 

  • Ohta T (1991a) Multigene families and the evolution of complexity. J Mol Evol 33:34–41

    Article  PubMed  CAS  Google Scholar 

  • Ohta T (1991b) Role of diversifying selection and gene conversion in evolution of major histocompatibility complex loci. Proc Natl Acad Sci USA 88(15):6716–6720

    Article  CAS  Google Scholar 

  • Ohta T (1995) Gene conversion vs point mutation in generating variability at the antigen recognition site of major histocompatibility complex loci. Genetics 41:115–119

    CAS  Google Scholar 

  • Ohta T (1997) Role of gene conversion in generating polymorphisms at major histocompatibility complex loci. Hereditas 127(1-2): 97–103

    Article  CAS  Google Scholar 

  • Osada N, Innan H (2008) Duplication and gene conversion in the Drosophila melanogaster genome. PLoS Genet 4(12):e1000305

  • Papp B, Pál C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197

    Article  PubMed  CAS  Google Scholar 

  • Parham P, Ohta T (1996) Population biology of antigen presentation by MHC class I molecules. Science 272(5258):67–74

    Article  PubMed  CAS  Google Scholar 

  • Perry GH, Yang F, Marques-Bonet T, Murphy C, Fitzgerald T, Lee AS, Hyland C, Stone AC, Hurles ME, Tyler-Smith C, Eichler EE, Carter NP, Lee C, Redon R (2008) Copy number variation and evolution in humans and chimpanzees. Genome Res 18:1698–710

    Article  PubMed  CAS  Google Scholar 

  • Petes TD, Hill CW (1988) Recombination between repeated genes in microorganisms. Annu Rev Genet 22:147–168

    Article  PubMed  CAS  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, et al (2006) Global variation in copy number in the human genome. Nature 444:444–454

    Article  PubMed  CAS  Google Scholar 

  • Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, Dubas F, Frebourg T, Campion D (2006) APP locus duplication causes autosomal dominant early-onset alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38:24–26

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS, Waterston RH, Wilson RK, Page DC (2003) Abundant gene conversion between arms of palindromes in human and ape chromosomes. Nature 423:873–876

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Nishio T, Kimura R, Kusaba M, Suzuki T, Hatakeyama K, Ockendon DJ, Satta Y (2002) Coevolution of the S-locus genes SRK:SLG and SP11/SCR in Brassica oleracea and B. rapa. Genetics 162(2):931–940

    PubMed  CAS  Google Scholar 

  • Sawyer S (1989) Statistical tests for gene conversion. Mol Biol Evol 6:526–538

    PubMed  CAS  Google Scholar 

  • Sawyer SA, Hartl DL (1992) Population genetics of polymorphism and divergence. Genetics 132:1161–1176

    PubMed  CAS  Google Scholar 

  • Schienman JE, Holt RA, Auerbach MR, Stewart CB (2006) Duplication and divergence of 2 distinct pancreatic ribonuclease genes in leaf-eating African and Asian colobine monkeys. Mol Biol Evol 23:1465–1479

    Article  PubMed  CAS  Google Scholar 

  • Semple C, Wolfe KH (1999) Gene duplication and gene conversion in the Caenorhabditis elegans genome. J Mol Evol 48:555–564

    Article  PubMed  CAS  Google Scholar 

  • Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, et al (2003) α-synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  PubMed  CAS  Google Scholar 

  • Spofford JB (1969) Heterosis and the evolution of duplications. Am Nat 103:407–432

    Article  Google Scholar 

  • Sugino RP, Innan H (2005) Estimating the time to the whole-genome duplication and the duration of concerted evolution via gene conversion in yeast. Genetics 171(1): 63–69

    Article  PubMed  CAS  Google Scholar 

  • Sugino R, Innan H (2006) Selection for more of the same product as a force to enhance concerted evolution of duplicated genes. Trends Genet 22:642–644

    Article  PubMed  CAS  Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Takahata M, Maruyama T (1979) Polymorphism and loss of duplicate gene expression: a theoretical study with application to tetraploid fish. Proc Natl Acad Sci USA 76:4521–4525

    Article  PubMed  CAS  Google Scholar 

  • Takuno S, Nishio T, Satta Y, Innan H (2008) Preservation of a pseudogene by gene conversion and diversifying selection. Genetics 180:517–531

    Article  PubMed  Google Scholar 

  • Tavaré S (1984) Line-of-descent and genealogical processes, and their applications in population genetic models. Theor Popul Biol 26:119–164

    Article  PubMed  Google Scholar 

  • Teshima KM, Innan H (2004) The effect of gene conversion on the divergence between duplicated genes. Genetics 166:1553–1560

    Article  PubMed  CAS  Google Scholar 

  • Teshima KM, Innan H (2008) Neofunctionalization of duplicated genes under the pressure of gene conversion. Genetics 178:1385–1398

    Article  PubMed  CAS  Google Scholar 

  • Thornton K, Long M (2005) Excess of amino acid substitutions relative to polymorphism between X-linked duplications in Drosophila melanogaster. Mol Biol Evol 22:273–284

    Article  PubMed  CAS  Google Scholar 

  • Wagner A (2000) Robustness against mutations in genetic networks of yeast. Nat Genet 24:355–361

    Article  PubMed  CAS  Google Scholar 

  • Walsh JB (1987) Sequence-dependent gene conversion: can duplicated genes diverge fast enough to escape conversion? Genetics 117:543–557

    PubMed  CAS  Google Scholar 

  • Walsh JB (1995) How often do duplicated genes evolve new functions. Genetics 139:421–428

    PubMed  CAS  Google Scholar 

  • Walsh B (2003) Population-genetic models of the fates of duplicate genes. Genetica 118:279–294

    Article  PubMed  CAS  Google Scholar 

  • Watterson GA (1983) On the time for gene silencing at duplicate loci. Genetics 105:745–766

    PubMed  Google Scholar 

  • Wiuf C, Hein J (2000) The coalescent with gene conversion. Genetics 155:451–462

    PubMed  CAS  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Article  Google Scholar 

  • Zhang P, Gu Z, Li WH (2003) Different evolutionary patterns between young duplicate genes in the human genome. Genome Biol 4:R56

    Article  PubMed  Google Scholar 

  • Zhao Z, Hewett-Emmett D, Li W (1998) Frequent gene conversion between human red and green opsin genes. J Mol Evol 46:494–496

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Graduate University for Advanced Studies and the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Innan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Innan, H. Population genetic models of duplicated genes. Genetica 137, 19–37 (2009). https://doi.org/10.1007/s10709-009-9355-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-009-9355-1

Keywords

Navigation