Aarbakke ONS, Bucklin A, Halsband C, Norrbin F (2011) Discovery of Pseudocalanus moultoni (Frost, 1989) in Northeast Atlantic waters based on mitochondrial COI sequence variation. J Plankton Res 33:1487–1495
CAS
Google Scholar
Aarbakke ONS, Bucklin A, Halsband C, Norrbin F (2014) Comparative phylogeography and demographic history of five sibling species of Pseudocalanus (Copepoda: Calanoida) in the North Atlantic Ocean. J Exp Mar Biol Ecol 461:479–488
Google Scholar
Aarbakke ONS, Fevolden SV, Weydmann A (2017) Relative summer abundances and distribution of Pseudocalanus spp. (Copepoda: Calanoida) adults in relation to environmental variables in the Nordic Seas and Svalbard fjords. Polar Biol 40:51–59
Google Scholar
Adamowicz SJ, Boatwright JS, Chain F, Fisher BL, Hogg ID, Leese F, Lijtmaer DA, Mwale M, Naaum AM, Pochon X, Steinke D, Wilson J-J, Wood S, Xu J, Xu S, Zhou X, van der Bank M (2019) Trends in DNA barcoding and metabarcoding. Genome 62:v-viii. https://doi.org/10.1139/gen-2019-0054
Adams H, Flerchinger A, Steedman H (1976) Ctenophora fixation and preservation. Monograph on Oceanographic Methodology (UNESCO)
Alamaru A, Hoeksema BW, van der Meij SET, Huchon D (2017) Molecular diversity of benthic ctenophores (Coeloplanidae). Sci Rep 7:6365
PubMed
PubMed Central
Google Scholar
Alheit J, Mollmann C, Dutz J, Kornilovs G, Lowe P, Morholz V, Wasmund N (2005) Synchronous ecological regime shifts in the Central Baltic and the North Sea in the late 1980s. ICES J Mar Sci 62:1205–1215
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410
CAS
PubMed
PubMed Central
Google Scholar
Amaral-Zettler LA, McCliment EA, Ducklow HW, Huss SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4:e6372
PubMed
PubMed Central
Google Scholar
Andronov VN, Kosobokova KN (2011) New species of small, bathypelagic calanoid copepods from the Arctic Ocean: Brodskius arcticus sp. nov. (Tharybidae) and three new species of Pertsovius gen. nov. (Discoidae). Zootaxa 2809:33–46
Google Scholar
Arafat H, Alamaru A, Gissi C, Huchon D (2018) Extensive mitochondrial gene rearrangements in Ctenophora: insights from benthic Platyctenida. BMC Evol Biol 18:65
PubMed
PubMed Central
Google Scholar
Auel H, Hagen W (2002) Mesozooplankton community structure, abundance and biomass in the central Arctic Ocean. Mar Biol 140:1013–1021
Google Scholar
Ayala DJ, Munk P, Lundgreen RBC, Traving SJ, Jaspers C, Jørgensen TS, Hansen LH, Riemann L (2018) Gelatinous plankton is important in the diet of European eel (Anguilla anguilla) larvae in the Sargasso Sea. Sci Rep 8:6156
PubMed
PubMed Central
Google Scholar
Barco A, Raupach MJ, Laakmann S, Neumann H, Knebelsberger T (2016) Identification of North Sea molluscs with DNA barcoding. Molec Ecol Res 16:288–297
CAS
Google Scholar
Bayha KM, Harbison RG, McDonald JH, Gaffney PM (2004) Preliminary investigation on the molecular systematics of the invasive ctenophore Beroe ovata. In: Dumont HJ, Shiganova TA, Niermann U (eds) Aquatic invasions in the Black, Caspian, and Mediterranean Seas. Springer, Netherlands, pp 167–175
Bayha KM, Chang MH, Mariani CL, Richardson JL, Edwards DL, DeBoer TS, Moseley C, Aksoy E, Decker MB, Gaffney PM, Harbison GR, McDonald JH, Caccone A (2015) Worldwide phylogeography of the invasive ctenophore Mnemiopsis leidyi (Ctenophora) based on nuclear and mitochondrial DNA data. Biol Invasions 17:827–850
Google Scholar
Beaugrand G (2005) Monitoring pelagic ecosystems using plankton indicators. ICES J Mar Sci 62:333–338
Google Scholar
Beaugrand G, Luczak C, Edwards M (2009) Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob Change Biol 15:1790–1803
Google Scholar
Beaugrand G, Edwards M, Legendre L (2010) Marine biodiversity, ecosystem functioning, and carbon cycles. Proc Nat Acad Sci 107:10120–10124
CAS
PubMed
Google Scholar
Beaugrand G, Harlay X, Edwards M (2014) Detecting plankton shifts in the North Sea: a new abrupt ecosystem shift between 1996 and 2003. Mar Ecol Progr Ser 502:85–104. https://doi.org/10.3354/meps10693
Article
Google Scholar
Blanco-Bercial L (2020) Metabarcoding analyses and seasonality of the zooplankton community at BATS. Front Mar Sci. https://doi.org/10.3389/fmars.2020.00173
Article
Google Scholar
Blanco-Bercial L, Álvarez-Marqués F, Bucklin A (2011) Comparative phylogeography and connectivity of sibling species of the marine copepod Clausocalanus (Calanoida). J Exp Mar Biol Ecology 404:108–111
Google Scholar
Blanco-Bercial L, Cornils A, Copley N, Bucklin A (2014) DNA barcoding of marine copepods: assessment of analytical approaches to species identification. PLoS Curr 2014:6
Google Scholar
Bluhm BA, Kosobokova KN, Carmack EC (2015) A tale of two basins: an integrated physical and biological perspective of the deep Arctic Ocean. Progr Oceanogr 139:89–121
Google Scholar
Bocher P, Cherel Y, Labat JP, Mayzaud P, Razouls S, Jouventin P (2001) Amphipod based food web: Themisto gaudichaudii caught in nets and by seabirds in Kerguelen waters, southern Indian Ocean. Mar Ecol Progr Ser 223:261–276
Google Scholar
Bode M, Laakmann S, Kaiser P, Hagen W, Auel H, Cornils A (2017) Unravelling diversity of deep-sea copepods using integrated morphological and molecular techniques. J Plankton Res 39:600–617. https://doi.org/10.1093/plankt/fbx031
CAS
Article
Google Scholar
Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL, Matten WT, McGinnis SD, Merezhuk Y, Raytselis Y, Sayers EW, Tao T, Ye J, Zaretskaya I (2013) BLAST: a more efficient report with usability improvements. Nucleic Acids Res 41:W29–W33
PubMed
PubMed Central
Google Scholar
Bouchet P, Rocroi J-P, Hausdorf B, Kaim A, Kano Y, Nützel A, Parkhaev P, Schrödl M, Strong EE (2017) Revised classification, nomenclature and typification of gastropod and monoplacophoran families. Malacology 61:1–526
Google Scholar
Brinton E, Ohman MD, Townsend AW, Knight MD, Bridgeman AL (1999) Euphausiids of the World Ocean, Ver. 1.0. CD-ROM for Macintosh. Springer-Verlag, Berlin
Brodsky KA (1967) Calanoida of the far eastern seas and Polar Basin of the USSR. In: Pavlovsky EN (ed) Keys to the fauna of the USSR. Israel Program for Scientific Translation 35, Jerusalem
Bucklin A, Allen LD (2004) MtDNA sequencing from zooplankton after long-term preservation in buffered formalin. Mol Phylog Evol 30:879–882
CAS
Google Scholar
Bucklin A, Frost BW (2009) Morphological and molecular phylogenetic analysis of evolutionary lineages within Clausocalanus (Crustacea, Copepoda, Calanoida). J Crust Biol 29:111–120
Google Scholar
Bucklin A, Frost BW, Kocher TD (1992) Mitochondrial 16S rRNA sequence variation of Calanus (Copepoda; Calanoida): intra- and interspecific variation. Molec Mar Biol Biotechnol 1:397–407
CAS
Google Scholar
Bucklin A, Astthorsson OS, Gislason A, Allen LD, Smolenack SB, Wiebe PH (2000) Population genetic variation of Calanus finmarchicus in Icelandic waters: preliminary evidence of genetic differences between Atlantic and Arctic populations. ICES J Mar Sci 57:1592–1604
Google Scholar
Bucklin A, Wiebe PH, Smolenack SB, Copley NJ, Beaudet JG, Bonner KG, Färber Lorda J, Pierson JJ (2007) DNA barcodes for species identification of euphausiids (Euphausiacea, Crustacea). J Plankton Res 29:483–493
CAS
Google Scholar
Bucklin A, Hopcroft RR, Kosobokova KN, Nigro LM, Ortman BD, Jennings RM, Sweetman CJ (2010a) DNA barcoding of Arctic Ocean holozooplankton for species identification and recognition. Deep-Sea Res II 57:40–48
CAS
Google Scholar
Bucklin A, Nishida S, Schnack-Schiel S, Wiebe PH, Lindsay D, Machida RJ, Copley NJ (2010b) Chapter 13. A census of zooplankton of the global ocean. In: McIntyre A (ed) Marine life: diversity, distribution, and abundance. Wiley-Blackwell, Oxford, pp 247–265
Google Scholar
Bucklin A, Ortman BD, Jennings RM, Nigro LM, Sweetman CJ, Copley NJ, Wiebe PH (2010c) A “Rosetta Stone” for zooplankton: DNA barcode analysis of holozooplankton diversity of the Sargasso Sea (NW Atlantic Ocean). Deep-Sea Res II 57:2234–2247
CAS
Google Scholar
Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA barcoding of marine metazoa. Ann Rev Mar Sci 3:471–508. https://doi.org/10.1146/annurev-marine-120308-080950
Article
PubMed
Google Scholar
Bucklin A, Lindeque PK, Rodriguez-Ezpeleta N, Albaina A, Lehtiniemi M (2016) Metabarcoding of marine zooplankton: Progress, prospects and pitfalls. J Plankton Res 38:393–400. https://doi.org/10.1093/plankt/fbw023
CAS
Article
Google Scholar
Bucklin A, Yeh HD, Questel JM, Richardson DE, Reese B, Copley NJ, Wiebe PH (2019) Time-series metabarcoding analysis of zooplankton diversity of the NW Atlantic continental shelf. ICES J Marine Sci 76:1162–1176. https://doi.org/10.1093/icesjms/fsz021
Article
Google Scholar
Burridge AK, Goetze E, Raes N, Huisman J, Peijnenburg KTCA (2015) Global biogeography and evolution of Cuvierina pteropods. BMC Evol Biol 15:1–16
Google Scholar
Burridge AK, Hörnlein C, Janssen AW, Hughes M, Bush SL, Marlétaz F, Gasca R, Pierrot-Bults AC, Michel E, Todd JA, Young JR, Osborn KJ, Menken SBJ, Peijnenburg KTCA (2017) Time-calibrated molecular phylogeny of pteropods. PLoS ONE 12:1–22. https://doi.org/10.1371/journal.pone.0177325
CAS
Article
Google Scholar
Burridge AK, Van der Hulst R, Goetze E, Peijnenburg KTCA (2019) Assessing species boundaries in the open sea: An integrative taxonomic approach to the pteropod genus Diacavolinia. Zool J Linnean Soc 187:1016–1040. https://doi.org/10.1093/zoolinnean/zlz049
Article
Google Scholar
Castellani C, Lindley AJ, Wootton M, Lee CM, Kirby RR (2011) Morphological and genetic variation in the North Atlantic copepod, Centropages typicus. J Mar Biol Assoc UK 92:99–106
Google Scholar
Cheng FP, Wang MX, Sun S, Li C, Zhang Y (2013) DNA barcoding of Antarctic marine zooplankton for species identification and recognition. Adv Polar Sci 24:119–127. https://doi.org/10.3724/SP.J.1085.2013.00119
Article
Google Scholar
Choo LQ, Bal TMP, Goetze E, Peijnenburg KTCA (2020) Oceanic dispersal barriers in a holoplanktonic gastropod. J Evol Biol 00:1–17. https://doi.org/10.1111/jeb.13735
CAS
Article
Google Scholar
Choquet M, Kosobokova KN, Kwaśniewski S, Hatlebakk M, Dhanasiri AKS, Melle W, Daase M, Svensen C, Søreide JE, Hoarau G (2018) Can morphology reliably distinguish between the copepods Calanus finmarchicus and C. glacialis, or is DNA the only way? Limnol Oceanogr Meth 16:237–252. https://doi.org/10.1002/lom3.10240
Article
Google Scholar
Corell J, Rodríguez-Ezpeleta N (2014) Tuning of protocols and marker selection to evaluate the diversity of zooplankton using metabarcoding. Rev Invest Mar 21:19–39
Cornils A (2015) Non-destructive DNA extraction for small pelagic copepods to perform integrative taxonomy. J Plankton Res 37:6–10. https://doi.org/10.1093/plankt/fbu105
CAS
Article
Google Scholar
Cornils A, Held C (2014) Evidence of cryptic and pseudocryptic speciation in the Paracalanus parvus species complex (Crustacea, Copepoda, Calanoida). Front Zool 11:19. https://doi.org/10.1186/1742-9994-11-19
CAS
Article
PubMed
PubMed Central
Google Scholar
Cornils A, Wend-Heckmann B (2015) First report of the planktonic copepod Oithona davisae in the northern Wadden Sea (North Sea): evidence for recent invasion? Helgoland Mar Res 69:243–248
Google Scholar
Corse E, Rampal J, Cuoc C, Pech N, Perez Y, Gilles A (2013) Phylogenetic analysis of Thecosomata Blainville, 1824 (holoplanktonic Opisthobranchia) using morphological and molecular data. PLoS ONE 8:e5943
Google Scholar
Cristescu ME (2014) From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity. Trends Ecol Evol 29:566–571. https://doi.org/10.1016/j.tree.2014.08.001
Article
PubMed
Google Scholar
Dayrat B (2005) Towards integrative taxonomy. Biol J Linnean Soc 85:407–415
Google Scholar
Deagle BE, Clarke LJ, Kitchener JA, Polanowski AM, Davidson AT (2017) Genetic monitoring of open ocean biodiversity: an evaluation of DNA metabarcoding for processing continuous plankton recorder samples. Molec Ecol Res 18:391–406. https://doi.org/10.1111/1755-0998.12740
CAS
Article
Google Scholar
DeBroyer C, Danis B (2011) How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species. Deep Sea Res II 58:5–17. https://doi.org/10.1016/j.dsr2.2010.10.007
Article
Google Scholar
DeHart HM, Blanco-Bercial L, Passacantando M, Questel JM, Bucklin A (2020) Pathways of pelagic connectivity: Eukrohnia hamata (Chaetognaths) in the Arctic Ocean. Front Mar Sci 7:396. https://doi.org/10.3389/fmars.2020.00396
Article
Google Scholar
DeSalle R (2006) Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Cons Biol 20:1545–1547
Google Scholar
DeVargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605
Google Scholar
Díaz-Gil C, Werner M, Lövgren O, Kaljuste O, Grzyb A, Magoński P, Casini M (2014) Spatio-temporal composition and dynamics of zooplankton in the Kalmar Sound (western Baltic Sea) in 2009–2010. Boreal Envi Res 19:323–335
Google Scholar
Dippner JW, Hänninen J, Kuosa H, Vuorinen I (2001) The influence of climate variability on zooplankton abundance in the Northern Baltic Archipelago Sea (SW Finland). ICES J Mar Sci 58:569–578. https://doi.org/10.1006/jmsc.2001.1048
Article
Google Scholar
Djurhuus A, Pitz K, Sawaya NA, Rojas-Márquez J, Michaud B, Montes E, Muller-Karger F, Breitbart M (2018) Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. Limnol Oceanogr Meth 16:209–221. https://doi.org/10.1002/lom3.10237
Article
Google Scholar
Eloire D, Somerfield PJ, Conway DVP, Halsband-Lenk C, Harris RP, Bonnet D (2010) Temporal variability and community composition of zooplankton at station L4 in the Western Channel: 20 years of sampling. J Plankton Res 32:657–679
Google Scholar
Ershova EA (2020) Routine identification of four sympatric species of calanoid copepods Pseudocalanus spp. in the Atlantic Arctic using species-specific polymerase chain reaction. J Oceanol Res 48:62–72. https://doi.org/10.29006/1564-2291.JOR-2020.48(1).4
Article
Google Scholar
Ershova EA, Kosobokova KN (2019) Cross-shelf structure and distribution of mesozooplankton communities in the East-Siberian Sea and the adjacent Arctic Ocean. Polar Biol 42:1353–1367. https://doi.org/10.1007/s00300-019-02523-2
Article
Google Scholar
Ershova EA, Hopcroft RR, Kosobokova KN (2015) Inter- annual variability of summer mesozooplankton communities of the western Chukchi Sea: 2004–2012. Polar Biol 38:1461–1481
Google Scholar
Figueroa NJ, Figueroa DF, Hicks D (2020) Phylogeography of Acartia tonsa Dana, 1849 (Calanoida: Copepoda) and phylogenetic reconstruction of the genus Acartia Dana, 1846. Mar Biodiv 50:23. https://doi.org/10.1007/s12526-020-01043-1
Article
Google Scholar
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299. https://doi.org/10.1371/journal.pone.0013102
CAS
Article
PubMed
Google Scholar
Gasca R, Franco-Gordo C, Gordinez-Dominiguez E, Saúrez-Morales E (2012) Hyperiid amphipod community in the Eastern Tropical Pacific before, during, and after El Niño 1997–1998. Mar Ecol Progr Ser 455:123–139. https://doi.org/10.3354/meps9571
Article
Google Scholar
Geller J, Meyer C, Parker M, Hawk H (2013) Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol Ecol Resour 13:851–861. https://doi.org/10.1111/1755-0998.12138
CAS
Article
PubMed
Google Scholar
Gershwin L, Zeidler W, Davie PJ (2010) Ctenophora of Australia. Mem Queensland Mus 54:1–45
Google Scholar
Goetze E (2003) Cryptic speciation on the high seas; global phylogenetics of the copepod family Eucalanidae. Proc Roy Soc B 270:2321–2331. https://doi.org/10.1098/rspb.2003.2505
Article
Google Scholar
Goetze E (2010) Species discovery in marine planktonic invertebrates through global molecular screening. Molec Ecol 19:952–967. https://doi.org/10.1111/j.1365-294X.2009.04520.x
Article
Google Scholar
Goetze E, Andrews KR, Peijnenburg KTCA, Portner E, Norton EL, Dam HG (2015) Temporal stability of genetic structure in a mesopelagic copepod. PLoS ONE 10:1–16. https://doi.org/10.1371/journal.pone.0136087
CAS
Article
Google Scholar
Goetze EG, Hüdepohl PT, Chang C, Van Woudenberg L, Iacchei M, Peijnenburg KTCA (2016) Ecological dispersal barrier across the equatorial Atlantic in a migratory planktonic copepod. Progr Oceanogr 158:203–212. https://doi.org/10.1016/j.pocean.2016.07.001
Article
Google Scholar
Goodall-Copestake WP, Pérez-Espona S, Clark MS, Murphy EJ, Seear PJ, Tarling GA (2010) Swarms of diversity at the gene cox1 in Antarctic krill. Heredity 104:513–518
CAS
PubMed
Google Scholar
Govindarajan AE, Bucklin A, Madin LP (2011) A molecular phylogeny of the Thaliacea. J Plankton Res 33:843–853
CAS
Google Scholar
Gradinger R, Bluhm BA, Hopcroft RR, Gebruk AV, Kosobokova K, Sirenko B, Wesławski JM (2010) Marine life in the Arctic. In: McIntyre AD (ed) Life in the World’s Oceans. Blackwell Publishing Ltd, New York
Google Scholar
Greve W, Reiners F, Nast J, Hoffmann S (2004) Helgoland Roads time-series meso- and macrozooplankton 1975 to 2004: lessons from 30 years of single spot high frequency sampling at the only offshore island of the North Sea. Helgoland Mar Res 58:274–288
Google Scholar
Haddock SHD (2004) A golden age of gelata: past and future research on planktonic ctenophores and cnidarians. Hydrobiology 530(531):549–556
Google Scholar
Halbert KMK, Goetze E, Carlon DK (2013) High cryptic diversity across the global range of the migratory planktonic copepods Pleuromamma piseki and P. gracilis. PLOS One 8:e77011
Halsband C, Ahyong ST, Brandt A, Kosobokova K, Ward P, Goodall-Copestake VP, Macpherson E (2020) Evolution and biogeography of the crustacea: biogeography of the oceans. In: Thiel M, Poore GCB (eds) The natural history of the crustacea. Oxford University Press, Oxford, pp 121–154
Google Scholar
Hanna E, Nolan JE, Overland JE, Hall RJ (2021) Climate change in the Arctic. In: Thomas DN (ed) Arctic ecology. John Wiley & Sons, New Jersey, pp 57–79
Google Scholar
Harbison GR, Biggs DC, Madin LP (1977) The associations of Amphipoda Hyperiidea with gelatinous zooplankton II. Associations with Cnidaria, Ctenophora and Radiolaria. Deep Sea Res 24:465–488
Google Scholar
Harding GCH (1966) Zooplankton distribution I the Arctic Ocean with notes of life cycles. MS Thesis, McGill University, Montreal, 134 pp
Hardy SM, Carr CM, Hardman M, Steinke D, Corstorphine E, Mah C (2011) Biodiversity and phylogeography of Arctic marine fauna: insights from molecular tools. Mar Biodiv 41:195–210
Google Scholar
Havermans C, Nagy ZT, Sonet G, De Broyer C, Martin P (2011) DNA barcoding reveals new insights into the diversity of Antarctic species of Orchomenesensulato (Crustacea: Amphipoda: Lysianassoidea). Deep Sea Res II 58:230–241
CAS
Google Scholar
Havermans C, Hagen W, Zeidler W, Held C, Auel H (2019) A survival pack for escaping predation in the open ocean: amphipod—pteropod associations in the Southern Ocean. Mar Biodiv 49:1361–1370. https://doi.org/10.1007/s12526-018-0916-3
Article
Google Scholar
Hay S (2006) Marine ecology: gelatinous bells may ring change in marine ecosystems. Curr Biol 16:R679-682
CAS
PubMed
Google Scholar
Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344
PubMed
Google Scholar
Hays GC, Doyle TK, Houghton JDR (2018) A paradigm shift in the trophic importance of jellyfish? Trends Ecol Evol 33:874–884
PubMed
Google Scholar
Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc Royal Soc B 270:313–321
CAS
Google Scholar
Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24
PubMed
PubMed Central
Google Scholar
Hernroth L, Ackefors H (1979) The zooplankton of the Baltic proper: a long-term investigation of the fauna, its biology and ecology. Rep Fish Bd Sweden Inst Mar Res 2:60
Google Scholar
Hidaka M, Nishikawa J, Lindsay DJ (2021) Gelatinous zooplankton community around a hydrothermally active deep-sea caldera: results from ROV video records. Plankton Benthos Res 16:40–58
Google Scholar
Hirai J, Kuriyama M, Ichikawa T, Hidaka K, Tsuda A (2015) A metagenetic approach for revealing community structure of marine planktonic copepods. Mol Ecol Res 15:68–80
CAS
Google Scholar
Hirai J, Tachibana A, Tsuda A (2020) Large-scale metabarcoding analysis of epipelagic and mesopelagic copepods in the Pacific. PLoS ONE 15:e0233189. https://doi.org/10.1371/journal.pone.0233189
CAS
Article
PubMed
PubMed Central
Google Scholar
Hirose E, Oka AT, Hirose M (2009) Two new species of photosymbiotic ascidians of the genus Diplosoma from the Ryukyu Archipelago, with partial sequences of the COI gene. Zool Sci 26:362–368. https://doi.org/10.2108/zsj.26.362
Article
Google Scholar
Holst S, Laakmann S (2014) Morphological and molecular discrimination of two closely related jellyfish species, Cyanea capillata and C. lamarckii (Cnidaria, Scyphozoa), from the northeast Atlantic. J Plankton Res 36:48–63
Google Scholar
Homma T, Yamaguchi A (2010) Vertical changes in abundance, biomass and community structure of copepods down to 3000 m in the southern Bering Sea. Deep Sea Res I 57:965–977
Google Scholar
Homma T, Yamaguchi A, Bower JR, Ichiro I (2011) Vertical changes in abundance, biomass, and community structure of copepods in the northern North Pacific and Bering Sea at 0–3,000 m depth, and their role on the vertical flux of surface-produced organic material. Bull Fish Sci Hokkaido Univ 61:29–47
Google Scholar
Hopcroft RR (2005) Diversity in larvaceans: How many species? In: Gorsky G, Youngbluth MJ, Deibel D (eds) Response of marine ecosystems to global change: ecological impact of appendicularians. Contemporary Publishing International, Paris, pp 45–57
Google Scholar
Hosia A, Falkenhaug T, Baxter EJ, Pagès F (2017) Abundance, distribution and diversity of gelatinous predators along the northern Mid-Atlantic Ridge: a comparison of different sampling methodologies. PLoS ONE 12:e0187491
PubMed
PubMed Central
Google Scholar
Huang D, Meier R, Todd PA, Chou LM (2008) Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J Mol Evol 66:167–174
CAS
PubMed
Google Scholar
Hunt B, Strugnell J, Bednarsek N, Linse K, Nelson RJ, Pakhomov E, Seibel B, Steinke D (2010) Wurzberg L (2010) Poles apart: the “bipolar” pteropod species Limacina helicina is genetically distinct between the Arctic and Antarctic Oceans. PLoS ONE 3:e9835
Google Scholar
Hurt C, Haddock SHD, Browne WE (2013) Molecular phylogenetic evidence for the reorganization of the Hyperiid amphipods, a diverse group of pelagic crustaceans. Mol Phylog Evol 67:28–37
Google Scholar
Jarman SN, Elliott NG, Nicol S, McMinn A (2000) Molecular phylogenetics of circumglobal Euphausia species (Euphausiacea: Crustacea). Can J Fish Aqua Sci 57:51–58. https://doi.org/10.1139/cjfas-57-S3-51
CAS
Article
Google Scholar
Jennings RM, Bucklin A, Ossenbrügger H, Hopcroft RR (2010a) Species diversity of planktonic gastropods (Pteropoda and Heteropoda) from six ocean regions based on DNA barcode analysis. Deep Sea Res II 57:2199–2210. https://doi.org/10.1016/j.dsr2.2010.09.022
CAS
Article
Google Scholar
Jennings RM, Bucklin A, Pierrot-Bults AC (2010b) Barcoding of arrow worms (Phylum Chaetognatha) from three oceans: genetic diversity and evolution within an enigmatic phylum. PLoS ONE 5:e9949. https://doi.org/10.1371/journal.pone.0009949
CAS
Article
PubMed
PubMed Central
Google Scholar
Johansson ML, Shiganova TA, Ringvold H, Stupnikova AN, Heath DD, MacIsaac HJ (2018) Molecular insights into the ctenophore genus Beroe in Europe: new species, spreading invaders. J Heredity 109:520–529
CAS
Google Scholar
Johnson CL, Runge JA, Curtis KA, Durbin EG, Hare JA, Incze LS, Link JS, Melvin GD, O’Brien TD, Van Guelpen L (2011) Biodiversity and ecosystem function in the Gulf of Maine: pattern and role of zooplankton and pelagic nekton. PLoS ONE 6:e16491
CAS
PubMed
PubMed Central
Google Scholar
Kane J (2007) Zooplankton abundance trends on Georges Bank, 1977–2004. ICES J Mar Sci 64:909–919
Google Scholar
Kayal E, Bentlage B, Collins AG, Kayal M, Pirro S, Lavrov DV (2011) Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biol Evol 4:1–12
PubMed
PubMed Central
Google Scholar
Kayal E, Bentlage B, Cartwright P, Yanagihara AA, Lindsay DJ, Hopcroft RR, Collins AG (2015) Phylogenetic analysis of higher-level relationships within Hydroidolina (Cnidaria: Hydrozoa) using mitochondrial genome data and insight into their mitochondrial transcription. PeerJ 3:e1403
PubMed
PubMed Central
Google Scholar
Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiology 420:73–90
CAS
Google Scholar
Kohn AB, Citarella MR, Kocot KM, Bobkova YV, Halanych KM, Moroz LL (2012) Rapid evolution of the compact and unusual mitochondrial genome in the ctenophore, Pleurobrachia bachei. Mol Phylog Evol 63:203–207
CAS
Google Scholar
Kolbasova G, Kosobokova K, Neretina T (2020) Bathy- and mesopelagic Annelida from the Arctic Ocean: Description of new, redescription of known and notes on some “cosmopolitan” species. Deep Sea Res I 165:103327. https://doi.org/10.1016/j.dsr.2020.103327
Article
Google Scholar
Kosobokova KN (2012) Zooplankton of the Arctic Ocean: community structure, ecology, spatial distribution. GEOS, Moscow, Russia [in Russian, English abstract]
Kosobokova KN, Hanssen H, Hirche HJ, Knickmeier K (1998) Composition and distribution of zooplankton in the Laptev Sea and adjacent Nansen Basin during summer, 1993. Polar Biol 19:63–76
Google Scholar
Kosobokova KN, Hopcroft RR, Hirche HJ (2011) Patterns of zooplankton diversity through the depths of the Arctic’s central basins. Mar Biodivers 41:29–50. https://doi.org/10.1007/s12526-010-0057-9
Article
Google Scholar
Kulagin DN, Stupnikova AN, Neretina TV, Mugue NS (2014) Spatial genetic heterogeneity of the cosmopolitan chaetognath Eukrohnia hamata (Möbius, 1875) revealed by mitochondrial DNA. Hydrobiology 721:197–207. https://doi.org/10.1007/s10750-013-1661-z
CAS
Article
Google Scholar
Laakmann S, Holst S (2014) Emphasizing the diversity of North Sea hydromedusae by combined morphological and molecular methods. J Plankton Res 36:64–76
Google Scholar
Laakmann S, Auel H, Kochzius M (2012) Evolution in the deep sea: Biological traits, ecology and phylogenetics of pelagic copepods. Mol Phylog Evol 65:535–546
Google Scholar
Laakmann S, Gerdts G, Erler R, Knebelsberger T, Martínez Arbizu P, Raupach MJ (2013) Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences. Mol Ecol Res 13:862–876
CAS
Google Scholar
Laakmann S, Boos K, Knebelsberger T, Raupach MJ, Neumann H (2016) Species identification of echinoderms from the North Sea by combining morphology and molecular data. Helgoland Mar Res 70:18
Google Scholar
Lavrov DV, Pett W (2016) Animal mitochondrial DNA as we do not know it: Mt-genome organization and evolution in nonbilaterian lineages. Genome Biol Evol 8:2896–2913
CAS
PubMed
PubMed Central
Google Scholar
Leduc N, Lacoursière-Roussel A, Howland KL, Archambault P, Sevellec M, Normandeau E, Dispas A, Winkler G, McKindsey CW, Simard N, Bernatchez L (2019) Comparing eDNA metabarcoding and species collection for documenting Arctic metazoan biodiversity. Environ DNA 1:342–358
Google Scholar
Lenz J (2000) Introduction. In: Harris R, Wiebe PH, Lenz J, Skjoldal HR, Huntley M (eds) ICES zooplankton methodology manual. Academic Press, London, pp 1–32
Google Scholar
Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, Boehm JT, Machida RJ (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool 10:34. https://doi.org/10.1186/1742-9994-10-34
CAS
Article
PubMed
PubMed Central
Google Scholar
Leray M, Knowlton N, Ho S-L, Nguyen BN, Machida RJ (2019) GenBank is a reliable resource for 21st century biodiversity research. Proc Nat Acad Sci 116:22651–22656. https://doi.org/10.1073/pnas.1911714116
CAS
Article
PubMed
Google Scholar
Li JY, Guo DH, Wu PC, He LS (2018) Ontogeny reversal and phylogenetic analysis of Turritopsis sp.5 (Cnidaria, Hydrozoa, Oceaniidae), a possible new species endemic to Xiamen, China. Peer J 6:e4225. https://doi.org/10.7717/peerj.4225
Lindeque P, Harris RP, Jones M, Smerdon GR (1999) Simple molecular method to distinguish the identity of Calanus species (Copepoda: Calanoida) at any developmental stage. Mar Biol 133:91–96. https://doi.org/10.1007/s002270050446
CAS
Article
Google Scholar
Lindsay DJ, Grossmann MM, Nishikawa J (2015) DNA barcoding of pelagic cnidarians: current status and future prospects. Bull Plankton Soc Japan 62:39–43
Google Scholar
Lindsay DJ, Grossmann MM, Bentlage B, Collins AG, Minemizu R, Hopcroft RR, Miyake H, Hidaka-Umetsu M, Nishikawa J (2017) The perils of online biogeographic databases: a case study with the ‘monospecific’ genus Aegina (Cnidaria, Hydrozoa, Narcomedusae), Mar Biol Res 13:494–512. https://doi.org/10.1080/17451000.2016.1268261
Liu R (ed) (2008) Checklist of marine biota of China seas. Science Press, Academia Sinica, Beijing, p 1267
Google Scholar
Locatelli NS, McIntyre PB, Therkildsen NO, Baetscher DS (2020) GenBank’s reliability is uncertain for biodiversity researchers seeking species-level assignment for eDNA. Proc Nat Acad Sci USA 117:32211–32212
CAS
PubMed
Google Scholar
Machida RJ, Hashiguchi Y, Nishida M, Nishida S (2009) Zooplankton diversity analysis through single-gene sequencing of a community sample. BMC Genomics 10:438
PubMed
PubMed Central
Google Scholar
Mackas DL, Beaugrand G (2010) Comparisons of zooplankton time series. J Mar Syst 79:286–304
Google Scholar
Mackas DL, Goldblatt R, Lewis AG (1998) Interdecadal variation in developmental timing of Neocalanus plumchrus populations at Ocean Station P in the subarctic North Pacific. Can J Fish Aquat Sci 55:1878–1893
Google Scholar
Marlétaz F, Le-Parco Y, Liu S, Peijnenburg KTCA (2017) Extreme mitogenomic variation in natural populations of chaetognaths. Genome Biol Evol 9:1374–1384. https://doi.org/10.1093/gbe/evx090
CAS
Article
PubMed
PubMed Central
Google Scholar
Martell L, Tandberg AHS, Hosia A (2018) The illusion of rarity in an epibenthic jellyfish: facts and artefacts in the distribution of Tesserogastria musculosa (Hydrozoa, Ptychogastriidae). Helgoland Mar Res 72:12
Google Scholar
McGowan JA, Walker PW (1979) Structure in the copepod community of the North Pacific central gyre. Ecol Monogr 49:195–226. https://doi.org/10.2307/1942513
Article
Google Scholar
McInnes JC, Alderman R, Lea M-A, Raymond B, Deagle BE, Phillips RA, Stanworth A, Thompson DR, Catry P, Weimerskirch H, Suazo CG, Gras M, Jarman SN (2017) High occurrence of jellyfish predation by black-browed and Campbell albatross identified by DNA metabarcoding. Molec Ecol 26:4831–4845
CAS
Google Scholar
Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:1–10. https://doi.org/10.1371/journal.pbio.0030422
CAS
Article
Google Scholar
Miyamoto H, Machida RJ, Nishida S (2012) Global phylogeography of the deep-sea pelagic chaetognath Eukrohnia hamata. Progr Oceanogr 104:99–109
Google Scholar
Moon SY, Lee W, Soh HY (2010) A new species of Bestiolina (Crustacea: Copepoda: Calanoida) from the Yellow Sea, with notes on the zoogeography of the genus. Proc Biol Soc Wash 123:32–46. https://doi.org/10.2988/09-12.1
Article
Google Scholar
Moura CJ, Lessios H, Cortés J, Nizinski MS, Reed J, Santos RS, Collins AG (2018) Hundreds of genetic barcodes of the species-rich hydroid superfamily Plumularioidea (Cnidaria, Medusozoa) provide a guide toward more reliable taxonomy. Sci Rep 8:17986–17986
CAS
PubMed
PubMed Central
Google Scholar
Mumm N (1993) Composition and distribution of mesozooplankton in the Nansen Basin, Arctic Ocean, during summer. Polar Biol 13:451–461
Google Scholar
Musialik-Koszarowska M, Dzierzbicka-Glowacka L, Weydmann A (2019) Influence of environmental factors on the population dynamics of key zooplankton species in the Gulf of Gdańsk (southern Baltic Sea). Oceanologia 61:17–25. https://doi.org/10.1016/j.oceano.2018.06.001
Article
Google Scholar
Nigro LM, Angel MV, Blachowiak-Samolyk K, Hopcroft RR, Bucklin A (2016) Identification, discrimination, and discovery of species of marine planktonic ostracods using DNA barcodes. PLoS-One 11:e0146327
PubMed
PubMed Central
Google Scholar
O’Brien TD, Wiebe PH, Falkenhaug T (2013) ICES zooplankton status report 2010/2011. ICES Coop Res Rep 318:1–208
Google Scholar
Ojaveer H, Jaanus A, MacKenzie BR, Martin G, Olenin S, Radziejewska T, Telesh I, Zettler ML, Zaiko A (2010) Status of biodiversity in the Baltic Sea. PLoS ONE 5:e12467. https://doi.org/10.1371/journal.pone.0012467
CAS
Article
PubMed
PubMed Central
Google Scholar
Ortman BD, Bucklin A, Pages F, Youngbluth M (2010) DNA Barcoding the medusozoa using mtCOI. Deep Sea Res 57:2148–2156
CAS
Google Scholar
Peijnenburg KTCA, Goetze E (2013) High evolutionary potential of marine zooplankton. Ecol Evol 3:2765–2781. https://doi.org/10.1002/ece3.644
Article
PubMed
PubMed Central
Google Scholar
Peijnenburg KTCA, Breeuwer JAJ, Pierrot-Bults AC, Menken SBJ (2004) Phylogeography of the planktonic chaetognath Sagitta setosa reveals isolation in European seas. Evolution 58:1472–1487
PubMed
Google Scholar
Peijnenburg KTCA, Fauvelot C, Breeuwer JAJ, Menken SBJ (2006) Spatial and temporal genetic structure of the planktonic Sagitta setosa (Chaetognatha) in European seas as revealed by mitochondrial and nuclear DNA markers. Mol Ecol 15:3319–3338
CAS
PubMed
Google Scholar
Peijnenburg KTCA, Janssen AW, Wall-Palmer D, Goetze E, Maas AE, Todd JA, Marlétaz F (2020) The origin and diversification of pteropods precede past perturbations in the Earth’s carbon cycle. Proc Nat Acad Sci USA 117:25609–25617. https://doi.org/10.1073/pnas.1920918117
CAS
Article
PubMed
Google Scholar
Pershing AJ, Greene CH, Jossi JW, O’Brien L, Brodziak JKT, Baily BA (2005) Interdecadal variability in the Gulf of Maine zooplankton community, with potential impacts on fish recruitment. ICES J Mar Sci 62:1511–1523
Google Scholar
Pett W, Ryan JF, Pang K, Mullikin JC, Martindale MQ, Baxevanis AD, Lavrov DV (2011) Extreme mitochondrial evolution in the ctenophore Mnemiopsis leidyi: Insight from mtDNA and the nuclear genome. Mitochondrial DNA 22:130–142
CAS
PubMed
PubMed Central
Google Scholar
Pierrot-Bults AC (2017) Chaetognatha. In: Castellani C, Edwards M (eds) Marine plankton. Oxford University Press, Oxford, pp 551–560. https://doi.org/10.1093/oso/9780199233267.001.0001
Pinheiro HT, Moreau CS, Daly M, Rocha LA (2019) Will DNA barcoding meet taxonomic needs? Science 365:873–874. https://doi.org/10.1126/science.aay7174
CAS
Article
PubMed
Google Scholar
Pitois SG, Shaw M, Fox CJ, Frid CLJ (2009) A new fine-mesh zooplankton time series from the Dove sampling station (North Sea). J Plankton Res 31:337–343
Google Scholar
Podar M, Haddock SHD, Sogin ML, Harbison GR (2001) A molecular phylogenetic framework for the phylum Ctenophora using 18S rRNA genes. Mol Phylog Evol 21:218–230
CAS
Google Scholar
Polyakov IV, Alkire MB, Bluhm BA, Brown KA, Carmack EC, Chierici M, Danielson SL, Ellingsen I, Ershova EA, Gårdfeldt K, Ingvaldsen RB, Pnyushkov AV, Slagstad D, Wassmann P (2020) Borealization of the Arctic Ocean in response to anomalous advection from Sub-Arctic seas. Front Mar Sci 7:491. https://doi.org/10.3389/fmars.2020.00491
Article
Google Scholar
Pyataeva SV, Hopcroft RR, Lindsay DJ, Collins AG (2016) DNA barcodes unite two problematic taxa: the meiobenthic Boreohydra simplex is a life-cycle stage of Plotocnide borealis (Hydrozoa, Aplanulata). Zootaxa 4150:85–92
PubMed
Google Scholar
Questel JM, Clarke C, Hopcroft RR (2013) Seasonal and interannual variation in the planktonic communities of the northeastern Chukchi Sea during the summer and early fall. Cont Shelf Res 67:23–41. https://doi.org/10.1016/j.csr.2012.11.003
Questel JM, Blanco-Bercial L, Bucklin A, Hopcroft RR (2016) Phylogeography and connectivity of four sibling species of Pseudocalanus (Copepoda: Calanoida) in the North Pacific and Arctic Ocean. J Plankton Res 38:610–623. https://doi.org/10.1093/plankt/fbw025
Article
PubMed
PubMed Central
Google Scholar
Questel JM, Hopcroft RR, DeHart HM, Kosobokova K, Smoot C, Bucklin A (2021) Metabarcoding analysis of zooplankton biodiversity of the Pacific-Arctic Chukchi Borderlands region. Mar Biodiv 51:4. https://doi.org/10.1007/s12526-020-01136-x
Article
Google Scholar
Raskoff KA, Hopcroft RR, Kosobokova KN, Youngbluth MJ, Purcell JE (2010) Jellies under ice: ROV observations from the Arctic 2005 Hidden Ocean Expedition. Deep Sea Res II 57:111–126
Google Scholar
Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system (http://www.barcodinglife.org). Mol Ecol Notes 7:355–364
Raupach MJ, Radulovici AE (2015) Looking back on a decade of barcoding crustaceans. ZooKeys 539:53–81
Google Scholar
Raupach MJ, Barco A, Steinke D, Beermann J, Laakmann S, Mohrbeck I, Neumann H, Kihara TC, Pointner K, Radulovici A, Segelken-Voigt A, Wesse C, Knebelsberger T (2015) The application of DNA barcodes for the Identification of marine crustaceans from the North Sea and adjacent regions. PLoS ONE 10:e0139421
PubMed
PubMed Central
Google Scholar
Razouls C, Desreumaux N, Kouwenberg J, de Bovée F (2005–2020) Biodiversity of marine planktonic copepods (morphology, geographical distribution and biological data). Sorbonne University, CNRS. Available at http://copepodes.obs-banyuls.fr/en
Reid PC, Edwards M, Beaugrand G, Skogen M, Stevens D (2003) Periodic changes in the zooplankton of the North Sea during the twentieth century linked to oceanic inflow. Fish Ocean 12:260–269
Google Scholar
Rey A, Basurko OC, Rodriguez-Ezpeleta N (2020) Considerations for metabarcoding-based port biological baseline surveys aimed at marine nonindigenous species monitoring and risk assessments. Ecol Evol 10:2452–2465
PubMed
PubMed Central
Google Scholar
Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295. https://doi.org/10.1093/icesjms/fsn028
Article
Google Scholar
Robison BH, Raskoff KA, Sherlock RE (2005a) Adaptations for living deep: a new bathypelagic doliolid, from the eastern North Pacific. J Mar Biol Assoc UK 85:595–602
Google Scholar
Robison BH, Raskoff KA, Sherlock RE (2005b) Ecological substrate in midwater: Doliolula equus, a new mesopelagic tunicate. J Mar Biol Assoc UK 85:655–663
Google Scholar
Robison BH, Sherlock RE, Reisenbichler KR (2010) The bathypelagic community of Monterey Canyon. Deep Sea Res II 57:1551–1556
Google Scholar
Rynearson T, Menden-Deuer S (2016) Drivers that structure biodiversity in the plankton. In: Glibert PM, Kana TM (eds) Aquatic microbial ecology and biogeochemistry: a dual perspective. Springer, New York
Google Scholar
Schiewer U (2008) Ecology of Baltic coastal waters. Springer, Berlin, p 428
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Envi Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09
CAS
Article
Google Scholar
Schroeder A, Stanković D, Pallavicini A, Gionechetti F, Pansera M, Camatti E (2020) DNA metabarcoding and morphological analysis—assessment of zooplankton biodiversity in transitional waters. Mar Envi Res 160:104946
CAS
Google Scholar
Schuchert P (2020) DNA barcoding of some Pandeidae species (Cnidaria, Hydrozoa, Anthoathecata). Rev Suisse Zool 125:101–127
Google Scholar
Schuchert P, Hosia A, Leclère L (2017) Identification of the polyp stage of three leptomedusa species using DNA barcoding. Rev Suisse Zool 124:167–182
Google Scholar
Schultz DT, Eizenga JM, Corbett-Detig RB, Francis WR, Christianson LM, Haddock SHD (2020) Conserved novel ORFs in the mitochondrial genome of the ctenophore Beroe forskalii. Peer J 8:e8356
PubMed
Google Scholar
Shearer TL, van Oppen MJH, Romano SL, Wörheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487
CAS
PubMed
Google Scholar
Sherlock RE, Walz KR, Schlining KL, Robison BH (2017) Morphology, ecology, and molecular biology of a new species of giant larvacean in the eastern North Pacific: Bathochordaeus mcnutti sp. nov. Mar Biol 164:1–15. https://doi.org/10.1007/s00227-016-3046-0
CAS
Article
Google Scholar
Shimizu K, Kimoto K, Noshita K, Wakita M, Fujiki T, Sasaki T (2018) Phylogeography of the pelagic snail Limacina helicina (Gastropoda: Thecosomata) in the subarctic western North Pacific. J Mollusc Stud 84:30–37. https://doi.org/10.1093/mollus/eyx040
Article
Google Scholar
Sieburth JM, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23:1256–1263
Google Scholar
Simion P, Bekkouche N, Jager M, Quéinnec E, Manuel M (2015) Exploring the potential of small RNA subunit and ITS sequences for resolving phylogenetic relationships within the phylum Ctenophora. Zoology 118:102–114
PubMed
Google Scholar
Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. Ann Entomol Soc Am 87:651–701
CAS
Google Scholar
Sirenko BI (2001) List of species of free-living invertebrates of Eurasian Arctic Seas and adjacent deep waters. Russian Acad Sci Explor Fauna Sea 51:1–129
Google Scholar
Sirenko BI, Markhaseva EL, Buzhinskaya GN, Golikov AA, Menshutkina TV, Petryashov VV, Semenova TN, Stepanjants SD, Vassilenko SV (1996) Preliminary data on suprabenthic invertebrates collected during RV Polarstern cruise in the Laptev Sea. Polar Biol 16:345–352
Google Scholar
Smoot CS, Hopcroft RR (2017a) Cross-shelf gradients of epipelagic zooplankton communities of the Beaufort Sea and the influence of localized hydrographic features. J Plankton Res 39:65–78. https://doi.org/10.1093/plankt/fbw080
Article
Google Scholar
Smoot CS, Hopcroft RR (2017b) Depth-stratified community structure of Beaufort Sea slope zooplankton and its relations to water masses. J Plankton Res 39:79–91. https://doi.org/10.1093/plankt/fbw087
Article
Google Scholar
Snelgrove P, Van den Berghe E, Miloslavich P, Bailly N, Brandt A, Bucklin A et al (2017) Global patterns in marine biodiversity. In: United Nations World Ocean Assessment I. Cambridge University Press, pp 501–524. https://doi.org/10.1017/9781108186148.037
Sommer SA, VanWoudenberg L, Lenz PH, Cepeda G, Goetze E (2017) Vertical gradients in species richness and community composition across the twilight zone in the North Pacific Subtropical Gyre. Mol Ecol 26:6136–6156. https://doi.org/10.1111/mec.14286
Article
PubMed
Google Scholar
Song S, Jiang F, Yuan J, Guo W, Miao Y (2013) Exceptionally high cumulative percentage of NUMTs originating from linear mitochondrial DNA molecules in the Hydra magnipapillata genome. BMC Genomics 14:1–13. https://doi.org/10.1186/1471-2164-14-447
CAS
Article
Google Scholar
Sousa LL, Xavier R, Costa V, Humphries NE, Trueman C, Rosa R, Sims DW, Queiroz N (2016) DNA barcoding identifies a cosmopolitan diet in the ocean sunfish. Sci Rep 6:28762
CAS
PubMed
PubMed Central
Google Scholar
Sromek L, Lasota R, Szymelfenig M, Wolowicz M (2015) Genetic evidence for the existence of two species of the “bipolar” pelagic mollusk Clione limacina. Am Malacol Bull 33:118–120
Google Scholar
Stefanni S, Stanković D, Borme D, de Olazabal A, Juretić A, Pallavicini A, Tirelli V (2018) Multi-marker metabarcoding approach to study mesozooplankton at basin scale. Sci Rep 8:12085. https://doi.org/10.1038/s41598-018-30157-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Suter L, Polanowski AM, Clarke LJ, Kitchener JA, Deagle BE (2020) Capturing open ocean biodiversity: comparing environmental DNA metabarcoding to the continuous plankton recorder. Mol Ecol 2020:1–18. https://doi.org/10.1111/mec.15587
Article
Google Scholar
Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050
CAS
PubMed
Google Scholar
Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Vanden Berghe E, Worm B (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–1101
CAS
PubMed
Google Scholar
Trivedi S, Aloufi AA, Ansari AA, Ghosh SK (2016) Role of DNA barcoding in marine biodiversity assessment and conservation: an update. Saudi J Biol Sci 23:161–171. https://doi.org/10.1016/j.sjbs.2015.01.001
CAS
Article
PubMed
Google Scholar
Tsagkogeorga G, Turon X, Hopcroft RR, Tilak M-K, Feldstein T, Shenkar N, Loya Y, Huchon D, Douzery EJ, Delsuc F (2009) An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evol Biol 9:187
PubMed
PubMed Central
Google Scholar
Viitasalo MI, Vuorinen I, Saesmaa S (1995) Mesozooplankton dynamics in the northern Baltic Sea: implications of variations in hydrography and climate. J Plankton Res 17:1857–1878
Google Scholar
Walczyńska KS, Søreide JE, Weydmann-Zwolicka A, Ronowicz M, Gabrielsen TM (2019) DNA barcoding of Cirripedia larvae reveals new knowledge on their biology in Arctic coastal ecosystems. Hydrobiology 837:149–159. https://doi.org/10.1007/s10750-019-3967-y
Article
Google Scholar
Wall-Palmer D, Burridge AK, Goetze E, Stokvis F, Janssen AW, Mekkes L, Moreno-Alcántara M, Bednaršek N, Schiøtte T, Vinther Sørensen M, Smart CW, Peijnenburg KTCA (2018) Biogeography and genetic diversity of the Atlantid heteropods. Progr Oceanogr 160:1–25. https://doi.org/10.1016/j.pocean.2017.11.004
Article
Google Scholar
Wall-Palmer D, Janssen AW, Goetze E, Choo LQ, Mekkes L, Peijnenburg KTCA (2020) Fossil-calibrated molecular phylogeny of Atlantid heteropods (Gastropoda, Pterotracheoidea). BMC Evol Biol 20:124. https://doi.org/10.1186/s12862-020-01682-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang M, Cheng F (2019) The complete mitochondrial genome of the Ctenophore Beroe cucumis, a mitochondrial genome showing rapid evolutionary rates. Mitochon DNA B 4:3774–3775
Google Scholar
Wangensteen OS, Palacín C, Guardiola M, Turon X (2018) DNA metabarcoding of littoral hard-bottom communities: high diversity and database gaps revealed by two molecular markers. Peer J 6:e4705. https://doi.org/10.7717/peerj.4705
CAS
Article
PubMed
Google Scholar
Wassmann P, Carmack EC, Bluhm B, Duarte C, Berge J, Brown K, Grebmeier JM, Holding J, Kosobokova K, Kwok R, Matrai P, Agusti SR, Babin M, Bhatt U, Eicken H, Polyakov I, Rysgaard S, Huntington H (2020) Towards a unifying pan-Arctic perspective: a conceptual modelling toolkit. Progr Oceanogr 189:102455. https://doi.org/10.1016/j.pocean.2020.102455
Article
Google Scholar
Watson JE, Govindarajan AF (2017) A new species of Gonionemus (Hydrozoa: Limnomedusae) from southern Australia. Zootaxa 4365:487–494
PubMed
Google Scholar
Weydmann A, Carstensen J, Goszczko I, Dmoch K, Olszewska A, Kwaśniewski S (2014) Shift towards the dominance of boreal species in the Arctic: inter-annual and spatial zooplankton variability in the West Spitsbergen Current. Mar Ecol Progr Ser 501:41–52. https://doi.org/10.3354/meps10694
Article
Google Scholar
Weydmann A, Przyłucka A, Lubośny M, Walczyńska K, Serrão EA, Pearson GA, Burzyński A (2017) Mitochondrial genomes of the key zooplankton copepods Arctic Calanus glacialis and North Atlantic Calanus finmarchicus with the longest crustacean non-coding regions. Sci Rep 7:13702. https://doi.org/10.1038/s41598-017-13807-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Weydmann A, Walczowski W, Carstensen J, Kwaśniewski S (2018) Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus. Global Change Biol 24:172–183. https://doi.org/10.1111/gcb.13864
Article
Google Scholar
Weydmann-Zwolicka A, Balazy P, Kuklinski P, Soreide JE, Patuła W, Ronowicz M (2021) Meroplankton seasonal dynamics in the high Arctic fjord: comparison of different sampling methods. Prog Oceanogr 190:102484. https://doi.org/10.1016/j.pocean.2020.102484
Article
Google Scholar
Wiebe PH, Bucklin A, Madin LP, Angel MV, Sutton T, Pagés F, Hopcroft RR, Lindsay D (2010) Deep-sea sampling on CMarZ cruises in the Atlantic Ocean—an introduction. Deep Sea Res II 57:2157–2166
Google Scholar
Wiebe PH, Rudels B, Cadrin SX, Drinkwater KF, Lavin A (2012) Introduction to variability of the North Atlantic and its marine ecosystems, 2000–2009. ICES J Mar Sci 69:697–702
Google Scholar
Wiebe PH, Bucklin A, Kaartvedt S, Røstad A, Blanco-Bercial L (2016) Vertical distribution and migration of euphausiid species in the Red Sea. J Plankton Res 38:888–903. https://doi.org/10.1093/plankt/fbw038
CAS
Article
Google Scholar
Wiebe PH, Bucklin A, Benfield M (2017) Sampling, preservation, and counting of samples: ii zooplankton, Chapter 10. In: Castellani C, Edwards M (eds) Marine plankton: a practical guide to ecology, methodology, and taxonomy. Oxford University Press, Oxford, pp 104–138. https://doi.org/10.1093/oso/9780199233267.003.0010
Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54:844–851. https://doi.org/10.1080/10635150500354878
WoRMS Editorial Board (2021) World register of marine species. Available from http://www.marinespecies.org at VLIZ. Accessed 5.2.2021. https://doi.org/10.14284/170
Yamaguchi A, Watanabe Y, Ishida H, Harimoto T, Furusawa K, Suzuki A, Ishizaka J, Ikeda T, Takahashi MM (2002) Community and trophic structures of pelagic copepods down to greater depths in the western subarctic Pacific (WEST-COSMIC). Deep Sea Res 49:1007–1025
Google Scholar
Yamaguchi A, Matsuno K, Homma T (2015) Spatial changes in the vertical distribution of calanoid copepods down to great depths in the North Pacific. Zool Stud 54:13. https://doi.org/10.1186/s40555-014-0091-6
Article
Google Scholar
Yang J, Zhang X, Zhang W, Sun J, Xie Y, Zhang Y, Burton GA, Yu H (2017) Indigenous species barcode database improves the identification of zooplankton. PLoS ONE 12:e0185697. https://doi.org/10.1371/journal.pone.0185697October
Article
PubMed
PubMed Central
Google Scholar
Zheng L, He J, Lin Y, Cao W, Zhang W (2014) 16S rRNA is a better choice than COI for DNA barcoding hydrozoans in the coastal waters of China. Acta Ocean Sin 33:55–76
Google Scholar