Photonic monitoring of treatment during infection and sepsis: development of new detection strategies and potential clinical applications

Abstract

Despite the strong decline in the infection-associated mortality since the development of the first antibiotics, infectious diseases are still a major cause of death in the world. With the rising number of antibiotic-resistant pathogens, the incidence of deaths caused by infections may increase strongly in the future. Survival rates in sepsis, which occurs when body response to infections becomes uncontrolled, are still very poor if an adequate therapy is not initiated immediately. Therefore, approaches to monitor the treatment efficacy are crucially needed to adapt therapeutic strategies according to the patient’s response. An increasing number of photonic technologies are being considered for diagnostic purpose and monitoring of therapeutic response; however many of these strategies have not been introduced into clinical routine, yet. Here, we review photonic strategies to monitor response to treatment in patients with infectious disease, sepsis, and septic shock. We also include some selected approaches for the development of new drugs in animal models as well as new monitoring strategies which might be applicable to evaluate treatment response in humans in the future.

Label-free probing of blood properties using photonics

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Martens E, Demain AL. The antibiotic resistance crisis, with a focus on the United States. J Antibiot (Tokyo). 2017;70:520–526.

    CAS  Article  Google Scholar 

  2. 2.

    Morens DM, Folkers GK, Fauci AS. Emerging infections: a perpetual challenge. Lancet Infect Dis. 2008; 8:710–719.

    Article  Google Scholar 

  3. 3.

    Dodds DR. Antibiotic resistance: a current epilogue. Biochem Pharmacol. 2017;134:139–146.

    CAS  Article  Google Scholar 

  4. 4.

    Barrett JF. MRSA: status and prospects for therapy? An evaluation of key papers on the topic of MRSA and antibiotic resistance. Expert Opin Ther Targets. 2004;8:515–519.

    Article  Google Scholar 

  5. 5.

    Cohen J, Vincent JL, Adhikari NKJ, Machado FR, Angus DC, Calandra T, Jaton K, Giulieri S, Delaloye J, Opal S, Tracey K, van der Poll T, Pelfrene E. Sepsis: a roadmap for future research. Lancet Infect Dis. 2015;15:581–614.

    Article  Google Scholar 

  6. 6.

    Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ (Clinical Research Ed). 2016;353:i1585.

    Google Scholar 

  7. 7.

    Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;9:S13.

    Article  Google Scholar 

  8. 8.

    Lush CW, Kvietys PR. Microvascular dysfunction in sepsis. Microcirculation 2000;7:83–101.

    CAS  Article  Google Scholar 

  9. 9.

    van der Poll T. Future of sepsis therapies. Crit Care. 2016;20:106.

    Article  Google Scholar 

  10. 10.

    Bahreini M. Role of optical spectroscopic methods in neuro-oncological sciences. J Lasers Med Sci. 2015;6: 51–61.

    Google Scholar 

  11. 11.

    Shah K, Jacobs A, Breakefield XO, Weissleder R. Molecular imaging of gene therapy for cancer. Gene Ther. 2004;11:1175–1187.

    CAS  Article  Google Scholar 

  12. 12.

    Zhao Z, Yan R, Yi X, Li J, Rao J, Guo Z, Yang Y, Li W, Li YQ, Chen C. Bacteria-activated theranostic nanoprobes against methicillin-resistant Staphylococcus aureus infection. ACS nano 2017;11:4428–4438.

    CAS  Article  Google Scholar 

  13. 13.

    Solomon M, Liu Y, Berezin MY, Achilefu S. Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring. Med Princ Pract. 2011;20:397–415.

    Article  Google Scholar 

  14. 14.

    Sikkandhar MG, Nedumaran AM, Ravichandar R, Singh S, Santhakumar I, Goh ZC, Mishra S, Archunan G, Gulys B, Padmanabhan P. Theranostic probes for targeting tumor microenvironment: an overview. Int J Mol Sci. 2017;18(5):1036. https://doi.org/https://doi.org/10.3390/ijms18051036.

    Article  Google Scholar 

  15. 15.

    Bengel FM. 2017. Issue noninvasive molecular imaging and theranostic probes: New concepts in myocardial imaging. Methods.

  16. 16.

    Pene F, Courtine E, Cariou A, Mira JP. Toward theragnostics. Crit Care Med. 2009;37:S50–S58.

    CAS  Article  Google Scholar 

  17. 17.

    Heuker M, Gomes A, van Dijl JM, van Dam GM, Friedrich AW, Sinha B, van Oosten M. Preclinical studies and prospective clinical applications for bacteria-targeted imaging: the future is bright. Clin Transl Imaging. 2016;4:253–264.

    Article  Google Scholar 

  18. 18.

    Hu J, Bohn PW. Optical biosensing of bacteria and bacterial communities. Journal of Analysis and Testing. 2017;1:4.

    Article  Google Scholar 

  19. 19.

    Navalkissoor S, Nowosinska E, Gnanasegaran G, Buscombe JR. Single-photon emission computed tomography-computed tomography in imaging infection. Nucl Med Commun. 2013;34:283–290.

    CAS  Article  Google Scholar 

  20. 20.

    De Backer D, Donadello K. Assessment of microperfusion in sepsis. Minerva Anestesiol. 2015;81:533–540.

    CAS  Google Scholar 

  21. 21.

    Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care. 2015;19 (Suppl 3):S8.

    Google Scholar 

  22. 22.

    Gruartmoner G, Mesquida J, Ince C. Microcirculatory monitoring in septic patients: Where do we stand? Med Intensiva. 2017;41:44–52.

    CAS  Article  Google Scholar 

  23. 23.

    Pozo MO, Kanoore Edul VS, Ince C, Dubin A. Comparison of different methods for the calculation of the microvascular flow index. Crit Care Res Pract. 2012;2012:102483.

    Google Scholar 

  24. 24.

    Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, Nadeau RG. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med. 1999;5:1209–1212.

    CAS  Article  Google Scholar 

  25. 25.

    Cerny V, Turek Z, Parizkova R. Orthogonal polarization spectral imaging. Physiol Res. 2007;56:141–147.

    CAS  Google Scholar 

  26. 26.

    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104.

    Article  Google Scholar 

  27. 27.

    De Backer D, Verdant C, Chierego M, Koch M, Gullo A, Vincent JL. Effects of drotrecogin alfa activated on microcirculatory alterations in patients with severe sepsis. Crit Care Med. 2006;34:1918–1924.

    CAS  Article  Google Scholar 

  28. 28.

    Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C. Sidestream dark field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express. 2007;15:15101.

    CAS  Article  Google Scholar 

  29. 29.

    Jhanji S, Stirling S, Patel N, Hinds CJ, Pearse RM. The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med. 2009;37:1961–1966.

    CAS  Article  Google Scholar 

  30. 30.

    He X, Su F, Velissaris D, Salgado DR, de Souza Barros D, Lorent S, Taccone FS, Vincent JL, De Backer D. Administration of tetrahydrobiopterin improves the microcirculation and outcome in an ovine model of septic shock. Crit Care Med. 2012;40:2833–2840.

    CAS  Article  Google Scholar 

  31. 31.

    Sherman H, Klausner S, Cook WA. Incident dark-field illumination: a new method for microcirculatory study. Angiology. 1971;22:295–303.

    CAS  Article  Google Scholar 

  32. 32.

    Aykut G, Veenstra G, Scorcella C, Ince C, Boerma C. Cytocam-idf (incident dark field illumination) imaging for bedside monitoring of the microcirculation. Intensive Care Med Exp. 2015;3:40.

    Article  Google Scholar 

  33. 33.

    Hutchings S, Watts S, Kirkman E. The cytocam video microscope. A new method for visualising the microcirculation using incident dark field technology. Clin Hemorheol Microcirc. 2016;62:261–271.

    Article  Google Scholar 

  34. 34.

    Boas DA, Dunn AK. Laser speckle contrast imaging in biomedical optics. J Biomed Opt. 2010;15: 011109–011109.

    Article  Google Scholar 

  35. 35.

    Richards LM, Kazmi SS, Davis JL, Olin KE, Dunn AK. Low-cost laser speckle contrast imaging of blood flow using a webcam. Biomed Opt Express. 2013;4:2269–2283.

    Article  Google Scholar 

  36. 36.

    Dunn AK. Laser speckle contrast imaging of cerebral blood flow. Ann Biomed Eng. 2012;40:367–377.

    Article  Google Scholar 

  37. 37.

    Nadort A, Kalkman K, van Leeuwen TG, Faber DJ. Quantitative blood flow velocity imaging using laser speckle flowmetry. Sci Rep. 2016;6:25258.

    CAS  Article  Google Scholar 

  38. 38.

    Sand CA, Starr A, Wilder CDE, Rudyk O, Spina D, Thiemermann C, Treacher DF, Nandi M. Quantification of microcirculatory blood flow: a sensitive and clinically relevant prognostic marker in murine models of sepsis. J Appl Physiol. 2015;118:344–354.

    CAS  Article  Google Scholar 

  39. 39.

    Wu Y, Ren J, Zhou B, Ding C, Chen J, Wang G, Gu G, Liu S, Li J. Laser speckle contrast imaging for measurement of hepatic microcirculation during the sepsis: a novel tool for early detection of microcirculation dysfunction. Microvasc Res. 2015;97:137–146.

    Article  Google Scholar 

  40. 40.

    Assadi A, Desebbe O, Kaminski C, Rimmel T , Bnatir F, Goudable J, Chassard D, Allaouchiche B. Effects of sodium nitroprusside on splanchnic microcirculation in a resuscitated porcine model of septic shock. Br J Anaesth. 2008;100:55–65.

    CAS  Article  Google Scholar 

  41. 41.

    Jacquet-Lagrèze M, Allaouchiche B, Restagno D, Paquet C, Ayoub JY, Etienne J, Vandenesch F, Dauwalder O, Bonnet JM, Junot S. Gut and sublingual microvascular effect of esmolol during septic shock in a porcine model. Crit Care. 2015;19:241.

    Article  Google Scholar 

  42. 42.

    Birnbaum J, Klotz E, Spies CD, Lorenz B, Stuebs P, Hein OV, Grundling M, Pavlovic D, Usichenko T, Wendt M, Kox WJ, Lehmann C. Effects of dopexamine on the intestinal microvascular blood flow and leukocyte activation in a sepsis model in rats. Crit Care. 2006;10:R117.

    Article  Google Scholar 

  43. 43.

    Favory R, Poissy J, Alves I, Guerry MJ, Lemyze M, Parmentier-Decrucq E, Duburcq T, Mathieu D. Activated protein C improves macrovascular and microvascular reactivity in human severe sepsis and septic shock. Shock. 2013;40:512–518.

    CAS  Article  Google Scholar 

  44. 44.

    Krejci V, Hiltebrand LB, Sigurdsson GH. Effects of epinephrine, norepinephrine, and phenylephrine on microcirculatory blood flow in the gastrointestinal tract in sepsis. Crit Care Med. 2006;34:1456–1463.

    CAS  Article  Google Scholar 

  45. 45.

    Lehmann C, Zhou J, Schuster L, Götz F, Wegner A, Cerny V, Pavlovic D, Robertson GS. Effect of deletion of cIAP2 on intestinal microcirculation in mouse endotoxemia and polybacterial sepsis. Shock. 2014; 41:454–457.

    CAS  Article  Google Scholar 

  46. 46.

    Rosengarten B, Wolff S, Klatt S, Schermuly RT. Effects of inducible nitric oxide synthase inhibition or norepinephrine on the neurovascular coupling in an endotoxic rat shock model. Crit Care. 2009;13:R139.

    Article  Google Scholar 

  47. 47.

    Macdonald SPJ, Brown SGA. Near-infrared spectroscopy in the assessment of suspected sepsis in the emergency department. Emerg Med J. 2015;32:404–408.

    Article  Google Scholar 

  48. 48.

    Neto AS, Pereira VGM, Manetta JA, Espósito DC, Schultz MJ. Association between static and dynamic thenar near-infrared spectroscopy and mortality in patients with sepsis. J Trauma Acute Care Surg. 2014; 76:226–233.

    Article  CAS  Google Scholar 

  49. 49.

    Vorwerk C, Coats TJ. The prognostic value of tissue oxygen saturation in emergency department patients with severe sepsis or septic shock. Emerg Med J. 2011;29:699–703.

    Article  Google Scholar 

  50. 50.

    Wood M, Song A, Maslove D, Ferri C, Howes D, Muscedere J, Boyd JG. Brain tissue oxygenation in patients with septic shock: a feasibility study. Can J Neurol Sci. 2015;43:65–73.

    Article  Google Scholar 

  51. 51.

    Georger JF, Hamzaoui O, Chaari A, Maizel J, Richard C, Teboul JL. Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients. Intensive Care Med. 2010;36:1882–1889.

    CAS  Article  Google Scholar 

  52. 52.

    Dubin A, Pozo MO, Casabella CA, Pálizas F, Murias G, Moseinco MC, Edul VSK, Pálizas F, Estenssoro E, Ince C. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13:R92.

    Article  Google Scholar 

  53. 53.

    Donati A, Romanelli M, Botticelli L, Valentini A, Gabbanelli V, Nataloni S, Principi T, Pelaia P, Bezemer R, Ince C. Recombinant activated protein C treatment improves tissue perfusion and oxygenation in septic patients measured by near-infrared spectroscopy. Crit Care. 2009;13:S12.

    Article  Google Scholar 

  54. 54.

    Wallace MB, Wax A, Roberts DN, Graf RN. Reflectance spectroscopy. Gastrointest Endosc Clin N Am 2009;19:233–242.

    Article  Google Scholar 

  55. 55.

    Leung FW. Endoscopic reflectance spectrophotometry and visible light spectroscopy in clinical gastrointestinal studies. Dig Dis Sci. 2008;53:1669–1677.

    Article  Google Scholar 

  56. 56.

    Valdez TA, Spegazzini N, Pandey R, Longo K, Grindle C, Peterson D, Barman I. Multi-color reflectance imaging of middle ear pathology in vivo. Anal Bioanal Chem. 2015;407:3277–3283.

    CAS  Article  Google Scholar 

  57. 57.

    Sakr Y, Gath V, Oishi J, Klinzing S, Simon TP, Reinhart K, Marx G. Characterization of buccal microvascular response in patients with septic shock. Eur J Anaesthesiol. 2010;27:388–394.

    CAS  Article  Google Scholar 

  58. 58.

    Schwarte LA, Picker O, Bornstein SR, Fournell A, Scheeren TWL. Levosimendan is superior to milrinone and dobutamine in selectively increasing microvascular gastric mucosal oxygenation in dogs. Crit Care Med. 2005;33:135–42. discussion 246–7.

    CAS  Article  Google Scholar 

  59. 59.

    Shapiro NI, Angus DC. A review of therapeutic attempts to recruit the microcirculation in patients with sepsis. Minerva Anestesiol. 2014;80:225–235.

    CAS  Google Scholar 

  60. 60.

    Bezemer R, Bartels SA, Bakker J, Ince C. Clinical review: clinical imaging of the sublingual microcirculation in the critically ill–where do we stand? Crit Care. 2012;16:224.

    Article  Google Scholar 

  61. 61.

    Spronk PE, Zandstra DF, Ince C. Bench-to-bedside review: sepsis is a disease of the microcirculation. Crit Care. 2004;8:462.

    Article  Google Scholar 

  62. 62.

    De Backer D, Orbegozo Cortes D, Donadello K, Vincent JL. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence. 2014;5:73–79.

    Article  Google Scholar 

  63. 63.

    Morelli A, Passariello M. Hemodynamic coherence in sepsis. Best Pract Res Clin Anaesthesiol. 2016;30: 453–463.

    Article  Google Scholar 

  64. 64.

    Nakajima Y, Baudry N, Duranteau J, Vicaut E. Effects of vasopressin, norepinephrine, and L-arginine on intestinal microcirculation in endotoxemia. Crit Care Med 2006;34:1752–1757.

    CAS  Article  Google Scholar 

  65. 65.

    Marechal X, Favory R, Joulin O, Montaigne D, Hassoun S, Decoster B, Zerimech F, Neviere R. Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock. 2008;29:572–576.

    CAS  Google Scholar 

  66. 66.

    Hoffmann JN, Vollmar B, Römisch J, Inthorn D, Schildberg FW, Menger MD. Antithrombin effects on endotoxin-induced microcirculatory disorders are mediated mainly by its interaction with microvascular endothelium. Crit Care Med. 2002;30:218–225.

    CAS  Article  Google Scholar 

  67. 67.

    Tyml K, Li F, Wilson JX. Delayed ascorbate bolus protects against maldistribution of microvascular blood flow in septic rat skeletal muscle. Crit Care Med. 2005;33:1823–1828.

    CAS  Article  Google Scholar 

  68. 68.

    Obonyo NG, Fanning JP, Ng ASY, Pimenta LP, Shekar K, Platts DG, Maitland K, Fraser JF. Effects of volume resuscitation on the microcirculation in animal models of lipopolysaccharide sepsis: a systematic review. Intensive Care Med Exp. 2016;4:38.

    Article  Google Scholar 

  69. 69.

    Zanini GM, Cabrales P, Barkho W, Frangos JA, Carvalho LJM. Exogenous nitric oxide decreases brain vascular inflammation, leakage and venular resistance during Plasmodium berghei ANKA infection in mice. J Neuroinflammation. 2011;8:66.

    CAS  Article  Google Scholar 

  70. 70.

    Nacer A, Movila A, Sohet F, Girgis NM, Gundra UM, Loke P, Daneman R, Frevert U. Experimental cerebral malaria pathogenesis–hemodynamics at the blood–brain barrier. PLoS Pathog. 2014;10: e1004528.

    Article  CAS  Google Scholar 

  71. 71.

    Cabrales P, Zanini GM, Meays D, Frangos JA, Carvalho LJM. Nitric oxide protection against murine cerebral malaria is associated with improved cerebral microcirculatory physiology. J Infect Dis. 2011; 203:1454–1463.

    CAS  Article  Google Scholar 

  72. 72.

    Wang Z, Holthoff JH, Seely KA, Pathak E, Spencer HJ, Gokden N, Mayeux PR. Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am J Pathol. 2012;180:505–516.

    CAS  Article  Google Scholar 

  73. 73.

    Wang Z, Sims CR, Patil NK, Gokden N, Mayeux PR. Pharmacologic targeting of sphingosine-1-phosphate receptor 1 improves the renal microcirculation during sepsis in the mouse. J Pharmacol Exp Ther. 2014;352:61–66.

    Article  CAS  Google Scholar 

  74. 74.

    Gupta A, Rhodes GJ, Berg DT, Gerlitz B, Molitoris BA, Grinnell BW. Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2. Am J Physiol Renal Physiol. 2007;293:F245–F254.

    CAS  Article  Google Scholar 

  75. 75.

    Strnad P, Tacke F, Koch A, Trautwein C. Liver - guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol. 2017;14:55–66.

    CAS  Article  Google Scholar 

  76. 76.

    Yan J, Li S, Li S. The role of the liver in sepsis. Int Rev Immunol. 2014;33:498–510.

    CAS  Article  Google Scholar 

  77. 77.

    Bunchorntavakul C, Chamroonkul N, Chavalitdhamrong D. Bacterial infections in cirrhosis: a critical review and practical guidance. World J Hepatol. 2016;8:307–321.

    Article  Google Scholar 

  78. 78.

    Bauer M, Press AT, Trauner M. The liver in sepsis: patterns of response and injury. Curr Opin Crit Care. 2013;19:123–127.

    Article  Google Scholar 

  79. 79.

    Vos JJ, Wietasch JKG, Absalom AR, Hendriks HGD, Scheeren TWL. Green light for liver function monitoring using indocyanine green? An overview of current clinical applications. Anaesthesia. 2014;69:1364–1376.

    CAS  Article  Google Scholar 

  80. 80.

    Halle BM, Poulsen TD, Pedersen HP. Indocyanine green plasma disappearance rate as dynamic liver function test in critically ill patients. Acta Anaesthesiol Scand. 2014;58:1214–1219.

    CAS  Article  Google Scholar 

  81. 81.

    Rank N, Michel C, Haertel C, Lenhart A, Welte M, Meier-Hellmann A, Spies C. N-acetylcysteine increases liver blood flow and improves liver function in septic shock patients: results of a prospective, randomized, double-blind study. Crit Care Med. 2000;28:3799–3807.

    CAS  Article  Google Scholar 

  82. 82.

    Levesque E, Martin E, Dudau D, Lim C, Dhonneur G, Azoulay D. Current use and perspective of indocyanine green clearance in liver diseases. Anaesth Crit Care Pain Med. 2016;35:49–57.

    Article  Google Scholar 

  83. 83.

    Imai T, Takahashi K, Goto F, Morishita Y. Measurement of blood concentration of indocyanine green by pulse dye densitometry–comparison with the conventional spectrophotometric method. J Clin Monit Comput. 1998; 14:477–484.

    CAS  Article  Google Scholar 

  84. 84.

    Lehmann C, Taymoorian K, Wauer H, Krausch D, Birnbaum J, Kox WJ. Effects of the stable prostacyclin analogue iloprost on the plasma disappearance rate of indocyanine green in human septic shock. Intensive Care Med. 2000;26:1557–1560.

    CAS  Article  Google Scholar 

  85. 85.

    Birnbaum J, Lehmann C, Taymoorian K, Krausch D, Wauer H, Grndling M, Spies C, Kox WJ. The effect of dopexamine and iloprost on plasma disappearance rate of indocyanine green in patients in septic shock. Der Anaesthesist. 2003;52:1014–1019.

    CAS  Article  Google Scholar 

  86. 86.

    Zhang XW, Xie JF, Liu AR, Huang YZ, Guo FM, Yang CS, Yang Y, Qiu HB. Hepatic perfusion alterations in septic shock patients: impact of early goal-directed therapy. Chin Med J (Engl). 2016;129: 1666.

    Article  Google Scholar 

  87. 87.

    Kortgen A, Paxian M, Werth M, Recknagel P, Rauchfuss F, Lupp A, Krenn CG, Mller D, Claus RA, Reinhart K, Settmacher U, Bauer M. Prospective assessment of hepatic function and mechanisms of dysfunction in the critically ill. Shock. 2009;32:358–365.

    Article  Google Scholar 

  88. 88.

    Sauer M, Altrichter J, Haubner C, Pertschy A, Wild T, Do F, Mencke T, Thomsen M, Ehler J, Henschel J, Do S, Koch S, Richter G, Nldge-schomburg G, Mitzner SR. Bioartificial therapy of sepsis: changes of norepinephrine-dosage in patients and influence on dynamic and cell-based liver tests during extracorporeal treatments. Biomed Res Int. 2016;2016:7056492.

    Article  CAS  Google Scholar 

  89. 89.

    Guérin JP, Levraut J, Samat-Long C, Leverve X, Grimaud D, Ichai C. Effects of dopamine and norepinephrine on systemic and hepatosplanchnic hemodynamics, oxygen exchange, and energy balance in vasoplegic septic patients. Shock 2005;23:18–24.

    Article  CAS  Google Scholar 

  90. 90.

    Sarin SK, Choudhury A. Acute-on-chronic liver failure: terminology, mechanisms and management. Nat Rev Gastroenterol Hepatol. 2016;13:131.

    CAS  Article  Google Scholar 

  91. 91.

    Galler K, Schleser F, Fröhlich E, Requardt RP, Kortgen A, Bauer M, Popp J, Neugebauer U. Exploitation of the hepatic stellate cell Raman signature for their detection in native tissue samples. Integr Biol. 2014;6:946–956.

    CAS  Article  Google Scholar 

  92. 92.

    Galler K, Requardt RP, Glaser U, Markwart R, Bocklitz T, Bauer M, Popp J, Neugebauer U. Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells. Sci Rep. 2016; 6:24155. https://doi.org/10.1038/srep24155.

    CAS  Article  Google Scholar 

  93. 93.

    Galler K, Fröhlich E, Kortgen A, Bauer M, Popp J, Neugebauer U. Hepatic cirrhosis and recovery as reflected by Raman spectroscopy: information revealed by statistical analysis might lead to a prognostic biomarker. Anal Bioanal Chem. 2016;408:8053–8063.

    CAS  Article  Google Scholar 

  94. 94.

    Legesse FB, Heuke S, Galler K, Hoffmann P, Schmitt M, Neugebauer U, Bauer M, Popp J. Hepatic vitamin A content investigation using coherent anti-stokes Raman scattering microscopy. ChemPhysChem. 2016;17:4043–4051.

    CAS  Article  Google Scholar 

  95. 95.

    Neugebauer U, März A, Henkel T, Schmitt M, Popp J. Spectroscopic detection and quantification of heme and heme degradation products. Anal Bioanal Chem. 2012;404:2819–2829.

    CAS  Article  Google Scholar 

  96. 96.

    Recknagel P, Gonnert FA, Westermann M, Lambeck S, Lupp A, Rudiger A, Dyson A, Carré JE, Kortgen A, Krafft C, et al. Liver dysfunction and phosphatidylinositol-3-kinase signalling in early sepsis: experimental studies in rodent models of peritonitis. PLoS Med. 2012;9:e1001338.

    CAS  Article  Google Scholar 

  97. 97.

    Yan D, Domes C, Domes R, Frosch T, Popp J, Pletz MW, Frosch T. Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia. Analyst. 2016;141:6104–6115.

    CAS  Article  Google Scholar 

  98. 98.

    Pichi F, Sarraf D, Arepalli S, Lowder CY, Cunningham ET, Neri P, Albini TA, Gupta V, Baynes K, Srivastava SK. The application of optical coherence tomography angiography in uveitis and inflammatory eye diseases. Prog Retin Eye Res. 2017;59:178–201. https://doi.org/10.1016/j.preteyeres.2017.04.005.

    Article  Google Scholar 

  99. 99.

    Agarwal A, Mahajan S, Khairallah M, Mahendradas P, Gupta A, Gupta V. Multimodal imaging in ocular tuberculosis. Ocul Immunol Inflamm. 2017;25:134–145.

    Article  Google Scholar 

  100. 100.

    Ward TS, Reddy AK. Fundus autofluorescence in the diagnosis and monitoring of acute retinal necrosis. J Ophthalmic Inflamm Infect. 2015;5:19.

    Article  Google Scholar 

  101. 101.

    Hosseini K, Jongsma F, Hendrikse F, Motamedi M. Non-invasive monitoring of commonly used intraocular drugs against endophthalmitis by Raman spectroscopy. Lasers Surg Med. 2003;32:265–270.

    CAS  Article  Google Scholar 

  102. 102.

    Mills B, Bradley M, Dhaliwal K. Optical imaging of bacterial infections. Clin Transl Imaging. 2016;4: 163–174.

    Article  Google Scholar 

  103. 103.

    van Oosten M, Hahn M, Crane LMA, Pleijhuis RG, Francis KP, van Dijl JM, van Dam GM. Targeted imaging of bacterial infections: advances, hurdles and hopes. FEMS Microbiol Rev. 2015;39:892–916.

    Article  CAS  Google Scholar 

  104. 104.

    Chen H, Zhang M, Li B, Chen D, Dong X, Wang Y, Gu Y. Versatile antimicrobial peptide-based ZnO quantum dots for in vivo bacteria diagnosis and treatment with high specificity. Biomaterials. 2015;53:532–544.

    CAS  Article  Google Scholar 

  105. 105.

    Chen H, Liu C, Chen D, Madrid K, Peng S, Dong X, Zhang M, Gu Y. Bacteria-targeting conjugates based on antimicrobial peptide for bacteria diagnosis and therapy. Mol Pharm. 2015;12:2505–2516.

    CAS  Article  Google Scholar 

  106. 106.

    Yang C, Ren C, Zhou J, Liu J, Zhang Y, Huang F, Ding D, Xu B, Liu J. Dual fluorescent- and isotopic-labelled self-assembling vancomycin for in vivo imaging of bacterial infections. Angew Chem Int Ed Engl. 2017;56:2356–2360.

    CAS  Article  Google Scholar 

  107. 107.

    Suri S, Lehman SM, Selvam S, Reddie K, Maity S, Murthy N, Garca AJ. In vivo fluorescence imaging of biomaterial-associated inflammation and infection in a minimally invasive manner. J Biomed Mater Res A. 2015;103:76–83.

    Article  CAS  Google Scholar 

  108. 108.

    Panizzi P, Nahrendorf M, Figueiredo JL, Panizzi J, Marinelli B, Iwamoto Y, Keliher E, Maddur AA, Waterman P, Kroh HK, Leuschner F, Aikawa E, Swirski FK, Pittet MJ, Hackeng TM, Fuentes-Prior P, Schneewind O, Bock PE, Weissleder R. In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat Med. 2011;17:1142–1146.

    CAS  Article  Google Scholar 

  109. 109.

    Akhtar MS, Khan ME, Khan B, Irfanullah J, Afzal MS, Khan MA, Nadeem MA, Jehangir M, Imran MB. An imaging analysis of (99m) tc-UBI (29-41) uptake in S. aureus infected thighs of rabbits on ciprofloxacin treatment. Eur J Nucl Med Mol Imaging. 2008;35:1056–1064.

    Article  Google Scholar 

  110. 110.

    Nibbering PH, Welling MM, Paulusma-Annema A, Brouwer CPJM, Lupetti A, Pauwels EKJ. 99Mtc-labeled ubi 29-41 peptide for monitoring the efficacy of antibacterial agents in mice infected with Staphylococcus aureus. J Nucl Med. 2004;45:321– 326.

    CAS  Google Scholar 

  111. 111.

    Roncali E, Savinaud M, Levrey O, Rogers KL, Maitrejean S, Tavitian B. New device for real-time bioluminescence imaging in moving rodents. J Biomed Opt. 2008;13:054035.

    Article  CAS  Google Scholar 

  112. 112.

    Hoshino H. Current advanced bioluminescence technology in drug discovery. Expert Opin Drug Discov. 2009; 4:373–389.

    CAS  Article  Google Scholar 

  113. 113.

    Sato A, Klaunberg B, Tolwani R. In vivo bioluminescence imaging. Comp Med. 2004;54:631–634.

    CAS  Google Scholar 

  114. 114.

    Roda A, Guarigli M, Michelini E, Mirasoli M, Pasini P. Analytical bioluminescence and chemiluminescence. Anal Chem. 2003;75:463A–470A.

    Article  Google Scholar 

  115. 115.

    Roda A, Guardigli M. Analytical chemiluminescence and bioluminescence: latest achievements and new horizons. Anal Bioanal Chem. 2012;402:69–76.

    CAS  Article  Google Scholar 

  116. 116.

    Sadikot RT, Blackwell TS. Bioluminescence imaging. Proc Am Thorac Soc. 2005;2:537–40. 511–2.

    CAS  Article  Google Scholar 

  117. 117.

    Zinn KR, Chaudhuri TR, Szafran AA, O’Quinn D, Weaver C, Dugger K, Lamar D, Kesterson RA, Wang X, Frank SJ. Noninvasive bioluminescence imaging in small animals. ILAR J. 2008; 49:103–115.

    CAS  Article  Google Scholar 

  118. 118.

    Andreu N, Zelmer A, Fletcher T, Elkington PT, Ward TH, Ripoll J, Parish T, Bancroft GJ, Schaible U, Robertson BD, Wiles S. Optimisation of bioluminescent reporters for use with mycobacteria. PloS One. 2010;5:e10777.

    Article  CAS  Google Scholar 

  119. 119.

    Contag CH, Contag PR, Mullins JI, Spilman SD, Stevenson DK, Benaron DA. Photonic detection of bacterial pathogens in living hosts. Mol Microbiol. 1995;18:593–603.

    CAS  Article  Google Scholar 

  120. 120.

    Wu W, Su J, Tang C, Bai H, Ma Z, Zhang T, Yuan Z, Li Z, Zhou W, Zhang H, et al. cybluc: an effective aminoluciferin derivative for deep bioluminescence imaging. Anal Chem. 2017;89:4808–4816.

    CAS  Article  Google Scholar 

  121. 121.

    Chen Y, Xianyu Y, Wu J, Dong M, Zheng W, Sun J, Jiang X. Double-enzymes-mediated bioluminescent sensor for quantitative and ultrasensitive point-of-care testing. Anal Chem. 2017;89:5422–5427.

    CAS  Article  Google Scholar 

  122. 122.

    Kadurugamuwa JL, Modi K, Yu J, Francis KP, Purchio T, Contag PR. Noninvasive biophotonic imaging for monitoring of catheter-associated urinary tract infections and therapy in mice. Infect Immun. 2005;73: 3878–3887.

    CAS  Article  Google Scholar 

  123. 123.

    Garcez AS, Nunez SC, Lage-Marques JL, Hamblin MR, Ribeiro MS. Photonic real-time monitoring of bacterial reduction in root canals by genetically engineered bacteria after chemomechanical endodontic therapy. Braz Dent J. 2007;18:202–207.

    Article  Google Scholar 

  124. 124.

    Je HJ, Kim MG, Kwon HJ. Bioluminescence assays for monitoring chondrogenic differentiation and cartilage regeneration. Sensors. 2017;7(6):E1306. https://doi.org/10.3390/s17061306.

    Article  Google Scholar 

  125. 125.

    Hamblin MR, Zahra T, Contag CH, McManus AT, Hasan T. Optical monitoring and treatment of potentially lethal wound infections in vivo. J Infect Dis. 2003;187:1717–1726.

    Article  Google Scholar 

  126. 126.

    Fila G, Kasimova K, Arenas Y, Nakonieczna J, Grinholc M, Bielawski KP, Lilge L. Murine model imitating chronic wound infections for evaluation of antimicrobial photodynamic therapy efficacy. Front Microbiol. 2017;7:1258. https://doi.org/10.3389/fmicb.2016.01258.

    Google Scholar 

  127. 127.

    Ragas X, Sanchez-Garcia D, Ruiz-Gonzalez R, Dai T, Agut M, Hamblin MR, Nonell S. Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy. J Med Chem. 2010;53: 7796–7803.

    CAS  Article  Google Scholar 

  128. 128.

    Jacobsen ID, Lüttich A, Kurzai O, Hube B, Brock M. In vivo imaging of disseminated murine Candida albicans infection reveals unexpected host sites of fungal persistence during antifungal therapy. J Antimicrob Chemother. 2014;69:2785–2796.

    CAS  Article  Google Scholar 

  129. 129.

    Hsieh SH, Brunke S, Brock M. Encapsulation of antifungals in micelles protects Candida albicans during gall-bladder infection. Front Microbiol. 2017;8:117.

    Article  Google Scholar 

  130. 130.

    Brock M. Bringing light into the dark site of infection. Cytometry A. 2015;87:793–794.

    Article  Google Scholar 

  131. 131.

    Krappmann S. Lightning up the worm: How to probe fungal virulence in an alternative mini-host by bioluminescence. Virulence. 2015;6:727–729.

    Article  Google Scholar 

  132. 132.

    Andreu N, Elkington PT, Wiles S. Molecular imaging in TB: from the bench to the clinic. Understanding tuberculosis-global experiences and innovative approaches to the diagnosis., InTech; 2012. p. 307–332.

  133. 133.

    Zelmer A, Carroll P, Andreu N, Hagens K, Mahlo J, Redinger N, Robertson BD, Wiles S, Ward TH, Parish T, et al. A new in vivo model to test anti-tuberculosis drugs using fluorescence imaging. J Antimicrob Chemother. 2012;67:1948–1960.

    CAS  Article  Google Scholar 

  134. 134.

    Kong Y, Yang D, Cirillo SL, Li S, Akin A, Francis KP, Maloney T, Cirillo JD. Application of fluorescent protein expressing strains to evaluation of anti-tuberculosis therapeutic efficacy in vitro and in vivo. PloS One. 2016;11:e0149972.

    Article  CAS  Google Scholar 

  135. 135.

    Andreu N, Zelmer A, Sampson SL, Ikeh M, Bancroft GJ, Schaible UE, Wiles S, Robertson BD. Rapid in vivo assessment of drug efficacy against mycobacterium tuberculosis using an improved firefly luciferase. J Antimicrob Chemother. 2013;68:2118–2127.

    CAS  Article  Google Scholar 

  136. 136.

    Kong Y, Yao H, Ren H, Subbian S, Cirillo SLG, Sacchettini JC, Rao J, Cirillo JD. Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice. Proc Natl Acad Sci USA. 2010;107:12239–12244.

    CAS  Article  Google Scholar 

  137. 137.

    DaCosta RS, Kulbatski I, Lindvere-Teene L, Starr D, Blackmore K, Silver JI, Opoku J, Wu YC, Medeiros PJ, Xu W, et al. Point-of-care autofluorescence imaging for real-time sampling and treatment guidance of bioburden in chronic wounds: first-in-human results. PLoS One. 2015;10:e0116623.

    Article  CAS  Google Scholar 

  138. 138.

    Wu YC, Smith M, Chu A, Lindvere-Teene L, Starr D, Tapang K, Shekhman R, Wong O, Linden R, DaCosta RS. Handheld fluorescence imaging device detects subclinical wound infection in an asymptomatic patient with chronic diabetic foot ulcer: a case report. Int Wound J. 2016;13:449–453.

    Article  Google Scholar 

  139. 139.

    Ottolino-Perry K, Chamma E, Blackmore KM, Lindvere-Teene L, Starr D, Tapang K, Rosen CF, Pitcher B, Panzarella T, Linden R, et al. Improved detection of clinically relevant wound bacteria using autofluorescence image-guided sampling in diabetic foot ulcers. Int Wound J. 2017;14(5):833–841. https://doi.org/10.1111/iwj.12717.

    Article  Google Scholar 

  140. 140.

    Keenan JB, Rajab TK, Armstrong DG, Khalpey Z. Real-time autofluorescence imaging to diagnose lvad driveline infections. Ann Thorac Surg. 2017;103:e493–e495.

    Article  Google Scholar 

  141. 141.

    Yin R, Dai T, Avci P, Jorge AES, de Melo WCMA, Vecchio D, Huang YY, Gupta A, Hamblin MR. Light-based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Curr Opin Pharmacol. 2013;13:731–762.

    CAS  Article  Google Scholar 

  142. 142.

    Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem Rev. 2010;110:2795–2838.

    CAS  Article  Google Scholar 

  143. 143.

    Galstyan A, Block D, Niemann S, Grner MC, Abbruzzetti S, Oneto M, Daniliuc CG, Hermann S, Viappiani C, Schfers M, Lffler B, Strassert CA, Faust A. Labeling and selective inactivation of Gram-positive bacteria employing bimodal photoprobes with dual readouts. Chemistry. 2016; 22:5243–5252.

    CAS  Article  Google Scholar 

  144. 144.

    Xing B, Jiang T, Bi W, Yang Y, Li L, Ma M, Chang CK, Xu B, Yeow EKL. Multifunctional divalent vancomycin: the fluorescent imaging and photodynamic antimicrobial properties for drug resistant bacteria. Chem Commun. 2011;47:1601–1603.

    CAS  Article  Google Scholar 

  145. 145.

    Dai T, Tegos GP, Zhiyentayev T, Mylonakis E, Hamblin MR. Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg Med. 2010;42:38–44.

    Article  Google Scholar 

  146. 146.

    Shao Q, Xing B. Enzyme responsive luminescent ruthenium(II) cephalosporin probe for intracellular imaging and photoinactivation of antibiotics resistant bacteria. Chem Commun (Camb). 2012;48:1739–1741.

    CAS  Article  Google Scholar 

  147. 147.

    O’Riordan K, Akilov OE, Chang SK, Foley JW, Hasan T. Real-time fluorescence monitoring of phenothiazinium photosensitizers and their anti-mycobacterial photodynamic activity against Mycobacterium bovis BCG in in vitro and in vivo models of localized infection. Photochem Photobiol Sci. 2007;6:1117–1123.

    Article  CAS  Google Scholar 

  148. 148.

    Stöckel S, Kirchhoff J, Neugebauer U, Rösch P, Popp J. The application of Raman spectroscopy for the detection and identification of microorganisms. J Raman Spectrosc. 2016;47:89–109.

    Article  CAS  Google Scholar 

  149. 149.

    Krafft C, Popp J. The many facets of Raman spectroscopy for biomedical analysis. Anal Bioanal Chem. 2015;407:699–717.

    CAS  Article  Google Scholar 

  150. 150.

    Neugebauer U, Rösch P, Popp J. Raman spectroscopy towards clinical application: drug monitoring and pathogen identification. Int J Antimicrob Agents. 2015;46:S35–S39.

    CAS  Article  Google Scholar 

  151. 151.

    Schröder UC, Ramoji A, Glaser U, Sachse S, Leiterer C, Csaki A, Hübner U, Fritzsche W, Pfister W, Bauer M, et al. Combined dielectrophoresis–Raman setup for the classification of pathogens recovered from the urinary tract. Anal Chem. 2013;85:10717–10724.

    Article  CAS  Google Scholar 

  152. 152.

    Kloß S, Lorenz B, Dees S, Labugger I, Rösch P, Popp J. Destruction-free procedure for the isolation of bacteria from sputum samples for Raman spectroscopic analysis. Anal Bioanal Chem. 2015;407:8333–8341.

    Article  CAS  Google Scholar 

  153. 153.

    Kloß S, Rosch P, Pfister W, Kiehntopf M, Popp J. Toward culture-free Raman spectroscopic identification of pathogens in ascitic fluid. Anal Chem. 2015;87:937–943.

    Article  CAS  Google Scholar 

  154. 154.

    Walter A, Schumacher W, Bocklitz T, Reinicke M, Rösch P, Kothe E, Popp J. From bulk to single-cell classification of the filamentous growing Streptomyces bacteria by means of Raman spectroscopy. Appl Spectrosc. 2011;65:1116–1125.

    CAS  Article  Google Scholar 

  155. 155.

    Kloß S, Kampe B, Sachse S, Rosch P, Straube E, Pfister W, Kiehntopf M, Popp J. Culture-independent Raman spectroscopic identification of urinary tract infection pathogens: a proof of principle study. Anal Chem. 2013;85:9610–9616.

    Article  CAS  Google Scholar 

  156. 156.

    Münchberg U, Rösch P, Bauer M, Popp J. Raman spectroscopic identification of single bacterial cells under antibiotic influence. Anal Bioanal Chem. 2014;406:3041–3050.

    Article  CAS  Google Scholar 

  157. 157.

    Stöckel S, Stanca AS, Helbig J, Rösch P, Popp J. Raman spectroscopic monitoring of the growth of pigmented and non-pigmented mycobacteria. Anal Bioanl Chem. 2015;407:8919–8923.

    Article  CAS  Google Scholar 

  158. 158.

    Große C, Bergner N, Dellith J, Heller R, Bauer M, Mellmann A, Popp J, Neugebauer U. Label-free imaging and spectroscopic analysis of intracellular bacterial infections. Anal Chem. 2015;87:2137–2142.

    Article  CAS  Google Scholar 

  159. 159.

    Brückner M, Becker K, Popp J, Frosch T. Fiber array-based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells. Anal Chim Acta. 2015;894:76–84.

    Article  CAS  Google Scholar 

  160. 160.

    Neugebauer U, Trenkmann S, Bocklitz T, Schmerler D, Kiehntopf M, Popp J. Fast differentiation of SIRS and sepsis from blood plasma of ICU patients using Raman spectroscopy. J Biophotonics. 2014;7:232–240.

    CAS  Article  Google Scholar 

  161. 161.

    Schmit V, Martoglio R, Carron K. Lab-on-a-bubble surface enhanced Raman indirect immunoassay for cholera. Anal Chem. 2012;84:4233–4236.

    CAS  Article  Google Scholar 

  162. 162.

    Ellis DI, Goodacre R. Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst. 2006;131:875–885.

    CAS  Article  Google Scholar 

  163. 163.

    Wang L, Mizaikoff B. Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy. Anal Bioanal Chem. 2008;391:1641–1654.

    CAS  Article  Google Scholar 

  164. 164.

    Clemens G, Hands JR, Dorling KM, Baker MJ. Vibrational spectroscopic methods for cytology and cellular research. Analyst. 2014;139:4411–4444.

    CAS  Article  Google Scholar 

  165. 165.

    Didonna A, Vaccari L, Bek A, Legname G. Infrared microspectroscopy: a multiple-screening platform for investigating single-cell biochemical perturbations upon prion infection. ACS Chem Neurosci. 2011;2:160–174.

    CAS  Article  Google Scholar 

  166. 166.

    Assmann C, Kirchhoff J, Beleites C, Hey J, Kostudis S, Pfister W, Schlattmann P, Popp J, Neugebauer U. Identification of vancomycin interaction with Enterococcus faecalis within 30 min of interaction time using Raman spectroscopy. Anal Bioanal Chem. 2015;407:8343–8352.

    CAS  Article  Google Scholar 

  167. 167.

    Schröder U C, Beleites C, Assmann C, Glaser U, Hübner U, Pfister W, Fritzsche W, Popp J, Neugebauer U. Detection of vancomycin resistances in enterococci within 3 1/2 hours. Sci Rep. 2015;5:8217. https://doi.org/10.1038/srep08217.

    Article  CAS  Google Scholar 

  168. 168.

    Schröder UC, Kirchhoff J, Hübner U, Mayer G, Glaser U, Henkel T, Pfister W, Fritzsche W, Popp J, Neugebauer U. On-chip spectroscopic assessment of microbial susceptibility to antibiotics within 3.5 hours. J Biophotonics. 2017;10(11):1547–1557. https://doi.org/10.1002/jbio.201600316.

    Article  CAS  Google Scholar 

  169. 169.

    Sharaha U, Rodriguez-Diaz E, Riesenberg K, Bigio IJ, Huleihel M, Salman A. Using infrared spectroscopy and multivariate analysis to detect antibiotics’ resistant Escherichia coli bacteria. Anal Chem. 2017;89 (17):8782–8790. https://doi.org/10.1021/acs.analchem.7b01025.

    CAS  Article  Google Scholar 

  170. 170.

    Dong T, Zhao X. Rapid identification and susceptibility testing of uropathogenic microbes via immunosorbent ATP-bioluminescence assay on a microfluidic simulator for antibiotic therapy. Anal Chem. 2015;87:2410–2418.

    CAS  Article  Google Scholar 

  171. 171.

    Cushnie TPT, O’Driscoll NH, Lamb AJ. Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cell Mol Life Sci. 2016;73:4471–4492.

    CAS  Article  Google Scholar 

  172. 172.

    Choi J, Yoo J, Lee M, Kim EG, Lee JS, Lee S, Joo S, Song SH, Kim EC, Lee JC, Kim HC, Jung YG, Kwon S. A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci Transl Med. 2014;6:267ra174.

    Article  CAS  Google Scholar 

  173. 173.

    Begg EJ, Barclay ML, Kirkpatrick CM. The therapeutic monitoring of antimicrobial agents. Br J Clin Pharmacol. 2001;52:35–43.

    Article  Google Scholar 

  174. 174.

    Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother. 2013;69:1162–1176.

    Article  CAS  Google Scholar 

  175. 175.

    El-Najjar N, Jantsch J, Gessner A. The use of liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring of antibiotics in cancer patients. Clin Chem Lab Med. 2017;55(9):1246–1261. https://doi.org/10.1515/cclm-2016-0700.

    CAS  Article  Google Scholar 

  176. 176.

    Ge L, Yu J. Drug monitoring: bright lights yield drug readout. Nat Chem Biol. 2014;10:490–491.

    CAS  Article  Google Scholar 

  177. 177.

    Rong G, Corrie SR, Clark HA. In vivo biosensing: progress and perspectives. ACS Sensors. 2017;2: 327–338.

    CAS  Article  Google Scholar 

  178. 178.

    Berger AG, Restaino SM, White IM. Vertical-flow paper SERS system for therapeutic drug monitoring of flucytosine in serum. Anal Chim Acta. 2017;949:59–66.

    CAS  Article  Google Scholar 

  179. 179.

    Zengin A, Tamer U, Caykara T. Extremely sensitive sandwich assay of kanamycin using surface-enhanced Raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles. Anal Chim Acta. 2014;817:33–41.

    CAS  Article  Google Scholar 

  180. 180.

    Hidi I, Mühlig A, Jahn M, Liebold F, Cialla D, Weber K, Popp J. LOC-SERS: towards point-of-care diagnostic of methotrexate. Anal Methods. 2014;6:3943–3947.

    CAS  Article  Google Scholar 

  181. 181.

    Hidi I, Jahn M, Weber K, Cialla-May D, Popp J. Droplet-based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection. Phys Chem Chem Phys. 2015;17:21236–21242.

    CAS  Article  Google Scholar 

  182. 182.

    Hidi IJ, Jahn M, Weber K, Bocklitz T, Pletz MW, Cialla-May D, Popp J. Lab-on-a-chip-surface enhanced Raman scattering combined with the standard addition method: toward the quantification of nitroxoline in spiked human urine samples. Anal Chem. 2016;88:9173–9180.

    CAS  Article  Google Scholar 

  183. 183.

    Hidi IJ, Heidler J, Weber K, Cialla-May D, Popp J. Ciprofloxacin: pH-dependent SERS signal and its detection in spiked river water using loc-SERS. Anal Bioanal Chem. 2016;408:8393–8401.

    CAS  Article  Google Scholar 

  184. 184.

    Hidi IJ, Jahn M, Pletz MW, Weber K, Cialla-May D, Popp J. Toward levofloxacin monitoring in human urine samples by employing the loc-SERS technique. J Phys Chem C. 2016;120:20613–20623.

    CAS  Article  Google Scholar 

  185. 185.

    Strelau KK, Kretschmer R, Möller R, Fritzsche W, Popp J. SERS As tool for the analysis of DNA-chips in a microfluidic platform. Anal Bioanal Chem. 2010;396:1381–1384.

    CAS  Article  Google Scholar 

  186. 186.

    Patze S, Huebner U, Liebold F, Weber K, Cialla-May D, Popp J. SERS As an analytical tool in environmental science: The detection of sulfamethoxazole in the nanomolar range by applying a microfluidic cartridge setup. Anal Chim Acta. 2017;949:1–7.

    CAS  Article  Google Scholar 

  187. 187.

    Kamińska A, Witkowska E, Kowalska A, Skoczyńska A, Gawryszewska I, Guziewicz E, Snigurenko D, Waluk J. Highly efficient SERS-based detection of cerebrospinal fluid neopterin as a diagnostic marker of bacterial infection. Anal Bioanal Chem. 2016;408:4319–4327.

    Article  CAS  Google Scholar 

  188. 188.

    Jahn IJ, Zukovskaja O, Zheng XS, Weber K, Bocklitz TW, Cialla-May D, Popp J. Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications. Analyst. 2017;142:1022–1047.

    CAS  Article  Google Scholar 

  189. 189.

    Cialla-May D, Zheng XS, Weber K, Popp J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev. 2017;46:3945–3961.

    CAS  Article  Google Scholar 

  190. 190.

    März A, Trupp S, Rösch P, Mohr GJ, Popp J. Fluorescence dye as novel label molecule for quantitative SERS investigations of an antibiotic. Anal Bioanal Chem. 2012;402:2625–2631.

    Article  CAS  Google Scholar 

  191. 191.

    Frosch T, Yan D, Popp J. Ultrasensitive fiber enhanced UV resonance Raman sensing of drugs. Anal Chem. 2013;85:6264–6271.

    CAS  Article  Google Scholar 

  192. 192.

    Frosch T, Schmitt M, Popp J. Raman spectroscopic investigation of the antimalarial agent mefloquine. Anal Bioanal Chem. 2007;387:1749–1757.

    CAS  Article  Google Scholar 

  193. 193.

    Yan D, Popp J, Pletz MW, Frosch T. Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers. Acs Photonics. 2017;4:138–145.

    CAS  Article  Google Scholar 

  194. 194.

    Cappi G, Spiga FM, Moncada Y, Ferretti A, Beyeler M, Bianchessi M, Decosterd L, Buclin T, Guiducci C. Label-freedetection of tobramycin in serum by transmission-localized surface plasmon resonance. Anal Chem. 2015;87:5278–5285.

    CAS  Article  Google Scholar 

  195. 195.

    Losoya-Leal A, Estevez MC, Martínez-chapa SO, Lechuga LM. Design of a surface plasmon resonance immunoassay for therapeutic drug monitoring of amikacin. Talanta. 2015;141:253–258.

    CAS  Article  Google Scholar 

  196. 196.

    McKeating KS, Aubé A, Masson JF. Biosensors and nanobiosensors for therapeutic drug and response monitoring. Analyst. 2016;141:429–449.

    CAS  Article  Google Scholar 

  197. 197.

    Griss R, Schena A, Reymond L, Patiny L, Werner D, Tinberg CE, Baker D, Johnsson K. Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring. Nat Chem Biol. 2014;10:598–603.

    CAS  Article  Google Scholar 

  198. 198.

    Cash KJ, Li C, Xia J, Wang LV, Clark HA. Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo. ACS nano. 2015;9:1692–1698.

    CAS  Article  Google Scholar 

  199. 199.

    Ranamukhaarachchi SA, Padeste C, Dübner M, Häfeli UO, Stoeber B, Cadarso VJ. Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes. Sci Rep. 2016;6:29075.

    CAS  Article  Google Scholar 

  200. 200.

    McKeating KS, Couture M, Dinel MP, Garneau-Tsodikova S, Masson JF. High-throughput LSPR and SERS analysis of aminoglycoside antibiotics. Analyst 2016;141:5120–5126.

    CAS  Article  Google Scholar 

  201. 201.

    Wang X, Zou M, Xu X, Lei R, Li K, Li N. Determination of human urinary kanamycin in one step using urea-enhanced surface plasmon resonance light-scattering of gold nanoparticles. Anal Bioanal Chem. 2009; 395:2397–2403.

    CAS  Article  Google Scholar 

  202. 202.

    Mamián-López MB, Poppi RJ. Quantification of moxifloxacin in urine using surface-enhanced Raman spectroscopy (SERS) and multivariate curve resolution on a nanostructured gold surface. Anal Bioanal Chem. 2013; 405:7671.

    Article  CAS  Google Scholar 

  203. 203.

    Liu D, Luo P, Sun W, Zhang L, Wang Z. Detection of β-glucans using an amperometric biosensor based on high-affinity interaction between dectin-1 and β-glucans. Anal Biochem. 2010;404:14–20.

    CAS  Article  Google Scholar 

  204. 204.

    Zou C, Wu B, Dong Y, Song Z, Zhao Y, Ni X, Yang Y, Liu Z. Biomedical photoacoustics: fundamentals, instrumentation and perspectives on nanomedicine. Int J Nanomedicine. 2017;12:179–195.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the BMBF via the Integrated Research and Treatment Center “Center for Sepsis Control and Care” (CSCC, FKZ 01EO1502) and via the Forschungscampus InfectoGnostics (FKZ 13GW0096F), the DFG via the research group FOR 1738 “Heme and heme degradation products” and via the Core Facility Jena Biophotonic and Imaging Laboratory (JBIL, FKZ: PO 633/29-1, BA 1601/10-1), as well as the European Union via HemoSpec (FP7-ICT-2013-CN-611682) and the Leibniz Society via the Leibniz ScienceCampus InfectoOptics (SAS-2015-HKI-LWC) is highly acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ute Neugebauer.

Ethics declarations

Disclosure of conflicts of interest

The authors state no conflict of interest.

Additional information

Published in the topical collection celebrating ABCs 16th Anniversary.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tannert, A., Ramoji, A., Neugebauer, U. et al. Photonic monitoring of treatment during infection and sepsis: development of new detection strategies and potential clinical applications. Anal Bioanal Chem 410, 773–790 (2018). https://doi.org/10.1007/s00216-017-0713-z

Download citation

Keywords

  • Treatment response
  • Microcirculation imaging
  • Therapeutic drug monitoring
  • Indocyanine clearance
  • Imaging infection
  • Antibiotic susceptibility testing