Skip to main content

Advertisement

Log in

Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Efforts to reduce the global burden of bacterial disease and contend with escalating bacterial resistance are spurring innovation in antibacterial drug and biocide development and related technologies such as photodynamic therapy and photochemical disinfection. Elucidation of the mechanism of action of these new agents and processes can greatly facilitate their development, but it is a complex endeavour. One strategy that has been popular for many years, and which is garnering increasing interest due to recent technological advances in microscopy and a deeper understanding of the molecular events involved, is the examination of treated bacteria for changes to their morphology and ultrastructure. In this review, we take a critical look at this approach. Variables affecting antibacterial-induced alterations are discussed first. These include characteristics of the test organism (e.g. cell wall structure) and incubation conditions (e.g. growth medium osmolarity). The main body of the review then describes the different alterations that can occur. Micrographs depicting these alterations are presented, together with information on agents that induce the change, and the sequence of molecular events that lead to the change. We close by highlighting those morphological and ultrastructural changes which are consistently induced by agents sharing the same mechanism (e.g. spheroplast formation by peptidoglycan synthesis inhibitors) and explaining how changes that are induced by multiple antibacterial classes (e.g. filamentation by DNA synthesis inhibitors, FtsZ disruptors, and other types of agent) can still yield useful mechanistic information. Lastly, recommendations are made regarding future study design and execution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Images from [97] by permission of Antimicrobial Agents and Chemotherapy (ASM)

Fig. 2

Images from [101] by permission of Innate Immunity (SAGE Publications)

Fig. 3

Images a and b from [67] by permission of Antimicrobial Agents and Chemotherapy (ASM), and c and d from [133] by permission of the Journal of Bacteriology (ASM)

Fig. 4

Images from [125] by permission of Antimicrobial Agents and Chemotherapy (ASM)

Fig. 5

Images a and b from [101] by permission of Innate Immunity (SAGE Publications), and images c and d from [169] by permission of the Journal of Bacteriology (ASM)

Fig. 6

Images a and b from [171] and images c and d from [83], all by permission of the Journal of Medical Microbiology (MicroSoc)

Fig. 7

Images a and b from [171] by permission of the Journal of Medical Microbiology (MicroSoc), and images c and d from [180] by permission of the Journal of Bacteriology (ASM)

Fig. 8

Images from [155] by permission of Reviews of Infectious Diseases (Oxford University Press)

Fig. 9

Images from [195] by permission of the Journal of Medical Microbiology (MicroSoc)

Fig. 10

Images from [195] by permission of the Journal of Medical Microbiology (MicroSoc)

Fig. 11

Images from [202] by permission of Proceedings of the Society for Experimental Biology and Medicine (SAGE Publications)

Fig. 12

Images from [203] by permission of the Journal of Antimicrobial Chemotherapy (Oxford University Press)

Similar content being viewed by others

References

  1. Jessney B (2012) Joseph Lister (1827–1912): a pioneer of antiseptic surgery remembered a century after his death. J Med Biogr 20:107–110

    Article  PubMed  Google Scholar 

  2. McGuire MJ (2013) The chlorine revolution: water disinfection and the fight to save lives. American Water Works Association, Denver

    Google Scholar 

  3. Greenwood D (2010) Chapter 1: Historical introduction. In: Finch RG et al (eds) Antibiotic and chemotherapy: anti-infective agents and their use in therapy, 9th edn. Elsevier Health Sciences, London, pp 2–9

    Chapter  Google Scholar 

  4. Fraise AP, Maillard J-Y, Sattar SA (eds) (2012) Russell, Hugo and Ayliffe’s principles and practice of disinfection, preservation, and sterilization, 5th edn. Wiley-Blackwell, Chichester

    Google Scholar 

  5. Cushnie TPT, Cushnie B, Lamb AJ (2014) Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 44:377–386

    Article  CAS  PubMed  Google Scholar 

  6. Cavera VL, Arthur TD, Kashtanov D, Chikindas ML (2015) Bacteriocins and their position in the next wave of conventional antibiotics. Int J Antimicrob Agents 46:494–501

    Article  CAS  PubMed  Google Scholar 

  7. Pendleton JN, Gilmore BF (2015) The antimicrobial potential of ionic liquids: a source of chemical diversity for infection and biofilm control. Int J Antimicrob Agents 46:131–139

    Article  CAS  PubMed  Google Scholar 

  8. Vo HT, Imai T, Ho TT, Dang T-LT, Hoang SA (2015) Potential application of high pressure carbon dioxide in treated wastewater and water disinfection: recent overview and further trends. J Environ Sci 36:38–47

    Article  Google Scholar 

  9. Yu Q, Wu Z, Chen H (2015) Dual-function antibacterial surfaces for biomedical applications. Acta Biomater 16:1–13

    Article  PubMed  CAS  Google Scholar 

  10. Cloutier M, Mantovani D, Rosei F (2015) Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol 33:637–652

    Article  CAS  PubMed  Google Scholar 

  11. Huang Y-Y, Sharma SK, Yin R, Agrawal T, Chiang LY, Hamblin MR (2014) Functionalized fullerenes in photodynamic therapy. J Biomed Nanotechnol 10:1918–1936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Robertson PKJ, Robertson JMC, Bahnemann DW (2012) Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis. J Hazard Mater 211–212:161–171

    Article  PubMed  CAS  Google Scholar 

  13. Byrne JA, Dunlop PSM, Hamilton JWJ, Fernández-Ibáñez P, Polo-López I, Sharma PK, Vennard ASM (2015) A review of heterogeneous photocatalysis for water and surface disinfection. Molecules 20:5574–5615

    Article  CAS  PubMed  Google Scholar 

  14. Morente EO, Fernández-Fuentes MA, Burgos MJG, Abriouel H, Pulido RP, Gálvez A (2013) Biocide tolerance in bacteria. Int J Food Microbiol 162:13–25

    Article  CAS  Google Scholar 

  15. Silver LL (2011) Challenges of antibacterial discovery. Clin Microbiol Rev 24:71–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Auerbach T, Mermershtain I, Davidovich C, Bashan A, Belousoff M, Wekselman I, Zimmerman E et al (2010) The structure of ribosome–lankacidin complex reveals ribosomal sites for synergistic antibiotics. Proc Natl Acad Sci USA 107:1983–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gwynn MN, Portnoy A, Rittenhouse SF, Payne DJ (2010) Challenges of antibacterial discovery revisited. Ann NY Acad Sci 1213:5–19

    Article  PubMed  Google Scholar 

  18. Linley E, Denyer SP, McDonnell G, Simons C, Maillard J-Y (2012) Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. J Antimicrob Chemother 67:1589–1596

    Article  CAS  PubMed  Google Scholar 

  19. Zinn J, Jenkins JB, Swofford V, Harrelson B, McCarter S (2010) Intraoperative patient skin prep agents: is there a difference? AORN J 92:662–674

    Article  PubMed  Google Scholar 

  20. Hegstad K, Langsrud S, Lunestad BT, Scheie AA, Sunde M, Yazdankhah SP (2010) Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb Drug Resist 16:91–104

    Article  CAS  PubMed  Google Scholar 

  21. Maillard J-Y, Bloomfield S, Coelho JR, Collier P, Cookson B, Fanning S, Hill A et al (2013) Does microbicide use in consumer products promote antimicrobial resistance? A critical review and recommendations for a cohesive approach to risk assessment. Microb Drug Resist 19:344–354

    Article  PubMed  Google Scholar 

  22. Oldfield E, Feng X (2014) Resistance-resistant antibiotics. Trends Pharmacol Sci 35:664–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gnanadhas DP, Marathe SA, Chakravortty D (2013) Biocides—resistance, cross-resistance mechanisms and assessment. Expert Opin Investig Drugs 22:191–206

    Article  CAS  PubMed  Google Scholar 

  24. Franklin T, Snow G (2005) Chapter 3: Antimicrobial agents and cell membranes. Biochemistry and molecular biology of antimicrobial drug action, 6th edn. Springer, New York, pp 47–64

    Google Scholar 

  25. Karaosmanoglu K, Sayar NA, Kurnaz IA, Akbulut BS (2014) Assessment of berberine as a multi-target antimicrobial: a multi-omics study for drug discovery and repositioning. OMICS 18:42–53

    Article  CAS  PubMed  Google Scholar 

  26. Chileveru HR, Lim SA, Chairatana P, Wommack AJ, Chiang I-L, Nolan EM (2015) Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5. Biochemistry 54:1767–1777

    Article  CAS  PubMed  Google Scholar 

  27. Sun D, Zhang W, Lv M, Yang E, Zhao Q, Wang W (2015) Antibacterial activity of ruthenium(II) polypyridyl complex manipulated by membrane permeability and cell morphology. Bioorg Med Chem Lett 25:2068–2073

    Article  CAS  PubMed  Google Scholar 

  28. Valotteau C, Calers C, Casale S, Berton J, Stevens CV, Babonneau F, Pradier C-M et al (2015) Biocidal properties of a glycosylated surface: sophorolipids on Au(111). ACS Appl Mater Inter 7:18086–18095

    Article  CAS  Google Scholar 

  29. Saritha K, Rajesh A, Manjulatha K, Setty OH, Yenugu S (2015) Mechanism of antibacterial action of the alcoholic extracts of Hemidesmus indicus (L.) R. Br. ex Schult, Leucas aspera (Wild.), Plumbago zeylanica L., and Tridax procumbens (L.) R. Br. ex Schult. Front Microbiol 6:Article 00577

    Article  Google Scholar 

  30. Elnakady YA, Chatterjee I, Bischoff M, Rohde M, Josten M, Sahl H-G, Herrmann M et al (2016) Investigations to the antibacterial mechanism of action of kendomycin. PLoS One 11:Article e0146165

    Article  PubMed  CAS  Google Scholar 

  31. O’Driscoll NH, Labovitiadi O, Cushnie TPT, Matthews KH, Mercer DK, Lamb AJ (2013) Production and evaluation of an antimicrobial peptide-containing wafer formulation for topical application. Curr Microbiol 66:271–278

    Article  PubMed  CAS  Google Scholar 

  32. Elie CR, David G, Schmitzer AR (2015) Strong antibacterial properties of anion transporters: a result of depolarization and weakening of the bacterial membrane. J Med Chem 58:2358–2366

    Article  CAS  PubMed  Google Scholar 

  33. Rath G, Hussain T, Chauhan G, Garg T, Goyal AK (2016) Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds. Mater Sci Eng C Mater Biol Appl 58:242–253

    Article  CAS  PubMed  Google Scholar 

  34. Longo G, Kasas S (2014) Effects of antibacterial agents and drugs monitored by atomic force microscopy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:230–244

    Article  CAS  PubMed  Google Scholar 

  35. Yao Z, Kahne D, Kishony R (2012) Distinct single-cell morphological dynamics under beta-lactam antibiotics. Mol Cell 48:705–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peach KC, Bray WM, Winslow D, Linington PF, Linington RG (2013) Mechanism of action-based classification of antibiotics using high-content bacterial image analysis. Mol BioSyst 9:1837–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Braga PC, Sala MT, Dal Sasso M (1999) Pharmacodynamic effects of subinhibitory concentrations of rufloxacin on bacterial virulence factors. Antimicrob Agents Chemother 43:1013–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hwang D, Lim Y-H (2015) Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression. Sci Rep 5:Article 10029

    Article  PubMed  CAS  Google Scholar 

  39. Waisbren SJ, Hurley DJ, Waisbren BA (1980) Morphological expressions of antibiotic synergism against Pseudomonas aeruginosa as observed by scanning electron microscopy. Antimicrob Agents Chemother 18:969–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. De Oliveira-Garcia D, Dall’Agnol M, Rosales M, Azzuz ACGS, Alcántara N, Martinez MB, Girón JA (2003) Fimbriae and adherence of Stenotrophomonas maltophilia to epithelial cells and to abiotic surfaces. Cell Microbiol 5:625–636

    Article  CAS  PubMed  Google Scholar 

  41. Rabanal F, Grau-Campistany A, Vila-Farrés X, Gonzalez-Linares J, Borràs M, Vila J, Manresa A et al (2015) A bioinspired peptide scaffold with high antibiotic activity and low in vivo toxicity. Sci Rep 5:Article 10558

    Article  PubMed  Google Scholar 

  42. Hartmann M, Berditsch M, Hawecker J, Ardakani MF, Gerthsen D, Ulrich AS (2010) Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob Agents Chemother 54:3132–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huttner A, Verhaegh EM, Harbarth S, Muller AE, Theuretzbacher U, Mouton JW (2015) Nitrofurantoin revisited: a systematic review and meta-analysis of controlled trials. J Antimicrob Chemother 70:2456–2464

    Article  CAS  PubMed  Google Scholar 

  44. Hanaki H, Kuwahara-Arai K, Boyle-Vavra S, Daum RS, Labischinski H, Hiramatsu K (1998) Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother 42:199–209

    Article  CAS  PubMed  Google Scholar 

  45. Cui L, Ma X, Sato K, Okuma K, Tenover FC, Mamizuka EM, Gemmell CG et al (2003) Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol 41:5–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hyo Y, Yamada S, Harada T (2008) Characteristic cell wall ultrastructure of a macrolide-resistant Staphylococcus capitis strain isolated from a patient with chronic sinusitis. Med Mol Morphol 41:160–164

    Article  PubMed  Google Scholar 

  47. Alsteens D, Verbelen C, Dague E, Raze D, Baulard A, Dufrêne Y (2008) Organization of the mycobacterial cell wall: a nanoscale view. Pflugers Arch 456:117–125

    Article  CAS  PubMed  Google Scholar 

  48. Elliott TSJ, Shelton A, Greenwood D (1987) The response of Escherichia coli to ciprofloxacin and norfloxacin. J Med Microbiol 23:83–88

    Article  CAS  PubMed  Google Scholar 

  49. Chen K, Sun GW, Chua KL, Gan Y-H (2005) Modified virulence of antibiotic-induced Burkholderia pseudomallei filaments. Antimicrob Agents Chemother 49:1002–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Braga PC, Dal Sasso M, Maci S (1997) Cefodizime: effects of sub-inhibitory concentrations on adhesiveness and bacterial morphology of Staphylococcus aureus and Escherichia coli: comparison with cefotaxime and ceftriaxone. J Antimicrob Chemother 39:79–84

    Article  CAS  PubMed  Google Scholar 

  51. Dulaney EL, Marx LM (1971) A folic acid linked system in bacterial cell wall synthesis? J Antibiot (Tokyo) 24:713–714

    Article  CAS  Google Scholar 

  52. Wojnicz D, Kłak M, Adamski R, Jankowski S (2007) Influence of subinhibitory concentrations of amikacin and ciprofloxacin on morphology and adherence ability of uropathogenic strains. Folia Microbiol 52:429–436

    Article  CAS  Google Scholar 

  53. Chang T-W, Weinstein L (1964) Morphological changes in Gram-negative bacilli exposed to cephalothin. J Bacteriol 88:1790–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Horii T, Kobayashi M, Sato K, Ichiyama S, Ohta M (1998) An in vitro study of carbapenem-induced morphological changes and endotoxin release in clinical isolates of Gram-negative bacilli. J Antimicrob Chemother 41:435–442

    Article  CAS  PubMed  Google Scholar 

  55. Elliott TSJ, Greenwood D (1983) The response of Pseudomonas aeruginosa to azlocillin, ticarcillin and cefsulodin. J Med Microbiol 16:351–362

    Article  CAS  PubMed  Google Scholar 

  56. Diver JM, Wise R (1986) Morphological and biochemical changes in Escherichia coli after exposure to ciprofloxacin. J Antimicrob Chemother 18:31–41

    CAS  PubMed  Google Scholar 

  57. Bayer M (1967) The cell wall of Escherichia coli: early effects of penicillin treatment and deprivation of diaminopimelic acid. J Gen Microbiol 46:237–246

    Article  CAS  PubMed  Google Scholar 

  58. El-Hajj ZW, Newman EB (2015) How much territory can a single E. coli cell control? Front Microbiol 6:Article 309

    Article  PubMed  Google Scholar 

  59. Higgins ML, Shockman GD (1970) Early changes in the ultrastructure of Streptococcus faecalis after amino acid starvation. J Bacteriol 103:244–253

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Giesbrecht P, Kersten T, Maidhof H, Wecke J (1998) Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin. Microbiol Mol Biol Rev 62:1371–1414

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Klainer AS, Perkins RL (1972) Surface manifestations of antibiotic-induced alterations in protein synthesis in bacterial cells. Antimicrob Agents Chemother 1:164–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gottfreðsson M, Erlendsdóttir H, Kolka R, Gudmundsson S (1991) Metabolic and ultrastructural effects induced by ciprofloxacin in Staphylococcus aureus during the postantibiotic effect (PAE) phase. Scand J Infect Dis Suppl 74:124–128

    Google Scholar 

  63. De Pedro MA, Donachie WD, Höltje JV, Schwarz H (2001) Constitutive septal murein synthesis in Escherichia coli with impaired activity of the morphogenetic proteins RodA and penicillin-binding protein 2. J Bacteriol 183:4115–4126

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jacquet T, Cailliez-Grimal C, Francius G, Borges F, Imran M, Duval JFL, Revol-Junelles A-M (2012) Antibacterial activity of class IIa bacteriocin Cbn BM1 depends on the physiological state of the target bacteria. Res Microbiol 163:323–331

    Article  CAS  PubMed  Google Scholar 

  65. Dienes L (1949) The development of Proteus cultures in the presence of penicillin. J Bacteriol 57:529–546

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fleming A, Voureka A, Kramer IRH, Hughes WH (1950) The morphology and motility of Proteus vulgaris and other organisms cultured in the presence of penicillin. J Gen Microbiol 4:257–269

    Article  CAS  PubMed  Google Scholar 

  67. Ellis L, Herron D, Preston D, Simmons L, Schlegel R (1976) Evaluation of antibiotic efficacy using electron microscopy: morphological effects of guanylureido cephalosporin, chlorobenzoylureido cephalosporin, BL-P1654, and carbenicillin on Pseudomonas aeruginosa. Antimicrob Agents Chemother 9:334–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Greenwood D, O’Grady F (1973) FL 1060: a new beta-lactam antibiotic with novel properties. J Clin Pathol 26:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fitz-James P, Hancock R (1965) The initial structural lesion of penicillin action in Bacillus megaterium. J Cell Biol 26:657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gebicki J, James A (1960) The preparation and properties of spheroplasts of Aerobacter aerogenes. J Gen Microbiol 23:9–18

    Article  CAS  PubMed  Google Scholar 

  71. Lederberg J (1956) Bacterial protoplasts induced by penicillin. Proc Natl Acad Sci USA 42:574–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Weibull C (1953) The isolation of protoplasts from Bacilllus megaterium by controlled treatment with lysozyme. J Bacteriol 66:688–695

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Silver LL (2012) Rational approaches to antibacterial discovery: pre-genomic directed and phenotypic screening. In: Dougherty TJ, Pucci MJ (eds) Antibiotic discovery and development. Springer, New York, pp 33–75

    Chapter  Google Scholar 

  74. Van Rensburg AJ (1969) Properties of Proteus mirabilis and Providence spheroplasts. J Gen Microbiol 56:257–264

    Article  PubMed  Google Scholar 

  75. Spratt BG (1975) Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci USA 72:2999–3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Curtis N, Orr D, Ross GW, Boulton MG (1979) Affinities of penicillins and cephalosporins for the penicillin-binding proteins of Escherichia coli K-12 and their antibacterial activity. Antimicrob Agents Chemother 16:533–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kitano K, Tomasz A (1979) Triggering of autolytic cell wall degradation in Escherichia coli by beta-lactam antibiotics. Antimicrob Agents Chemother 16:838–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dalhoff A, Nasu T, Okamoto K (2003) Target affinities of faropenem to and its impact on the morphology of Gram-positive and Gram-negative bacteria. Chemotherapy 49:172–183

    Article  CAS  PubMed  Google Scholar 

  79. Greenwood D, O’Grady F (1969) A comparison of the effects of ampicillin on Escherichia coli and Proteus mirabilis. J Med Microbiol 2:435–441

    Article  CAS  PubMed  Google Scholar 

  80. Chin WL, Lawson JW (1976) Effect of antibiotics on L-form induction of Neisseria meningitidis. Antimicrob Agents Chemother 9:1056–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zimmerman SB, Stapley EO (1976) Relative morphological effects induced by cefoxitin and other beta-lactam antibiotics in vitro. Antimicrob Agents Chemother 9:318–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nakao M, Nishi T, Tsuchiya K (1981) In vitro and in vivo morphological response of Klebsiella pneumoniae to cefotiam and cefazolin. Antimicrob Agents Chemother 19:901–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rodgers FG, Tzianabos AO, Elliott TSJ (1990) The effect of antibiotics that inhibit cell-wall, protein, and DNA synthesis on the growth and morphology of Legionella pneumophila. J Med Microbiol 31:37–44

    Article  CAS  PubMed  Google Scholar 

  84. Nishino T, Nakazawa S (1972) Morphological changes in Staphylococcus aureus and Escherichia coli exposed to cephalexin. Jap J Microbiol 16:83–94

    Article  CAS  PubMed  Google Scholar 

  85. Spratt BG, Cromie KD (1988) Penicillin-binding proteins of Gram-negative bacteria. Rev Infect Dis 10:699–711

    Article  CAS  PubMed  Google Scholar 

  86. Kong K-F, Schneper L, Mathee K (2010) Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS 118:1–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hishinuma F, Izaki K, Takahashi H (1971) Inhibition of l-alanine adding enzyme by glycine. Agric Biol Chem 35:2050–2058

    Article  CAS  Google Scholar 

  88. Isono F, Katayama T, Inukai M, Haneishi T (1989) Mureidomycins A–D, novel peptidylnucleoside antibiotics with spheroplast forming activity. III. Biological properties. J Antibiot (Tokyo) 42:674–679

    Article  CAS  Google Scholar 

  89. Barkhatova OI, Popov VL, Kekcheeva NK, Prozorovskiĭ SV (1984) [Electron microscopic characteristics of the action of penicillin and vancomycin on Rickettsia conorii and Rickettsia akari in vitro] (in Russian). Antibiotiki 29:580–585

    CAS  PubMed  Google Scholar 

  90. Van Heijenoort Y, Leduc M, Singer H, Van Heijenoort J (1987) Effects of moenomycin on Escherichia coli. J Gen Microbiol 133:667–674

    PubMed  Google Scholar 

  91. Nozaki Y, Katayama N, Harada S, Ono H, Okazaki H (1989) Lactivicin, a naturally occurring non-beta-lactam antibiotic having beta-lactam-like action: biological activities and mode of action. J Antibiot (Tokyo) 42:84–93

    Article  CAS  Google Scholar 

  92. Ellison RT 3rd, Giehl TJ (1991) Killing of Gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest 88:1080–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Birdsell DC, Cota-Robles EH (1967) Production and ultrastructure of lysozyme and ethylenediaminetetraacetate-lysozyme spheroplasts of Escherichia coli. J Bacteriol 93:427–437

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hash JH, Wishnick M, Miller PA (1964) Formation of “protoplasts” of Staphylococcus aureus with a fungal N-acetylhexosaminidase. J Bacteriol 87:432–437

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Schuhardt VT, Klesius PH (1968) Osmotic fragility and viability of lysostaphin-induced staphylococcal spheroplasts. J Bacteriol 96:734–737

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Klainer AS, Russell RRB (1974) Effect of the inhibition of protein synthesis on the Escherichia coli cell envelope. Antimicrob Agents Chemother 6:216–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Goss WA, Deitz WH, Cook TM (1964) Mechanism of action of nalidixic acid on Escherichia coli. J Bacteriol 88:1112–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Spratt BG, Pardee AB (1975) Penicillin-binding proteins and cell shape in E. coli. Nature 254:516–517

    Article  CAS  PubMed  Google Scholar 

  100. Di Modugno E, Erbetti I, Ferrari L, Galassi G, Hammond SM, Xerri L (1994) In vitro activity of the tribactam GV104326 against Gram-positive, Gram-negative, and anaerobic bacteria. Antimicrob Agents Chemother 38:2362–2368

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jackson JJ, Kropp H (1996) Differences in mode of action of β-lactam antibiotics influence morphology, LPS release and in vivo antibiotic efficacy. J Endotoxin Res 3:201–218

    CAS  Google Scholar 

  102. Bernabeu-Wittel M, García-Curiel A, Pichardo C, Pachón-Ibáñez ME, Jiménez-Mejías ME, Pachón J (2004) Morphological changes induced by imipenem and meropenem at sub-inhibitory concentrations in Acinetobacter baumannii. Clin Microbiol Infect 10:931–934

    Article  CAS  PubMed  Google Scholar 

  103. Sumita Y, Fukasawa M, Okuda T (1990) Comparison of two carbapenems, SM-7338 and imipenem: affinities for penicillin-binding proteins and morphological changes. J Antibiot (Tokyo) 43:314–320

    Article  CAS  Google Scholar 

  104. Nickerson WJ, Webb M (1956) Effect of folic acid analogues on growth and cell division of nonexacting microorganisms. J Bacteriol 71:129–139

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Perumalsamy H, Jung MY, Hong SM, Ahn YJ (2013) Growth-inhibiting and morphostructural effects of constituents identified in Asarum heterotropoides root on human intestinal bacteria. BMC Complement Altern Med 13:Article 245

    Article  PubMed  CAS  Google Scholar 

  106. Spratt BG (1977) Comparison of the binding properties of two 6β-amidinopenicillanic acid derivatives that differ in their physiological effects on Escherichia coli. Antimicrob Agents Chemother 11:161–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Osborn MJ, Rothfield L (2007) Cell shape determination in Escherichia coli. Curr Opin Microbiol 10:606–610

    Article  CAS  PubMed  Google Scholar 

  108. Nozaki U, Kawashima F, Imada A (1981) C-19393 S2 and H2, new carbapenem antibiotics. III. Mode of action. J Antibiot (Tokyo) 34:206–211

    Article  CAS  Google Scholar 

  109. Spratt BG, Jobanputra V, Zimmermann W (1977) Binding of thienamycin and clavulanic acid to the penicillin-binding proteins of Escherichia coli K-12. Antimicrob Agents Chemother 12:406–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gutmann L, Vincent S, Billot-Klein D, Acar JF, Mrèna E, Williamson R (1986) Involvement of penicillin-binding protein 2 with other penicillin-binding proteins in lysis of Escherichia coli by some β-lactam antibiotics alone and in synergistic lytic effect of amdinocillin (mecillinam). Antimicrob Agents Chemother 30:906–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lorian V, Atkinson B (1977) Comparison of the effects of mecillinam and 6-aminopenicillanic acid on Proteus mirabilis, Escherichia coli, and Staphylococcus aureus. Antimicrob Agents Chemother 11:541–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Iwai N, Nagai K, Wachi M (2002) Novel S-benzylisothiourea compound that induces spherical cells in Escherichia coli probably by acting on a rod-shape-determining protein(s) other than penicillin-binding protein 2. Biosci Biotechnol Biochem 66:2658–2662

    Article  CAS  PubMed  Google Scholar 

  113. Bean GJ, Flickinger ST, Westler WM, McCully ME, Sept D, Weibel DB, Amann KJ (2009) A22 disrupts the bacterial actin cytoskeleton by directly binding and inducing a low-affinity state in MreB. Biochemistry 48:4852–4857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yamachika S, Sugihara C, Tsuji H, Muramatsu Y, Kamai Y, Yamashita M (2012) Anti-Pseudomonas aeruginosa compound, 1,2,3,4-tetrahydro-1,3,5-triazine derivative, exerts its action by primarily targeting MreB. Biol Pharm Bull 35:1740–1744

    Article  CAS  PubMed  Google Scholar 

  115. Wainwright M, Canham LT, Al-Wajeeh K, Reeves CL (1999) Morphological changes (including filamentation) in Escherichia coli grown under starvation conditions on silicon wafers and other surfaces. Lett Appl Microbiol 29:224–227

    Article  CAS  PubMed  Google Scholar 

  116. Braga PC, Dal Sasso M, Sala MT (2000) Sub-MIC concentrations of cefodizime interfere with various factors affecting bacterial virulence. J Antimicrob Chemother 45:15–25

    Article  CAS  PubMed  Google Scholar 

  117. Young KD (2007) Bacterial morphology: why have different shapes? Curr Opin Microbiol 10:596–600

    Article  PubMed  PubMed Central  Google Scholar 

  118. Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, Hultgren SJ (2004) Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci USA 101:1333–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Noguchi H, Matsuhashi M, Takaoka M, Mitsuhashi S (1978) New antipseudomonal penicillin, PC-904: affinity to penicillin-binding proteins and inhibition of the enzyme cross-linking peptidoglycan. Antimicrob Agents Chemother 14:617–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tanaka M, Otsuki M, Nishino T (1992) In vitro and in vivo activities of DQ-2556 and its mode of action. Antimicrob Agents Chemother 36:2595–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Presslitz JE (1978) Mode of action of a structurally novel beta-lactam. Antimicrob Agents Chemother 14:144–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Onoe T, Umemoto T, Sagawa H, Suginaka H (1981) Filament formation of Fusobacterium nucleatum cells induced by mecillinam. Antimicrob Agents Chemother 19:487–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nakao M, Yukishige K, Kondo M, Imada A (1986) Novel morphological changes in Gram-negative bacteria caused by combination of bulgecin and cefmenoxime. Antimicrob Agents Chemother 30:414–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dring GJ, Hurst A (1969) Observations on the action of benzylpenicillin on a strain of Streptococcus lactis. J Gen Microbiol 55:185–194

    Article  CAS  PubMed  Google Scholar 

  125. Lorian V, Atkinson B (1976) Effects of subinhibitory concentrations of antibiotics on cross walls of cocci. Antimicrob Agents Chemother 9:1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Murphy TF, Barza M, Park JT (1981) Penicillin-binding proteins in Clostridium perfringens. Antimicrob Agents Chemother 20:809–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lorian V, Atkinson B (1975) Abnormal forms of bacteria produced by antibiotics. Am J Clin Pathol 64:678–688

    Article  CAS  PubMed  Google Scholar 

  128. Lorian V, Sabath LD (1972) Penicillins and cephalosporins: differences in morphologic effects on Proteus mirabilis. J Infect Dis 125:560–564

    Article  CAS  Google Scholar 

  129. Walker JR, Pardee AB (1968) Evidence for a relationship between deoxyribonucleic acid metabolism and septum formation in Escherichia coli. J Bacteriol 95:123–131

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Ohkawa T (1975) Studies of intracellular thymidine nucleotides. Thymineless death and the recovery after re-addition of thymine in Escherichia coli K12. Eur J Biochem 60:57–66

    Article  CAS  PubMed  Google Scholar 

  131. Chadfield MS, Hinton MH (2004) In vitro activity of nitrofuran derivatives on growth and morphology of Salmonella enterica serotype Enteritidis. J Appl Microbiol 96:1002–1012

    Article  CAS  PubMed  Google Scholar 

  132. Church DL, Bryant RD, Rabin HR, Laishley EJ (1991) Physiolgical effects of metronidazole on Clostridium posteurianum. J Antimicrob Chemother 28:221–228

    Article  CAS  PubMed  Google Scholar 

  133. Suzuki H, Pangborn J, Kilgore WW (1967) Filamentous cells of Escherichia coli formed in the presence of mitomycin. J Bacteriol 93:683–688

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cheng G, Hao H, Dai M, Liu Z, Yuan Z (2013) Antibacterial action of quinolones: from target to network. Eur J Med Chem 66:555–562

    Article  CAS  PubMed  Google Scholar 

  135. Lewin CS, Amyes SGB (1991) The role of the SOS response in bacteria exposed to zidovudine or trimethoprim. J Med Microbiol 34:329–332

    Article  CAS  PubMed  Google Scholar 

  136. Mason D, Power E, Talsania H, Phillips I, Gant V (1995) Antibacterial action of ciprofloxacin. Antimicrob Agents Chemother 39:2752–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ingham CJ, Van Den Ende M, Wever PC, Schneeberger PM (2006) Rapid antibiotic sensitivity testing and trimethoprim-mediated filamentation of clinical isolates of the Enterobacteriaceae assayed on a novel porous culture support. J Med Microbiol 55:1511–1519

    Article  CAS  PubMed  Google Scholar 

  138. Humphrey S, MacVicar T, Stevenson A, Roberts M, Humphrey TJ, Jepson MA (2011) SulA-induced filamentation in Salmonella enterica serovar Typhimurium: effects on SPI-1 expression and epithelial infection. J Appl Microbiol 111:185–196

    Article  CAS  PubMed  Google Scholar 

  139. Ray S, Dhaked HPS, Panda D (2014) Antimicrobial peptide CRAMP (16–33) stalls bacterial cytokinesis by inhibiting FtsZ assembly. Biochemistry 53:6426–6429

    Article  CAS  PubMed  Google Scholar 

  140. Bergersen FJ (1953) Cytological changes induced in Bacterium coli by chloramphenicol. J Gen Microbiol 9:353–356

    Article  CAS  PubMed  Google Scholar 

  141. Elliott TS, Rodgers FG (1985) Morphological response and growth characteristics of Legionella pneumophila exposed to ampicillin and erythromycin. J Med Microbiol 19:383–390

    Article  CAS  PubMed  Google Scholar 

  142. Gilleland LB, Gilleland HE, Gibson JA, Champlin FR (1989) Adaptive resistance to aminoglycoside antibiotics in Pseudomonas aeruginosa. J Med Microbiol 29:41–50

    Article  CAS  PubMed  Google Scholar 

  143. Someya A, Tanaka K, Tanaka N (1979) Morphological changes of Escherichia coli induced by bicyclomycin. Antimicrob Agents Chemother 16:87–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Paulander W, Wang Y, Folkesson A, Charbon G, Løbner-Olesen A, Ingmer H (2014) Bactericidal antibiotics increase hydroxyphenyl fluorescein signal by altering cell morphology. PLoS One 9:Article e92231

    Article  PubMed  CAS  Google Scholar 

  145. Magnussen CR, Hruska JF (1980) Aberrant forms of Escherichia coli in blood cultures: in vitro reproduction of an in vivo observation. J Clin Microbiol 12:690–694

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Morgan C, Rosenkranz HS, Carr HS, Rose HM (1967) Electron microscopy of chloramphenicol-treated Escherichia coli. J Bacteriol 93:1987–2002

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Conrad RS, Howard MJ, Garrison RC, Winters S, Henderson DA (1998) The effects of daptomycin on chemical composition and morphology of Staphylococcus aureus. Proc Okla Acad Sci 78:15–22

    CAS  Google Scholar 

  148. Neirinck L, DeVoe I (1981) Anomalous cellular morphology and growth characteristics of Neisseria meningitidis in subminimal inhibitory concentrations of penicillin G. Antimicrob Agents Chemother 19:911–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tomasz A (1968) Biological consequences of the replacement of choline by ethanolamine in the cell wall of pneumococcus: chain formation, loss of transformability, and loss of autolysis. Proc Natl Acad Sci USA 59:86–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Filice G, Carnevale G, Lanzarini P, Castelli F, Zappala C, Menghini P, De Rysky C (1986) Alterations due to ampicillin and rifampicin in S. sanguis and S. aureus isolated from dental plaque. An electron microscopic study. Chemioterapia 5:3–6

    CAS  PubMed  Google Scholar 

  151. Root RK, Isturiz R, Molavi A, Metcalf JA, Malech HL (1981) Interactions between antibiotics and human neutrophils in the killing of staphylococci: studies with normal and cytochalasin B-treated cells. J Clin Invest 67:247–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Henze U, Sidow T, Wecke J, Labischinski H, Berger-Bächi B (1993) Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. J Bacteriol 175:1612–1620

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Sieradzki K, Tomasz A (2006) Inhibition of the autolytic system by vancomycin causes mimicry of vancomycin-intermediate Staphylococcus aureus-type resistance, cell concentration dependence of the MIC, and antibiotic tolerance in vancomycin-susceptible S. aureus. Antimicrob Agents Chemother 50:527–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sieradzki K, Tomasz A (2003) Alterations of cell wall structure and metabolism accompany reduced susceptibility to vancomycin in an isogenic series of clinical isolates of Staphylococcus aureus. J Bacteriol 185:7103–7110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lorian V, Atkinson B, Kim Y (1983) Effect of rifampin and oxacillin on the ultrastructure and growth of Staphylococcus aureus. Rev Infect Dis 5:S418–S427

    Article  CAS  PubMed  Google Scholar 

  156. Nakao M, Kitanaka E, Ochiai K, Nakazawa S (1972) Cell wall synthesis by Staphylococcus aureus in the presence of protein synthesis inhibitory agents. II. Electron microscopic study. J Antibiot (Tokyo) 25:469–470

    Article  CAS  Google Scholar 

  157. Richards RME, Xing JZ, Gregory DW, Marshall D (1995) Mechanism of sulphadiazine enhancement of trimethoprim activity against sulphadiazine-resistant Enterococcus faecalis. J Antimicrob Chemother 36:607–618

    Article  CAS  PubMed  Google Scholar 

  158. Lorian V (1975) Some effects of subinhibitory concentrations of penicillin on the structure and division of staphylococci. Antimicrob Agents Chemother 7:864–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Eirich J, Orth R, Sieber SA (2011) Unraveling the protein targets of vancomycin in living S. aureus and E. faecalis cells. J Am Chem Soc 133:12144–12153

    Article  CAS  PubMed  Google Scholar 

  160. Nakao M, Kitanaka E, Ochiai K, Nakazawa S (1972) Cell wall synthesis by Staphylococcus aureus in the presence of protein synthesis inhibitory agents. I. Electronmicroscopic study. J Antibiot (Tokyo) 25:60–63

    Article  CAS  Google Scholar 

  161. Sayare M, Daneo-Moore L, Shockman GD (1972) Influence of macromolecular biosynthesis on cellular autolysis in Streptococcus faecalis. J Bacteriol 112:337–344

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Sharma M, Chauhan PM (2012) Dihydrofolate reductase as a therapeutic target for infectious diseases: opportunities and challenges. Future Med Chem 4:1335–1365

    Article  CAS  PubMed  Google Scholar 

  163. Rogers HJ, Taylor C (1978) Autolysins and shape change in rodA mutants of Bacillus subtilis. J Bacteriol 135:1032–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Cotroneo N, Harris R, Perlmutter N, Beveridge T, Silverman JA (2008) Daptomycin exerts bactericidal activity without lysis of Staphylococcus aureus. Antimicrob Agents Chemother 52:2223–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cheng M, Huang JX, Ramu S, Butler MS, Cooper MA (2014) Ramoplanin induces bacterial membrane depolarization in Staphylococcus aureus at bactericidal concentrations. Antimicrob Agents Chemother 58:6819–6827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Lutkenhaus J, Pichoff S, Du S (2012) Bacterial cytokinesis: from Z ring to divisome. Cytoskeleton 69:778–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tsang KW, Ng P, Ho PL, Chan S, Tipoe G, Leung R, Sun J et al (2003) Effects of erythromycin on Pseudomonas aeruginosa adherence to collagen and morphology in vitro. Eur Respir J 21:401–406

    Article  CAS  PubMed  Google Scholar 

  168. Greenwood D, O’Grady F (1972) Scanning electron microscopy of Staphylococcus aureus exposed to some common anti-staphylococcal agents. J Gen Microbiol 70:263–270

    Article  CAS  PubMed  Google Scholar 

  169. Burdett IDJ, Murray RGE (1974) Septum formation in Escherichia coli: characterization of septal structure and the effects of antibiotics on cell division. J Bacteriol 119:303–324

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Braga PC, Ricci D (2000) Detection of rokitamycin-induced morphostructural alterations in Helicobacter pylori by atomic force microscopy. Chemotherapy 46:15–22

    Article  CAS  PubMed  Google Scholar 

  171. Chan EL, Harris RC, Dalton HP (1987) The effect of antibiotics on the cell morphology of Legionella pneumophila. J Med Microbiol 23:149–154

    Article  CAS  PubMed  Google Scholar 

  172. Huang KC, Mukhopadhyay R, Wen B, Gitai Z, Wingreen NS (2008) Cell shape and cell-wall organization in Gram-negative bacteria. Proc Natl Acad Sci USA 105:192282–192287

    Google Scholar 

  173. Koupal LR, Pelak BA, Cassidy PJ, Gadebusch HH (1983) Quaternary heterocyclylamino β-lactams. III. The mode of action of L-640,876 and the effect of NaCl on membrane permeability and binding. J Antibiot (Tokyo) 36:54–63

    Article  CAS  Google Scholar 

  174. Nakao M, Kondo M, Tsuchiya K (1981) Light and electron microscopy of the morphological response of Escherichia coli and Serratia marcescens to cefmenoxime (SCE-1365), a new broad-spectrum cephalosporin. J Antibiot (Tokyo) 34:1046–1054

    Article  CAS  Google Scholar 

  175. Daly KE, Huang KC, Wingreen NS, Mukhopadhyay R (2011) Mechanics of membrane bulging during cell-wall disruption in Gram-negative bacteria. Phys Rev E Stat Nonlin Soft Matter Phys 83:Article 041922

    Article  PubMed  CAS  Google Scholar 

  176. Pogliano J, Pogliano N, Silverman JA (2012) Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol 194:4494–4504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wale LJ, Shelton AP, Greenwood D (1989) Scanning electron microscopy of Staphylococcus aureus and Enterococcus faecalis exposed to daptomycin. J Med Microbiol 30:45–49

    Article  CAS  PubMed  Google Scholar 

  178. Comber KR, Boon RJ, Sutherland R (1977) Comparative effects of amoxycillin and ampicillin on the morphology of Escherichia coli in vivo and correlation with activity. Antimicrob Agents Chemother 12:736–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Tanaka N, Matsunaga K, Hirata A, Matsuhisa Y, Nishimura T (1983) Mechanism of action of habekacin, a novel amino acid-containing aminoglycoside antibiotic. Antimicrob Agents Chemother 24:797–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Koike M, Iida K, Matsuo T (1969) Electron microscopic studies on mode of action of polymyxin. J Bacteriol 97:448–452

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Martin NL, Beveridge TJ (1986) Gentamicin interaction with Pseudomonas aeruginosa cell envelope. Antimicrob Agents Chemother 29:1079–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Iida K, Koike M (1974) Cell wall alterations of Gram-negative bacteria by aminoglycoside antibiotics. Antimicrob Agents Chemother 5:95–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kadurugamuwa JL, Clarke AJ, Beveridge TJ (1993) Surface action of gentamicin on Pseudomonas aeruginosa. J Bacteriol 175:5798–5805

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Schindler PRG, Teuber M (1975) Action of polymyxin B on bacterial membranes: morphological changes in the cytoplasm and in the outer membrane of Salmonella typhimurium and Escherichia coli B. Antimicrob Agents Chemother 8:95–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nation RL, Velkov T, Li J (2014) Colistin and polymyxin B: peas in a pod, or chalk and cheese? Clin Infect Dis 59:88–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Davis BD, Chen L, Tai PC (1986) Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. Proc Natl Acad Sci USA 83:6164–6168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hancock RE, Raffle VJ, Nicas TI (1981) Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 19:777–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Higgins ML, Daneo-Moore L, Boothby D, Shockman GD (1974) Effect of inhibition of deoxyribonucleic acid and protein synthesis on the direction of cell wall growth in Streptococcus faecalis. J Bacteriol 118:681–692

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Miller IL, Zsigray RM, Landman OE (1967) The formation of protoplasts and quasi-spheroplasts in normal and chloramphenicol-pretreated Bacillus subtilis. J Gen Microbiol 49:513–525

    Article  CAS  Google Scholar 

  190. Molitor E, Kluczny C, Brötz H, Bierbaum G, Jack R, Sahl H-G (1996) Effects of the lantibiotic mersacidin on the morphology of staphylococci. Zentralbl Bakteriol 284:318–328

    Article  CAS  PubMed  Google Scholar 

  191. Nakao M, Kitanaka F, Ochiai K, Nakazwa S (1972) Cell wall synthesis in Staphylococcus aureus in the presence of protein synthesis inhibitory agents. I. Lincomycin, clindamycin and macrolide antibiotics. Jap J Microbiol 16:403–413

    Article  CAS  PubMed  Google Scholar 

  192. Nishino T (1975) An electron microscopic study of antagonism between cephalexin and erythromycin in Staphylococcus aureus. Jap J Microbiol 19:53–63

    Article  CAS  PubMed  Google Scholar 

  193. Hash JH, Davies MC (1962) Electron microscopy of Staphylococcus aureus treated with tetracycline. Science 138:828–829

    Article  CAS  PubMed  Google Scholar 

  194. Wheeler R, Turner R, Bailey R, Salamaga B, Mesnage S, Mohamad S, Hayhurst E et al (2015) Bacterial cell enlargement requires control of cell wall stiffness mediated by peptidoglycan hydrolases. MBio 6:Article e00660–e00615

    Article  PubMed  CAS  Google Scholar 

  195. Richards RME, Xing JZ, Gregory DW, Marshall D (1993) An electron microscope study of the effect of sulphadiazine and trimethoprim on Enterobacter cloacae. J Med Microbiol 38:64–68

    Article  CAS  PubMed  Google Scholar 

  196. Reisner BS, Woods GL, Popov VL (1997) Electron microscopic analysis of Mycobacterium avium complex isolates exposed to ciprofloxacin, rifabutin, ethambutol and clarithromycin. Int J Tuberc Lung Dis 1:270–275

    CAS  PubMed  Google Scholar 

  197. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:Article a000414

    Article  PubMed  CAS  Google Scholar 

  198. Georgiou G, Telford JN, Shuler ML, Wilson DB (1986) Localization of inclusion bodies in Escherichia coli overproducing β-lactamase or alkaline phosphatase. Appl Environ Microbiol 52:1157–1161

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Tuomanen E, Gilbert K, Tomasz A (1986) Modulation of bacteriolysis by cooperative effects of penicillin-binding proteins 1a and 3 in Escherichia coli. Antimicrob Agents Chemother 30:659–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lorian V, Atkinson BA (1986) Amikacin-induced alterations in the structure of Gram-negative bacilli. Diagn Microbiol Infect Dis 5:93–97

    Article  CAS  PubMed  Google Scholar 

  201. Lorian V, Fernandes F (1998) Effect of quinupristin/dalfopristin alone or in combination with vancomycin on the structure of Enterococcus faecium. Drugs Exp Clin Res 24:73–76

    CAS  PubMed  Google Scholar 

  202. Lorian V, Sabath LD, Simionescu M (1975) Decrease in ribosomal density of Proteus mirabilis exposed to subinhibitory concentrations of ampicillin or cephalothin. Proc Soc Exp Biol Med 149:731–735

    Article  CAS  PubMed  Google Scholar 

  203. Lorian V, Fernandes F (1999) Electron microscopy studies of the bactericidal effects of quinupristin/dalfopristin on Staphylococcus aureus. J Antimicrob Chemother 43:845–846

    Article  CAS  PubMed  Google Scholar 

  204. Formosa C, Grare M, Jauvert E, Coutable A, Regnouf-de-Vains JB, Mourer M, Duval RE et al (2012) Nanoscale analysis of the effects of antibiotics and CX1 on a Pseudomonas aeruginosa multidrug-resistant strain. Sci Rep 2:Article 575

    Article  PubMed  CAS  Google Scholar 

  205. Oliva B, Miller K, Caggiano N, O’Neill AJ, Cuny GD, Hoemann MZ, Hauske JR et al (2003) Biological properties of novel antistaphylococcal quinoline-indole agents. Antimicrob Agents Chemother 47:458–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Boberek JM, Stach J, Good L (2010) Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS One 5:Article e13745

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to those authors who helped source the more-difficult-to-find journal articles used in this review, in particular Professors Francesco Castelli, Magnús Gottfreðsson, Giovanni Longo, Vsevolod L. Popov, R. Michael E. Richards, Brian G. Spratt, and Alexander Tomasz. We are also extremely grateful to Colin MacLean and the Interlibrary loan staff at the Robert Gordon University for their assistance with this project, and to Dr. Helen Vosper for constructive comments during drafting of the manuscript. Our apologies to authors whose work could not be included due to space restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Tim Cushnie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 744 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cushnie, T.P.T., O’Driscoll, N.H. & Lamb, A.J. Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cell. Mol. Life Sci. 73, 4471–4492 (2016). https://doi.org/10.1007/s00018-016-2302-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2302-2

Keywords

Navigation