Skip to main content
Log in

Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The objective of this contribution is to review the application of advanced multivariate data-analysis techniques in the field of mid-infrared (MIR) spectroscopic biomedical diagnosis. MIR spectroscopy is a powerful chemical analysis tool for detecting biomedically relevant constituents such as DNA/RNA, proteins, carbohydrates, lipids, etc., and even diseases or disease progression that may induce changes in the chemical composition or structure of biological systems including cells, tissues, and bio-fluids. However, MIR spectra of multiple constituents are usually characterized by strongly overlapping spectral features reflecting the complexity of biological samples. Consequently, MIR spectra of biological samples are frequently difficult to interpret by simple data-analysis techniques. Hence, with increasing complexity of the sample matrix more sophisticated mathematical and statistical data analysis routines are required for deconvoluting spectroscopic data and for providing useful results from information-rich spectroscopic signals. A large body of work relates to the combination of multivariate data-analysis techniques with MIR spectroscopy, and has been applied by a variety of research groups to biomedically relevant areas such as cancer detection and analysis, artery diseases, biomarkers, and other pathologies. The reported results indeed reveal a promising perspective for more widespread application of multivariate data analysis in assisting MIR spectroscopy as a screening or diagnostic tool in biomedical research and clinical studies. While the authors do not mean to ignore any relevant contributions to biomedical analysis across the entire electromagnetic spectrum, they confine the discussion in this contribution to the mid-infrared spectral range as a potentially very useful, yet underutilized frequency region. Selected representative examples without claiming completeness will demonstrate a range of biomedical diagnostic applications with particular emphasis on the advantageous interaction between multivariate data analysis and MIR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Naumann D (2001) Appl Spectrosc Rev 36:239–298

    CAS  Google Scholar 

  2. Krafft C, Sergo V (2006) Spectroscopy 20:195–218

    CAS  Google Scholar 

  3. Ellis DI, Goodacre R (2006) Analyst (Cambridge, United Kingdom) 131:875–885

    CAS  Google Scholar 

  4. Petibois C, Deleris G (2006) Trends Biotechnol 24:455–462

    CAS  Google Scholar 

  5. Williams S (2006) Spectroscopy 21:25–26,28,30,32–33

  6. Dubois J, Shaw RA (2004) Anal Chem 76:360A–67A

    CAS  Google Scholar 

  7. Petrich W (2001) Appl Spectrosc Rev 36:181–237

    CAS  Google Scholar 

  8. Wang J, Sowa M, Mantsch HH, Bittner A, Heise HM (1996) Trends Anal Chem 15:286–296

    CAS  Google Scholar 

  9. Mantsch HH, Chapman D (1996) (eds) Infrared spectroscopy of biomolecules. Wiley–Liss, New York

  10. Stuart BH (ed) (2004) Infrared spectroscopy—fundamentals and applications. Wiley, Chichester, UK

  11. Ferraro JR, Nakamoto K, Brown CW (2003) (eds) Introductory raman spectroscopy, Second Edition. Academic Press, San Diego

  12. Ng LM, Simmons R (1999) Anal Chem 71:343R–350R

    CAS  Google Scholar 

  13. Arai T, Mlzuno K, Fujikawa A, Makagawa M, Kikuchl M (1990) Lasers Surg Med 10:3561

    Google Scholar 

  14. Vonach R, Buschmann J, Falkowski R, Schindler R, Lendl B, Kellner R (1998) Appl Spectrosc 52:820–822

    CAS  Google Scholar 

  15. Lasch P, Schmitt J, Beekes M, Udelhoven T, Eiden M, Fabian H, Petrich W, Naumann D (2003) Anal Chem 75:6673–6678

    CAS  Google Scholar 

  16. Martin TC, Moecks J, Belooussov A, Cawthraw S, Dolenko B, Eiden M, von Frese J, Koehler W, Schmitt J, Somorjai R, Udelhoven T, Verzakov S, Petrich W (2004) Analyst 129:897–901

    CAS  Google Scholar 

  17. Liu KZ, Schultz CP, Johnston JB, Beck FWJ, Al-Katib AM, Mohammad RM, Mantsch HH (1999) Leukemia 13:1273–1280

    CAS  Google Scholar 

  18. Sahu RK, Zelig UJ, Uleihel M, Brosh N, Talyshinsky M, Ben-Harosh M, Mordenchai S, Kapelushnik J (2006) Leuk Res 30:687–693

    CAS  Google Scholar 

  19. Sahu RK, Moderdechai M (2005) Future Oncol 1:635–647

    CAS  Google Scholar 

  20. Chiriboga L, Xie P, Vigorita V, Zarou D, Zakim D, Diem M (1998) Biospectroscopy 4:55–59

    CAS  Google Scholar 

  21. Chiriboga L, Xie P, Yee H, Vigorita V, Zarou D, Zakim D, Diem M (1998) Biospectroscopy 4:47–53

    CAS  Google Scholar 

  22. Diem M, Boydston-White S, Pacifico A, Chiriboga L (1999) Spectrosc Biol Mol: New Dir, Eur Conf, 8th, Enschede, Netherlands, Aug 29–Sept 2, 1999 479–482

  23. Eysel HH, Jackson M, Nikulin A, Somorjai RL, Thomson GTD, Mantsch HH (1997) Biospectroscopy 3:161–167

    CAS  Google Scholar 

  24. Manoharan R, Baraga JJ, Rava RP, Dasari Ramachandra R, Fitzmaurice M, Feld Michael S (1993) Atherosclerosis 103:181–193

    CAS  Google Scholar 

  25. Yano K, Sakamoto Y, Hirosawa NST, Katayama H, Kumaido KSA (2003) Spectroscopy 17:315–321

    CAS  Google Scholar 

  26. Shaw RA, Eysel HH, Liu KZ, Mantsch HH (1998) Anal Biochem 259:181–186

    CAS  Google Scholar 

  27. Sahu RK, Argov S, Salman A, Huleihel M, Grossman N, Hammody Z, Kapelushnik J, Mordechai S (2003) Technol Cancer Res Treat 3:629–638

    Google Scholar 

  28. Mordechai S, Sahu RK, Hammody Z, Mark S, Kantarovich K, Guterman H, Podshyvalov A, Goldstein J, Argov S (2004) J Microsc 215:86–91

    CAS  Google Scholar 

  29. Wang L, Chapman J, Palmer Richard A, van Ramm O, Mizaikoff B (2007) J Biomed Opt 12:024006

    Google Scholar 

  30. Baraga JJ, Feld Michael S, Rava RP (1991) Appl Opt 45:709–711

    CAS  Google Scholar 

  31. Heise HM, Voigt G, Lampen P, Kupper L, Rudloff S, Werner G (2001) Appl Spectrosc 55:434–443

    CAS  Google Scholar 

  32. Heise HM, Marbach R, Janatsch G, Kruse-Jarres JD (1989) Anal Chem 61:2009–2015

    CAS  Google Scholar 

  33. Janatsch G, Kruse-Jarres JD, Marbach R, Heise HM (1989) Anal Chem 61:2016–2023

    CAS  Google Scholar 

  34. Fabian H, Lasch P, Naumann D (2005) J Biomed Opt 10:031103/1–03/10

    Google Scholar 

  35. Kazarian SG, Chan KLA (2006) Biochim Biophys Acta 1758:858–867

    CAS  Google Scholar 

  36. Colley CS, Kazarian SG, Weinberg PD, Lever MJ (2004) Biopolymers 74:328–335

    CAS  Google Scholar 

  37. Heise HM, Bittner A, Kupper L, Butvina LN (1997) J Mol Struct 410–411:521–525

    Google Scholar 

  38. Heise HM, Kupper L, Butvina LN (1998) Sens Actuators B51:84–91

    CAS  Google Scholar 

  39. Bindig U, Gersonde I, Meinke M, Becker Y, Mueller G (2003) Spectroscopy 17:323–344

    CAS  Google Scholar 

  40. Afanasyeva NI, Bruch RF, Katzir A (1999) Proc SPIE-Int Soc Opt Eng 3596:152–164

    CAS  Google Scholar 

  41. Heise HM, Kupper L, Butvina LN (2002) Spectrochim Acta 57B:1649–1663

    CAS  Google Scholar 

  42. Eytan O, Sela B-A, Katzir A (2000) Appl Opt 39:3357–3360

    CAS  Google Scholar 

  43. Lambrecht A, Beyer T, Hebestreit K, Mischler R, Petrich W (2006) Appl Spectrosc 60:729–736

    CAS  Google Scholar 

  44. Gotshal Y, Adam I, Katzir A (1998) Proc SPIE-Int Soc Opl Eng 3262:192–196

    CAS  Google Scholar 

  45. Harrick NJ (1967) (eds) Internal reflection spectroscopy. Interscience, New York

  46. Charlton C, Giovannini M, Faist J, Mizaikoff B (2006) Anal Chem 78:4224–4227

    CAS  Google Scholar 

  47. Charlton C, Temelkuran B, Dellemann G, Mizaikoff B (2005) Appl Phys Lett 86:194102/1–02/3

    Google Scholar 

  48. Wang L, Chapman J, Palmer RA, Alter TM, Hooper BA, van Ramm O, Mizaikoff B (2006) Appl Spectrosc 60:1121–1126

    CAS  Google Scholar 

  49. Mourant JR, Gibson RR, Johnson TM, Carpenter S, Short KW, Yamada YR, Freyer JP (2003) Phys Med Biol 48

  50. Beleites C, Steiner G, Sowa MG, Baumgartner R, Sobottka S, Schackert G, Salzer R (2005) Vib Spectrosc 38:143–149

    CAS  Google Scholar 

  51. Naumann D (2008) BIOS 2008 (20th Jan 2008, Photonics West, San Jose), SPIE #6853A-11

  52. Naumann D (ed) (2000) Infrared spectroscopy in microbiology. Wiley, Chichester

  53. Miller JC, Miller JN (2000) (eds) Statistics and chemometrics for analytical chemistry, 4th edn. Prentice Hall, Harlow, UK

  54. Otto M (eds) (1998) Chemometrics: statistics and computer application in analytical chemistry. Wiley–VCH, Weinheim, Germany

  55. Beebe KR, Pell RJ, Seasholtz MB (eds) (1998) Chemometrics: a practical guide. Wiley, New York

  56. Kramer R (ed) (1995) Basic chemometrics: a practical introduction to quantitative analysis. Wiley, New York

  57. Staib A, Dolenko B, Fink DJ, Fruh J, Nikulin AE, Otto M, Pessin-Minsley MS, Quarder O, Somorjai R, Thienel U, Werner G, Petrich W (2001) Clin Chim Acta 308:79–89

    CAS  Google Scholar 

  58. Petrich W, Staib A, Otto M, Somorjai RL (2002) Vib Spectrosc 28:117–129

    CAS  Google Scholar 

  59. Mark HL (1986) Anal Chem 58:379–384

    CAS  Google Scholar 

  60. Mark HL, Tunnell D (1985) Anal Chem 57:1449–1456

    CAS  Google Scholar 

  61. Barker M, Rayens W (1993) J Chemom 17:166–173

    Google Scholar 

  62. Ozaki Y, Murayama K (2001) Pract Spectrosc 24:515–565

    CAS  Google Scholar 

  63. Naes T, Mevik B-H (2001) J Chemom 15:413–326

    CAS  Google Scholar 

  64. Schmitt J, Udelhoven T (2001) Pract Spectrosc 24:379–419

    CAS  Google Scholar 

  65. Haaland DM, Jones HDT, Thomas EV (1997) Appl Spectrosc 51:340–345

    CAS  Google Scholar 

  66. Rigas B, Morgello S, Goldman IS, Wong RTT (1990) Pro Natl Acad Sci USA 87:8140–8144

    CAS  Google Scholar 

  67. Liu KZ, Schultz CP, Salamon EA, Man A, Mantsch HH (2003) J Mol Struct 661–662:397–404

    Google Scholar 

  68. Schultz CP, Liu KZ, Kerr PD, Mantsch HH (1998) Oncol Res 10:277–286

    CAS  Google Scholar 

  69. Schultz CP, Liu K, Johnston JB, Mantsch HH (1996) Leuk Res 20:649–655

    CAS  Google Scholar 

  70. Krafft C, Sobottka SB, Schackert G, Salzer R (2004) Analyst 129:921–925

    CAS  Google Scholar 

  71. Steiner G, Shaw A, Choo-smith L-pi, Abuid MH, Schackert G, Sobottka S, Steller W, Salzer R, Mantsch HH (2003) Biopolymers 72:464–471

    CAS  Google Scholar 

  72. Choo L-Pi, Wetzel DL, Halliday WC, Jackson M, LeVine SM, Mantsch HH (1996) Biophys J 71:1672–1679

    CAS  Google Scholar 

  73. Meurens M, Wallon J, Tong J, Noeel H, Haot J (1996) Vib Spectrosc 10:341–346

    CAS  Google Scholar 

  74. Kidder LH, Haka AS, Faustino PJ, Lester DS, Levin IW, Lewis EN (1998) Proc SPIE-Int Soc Opt Eng 3257:178–186

    CAS  Google Scholar 

  75. Li G, Thomson M, Dicarlo E, Yang X, Nestor B, Bostrom MPG, Camacho NP (2005) Appl Spectrosc 59:1527–1533

    CAS  Google Scholar 

  76. Bi X, Yang X, Bostrom Mathias PG, Bartusik D, Ramaswamy S, Fishbein Kenneth W, Spencer Richard G, Camacho Nancy P (2007) Anal Bioanal Chem 387:1601–1612

    CAS  Google Scholar 

  77. Liu K-Z, Xu M, Scott DJ (2007) Br J Haematol 136:713–722

    CAS  Google Scholar 

  78. Liu K-Z, Man A, Dembinski TC, Shaw RA (2007) Anal Bioanal Chem 387:1809–1814

    CAS  Google Scholar 

  79. Heise HM, Voigt G, Lampen P, Kupper L, Rudloff S, Werner G (2001) Appl Spectrosc 55:434–443

    CAS  Google Scholar 

  80. Shaw RA, Low-Ying S, Leroux M, Mantsch HH (2000) Clin Chem 46:1493–1495

    CAS  Google Scholar 

  81. Shaw RA, Eysel HH, Liu K-Z, Mantsch HH (1998) Anal Biochem 259:181–186

    CAS  Google Scholar 

  82. Kodali DR, Small DM, Powell J, Krishnan K (1991) Appl Spectrosc 45:1310–1317

    CAS  Google Scholar 

  83. Hsu HHT, Tawfik O, Sun F (2000) Biochim Biophys Acta, Biomem 1464:262–72

    CAS  Google Scholar 

  84. Hsu HH, Camacho NP, Sun F, Tawfik O, Aono H (2000) Atherosclerosis 153:337–348

    CAS  Google Scholar 

  85. Li C, Ebenstein D, Xu C, Chapman J, Saloner D, Rapp J, Pruitt L (2003) J Biomed Mater Res 64A:197–206

    CAS  Google Scholar 

  86. Liu K-Z, Wang Z, Wu R, Sun S, Wu Q (2003) Leukemia 17:1670–1674

    Google Scholar 

  87. Liu K-Z, Schultz C, Mohammad R, Al-Katib A, Johnson J, Mantsch H (1998) Cancer Lett 127:185–193

    CAS  Google Scholar 

  88. Liu K-Z, Schultz C, Johnson J, Mantsh H (1997) Leuk Res 21:1125–1133

    CAS  Google Scholar 

  89. Liu K-Z, Shi M, Mansch H (2005) Blood Cells, Molecules Dis 35:404–412

    CAS  Google Scholar 

  90. Krafft C, Salzer R, Soff G, Meyer-Hermann M (2005) Cytometry 64A:53–61

    Google Scholar 

  91. Krafft C, Thummler K, Sobottka Stephan B, Schackert G, Salzer R (2006) Biopolymers 82:301–305

    CAS  Google Scholar 

  92. Krafft C, Thummler K, Sobottka SB, Schackert G, Salzer R (2006) Biopolymers 82:301–305

    CAS  Google Scholar 

  93. Krafft C, Shapoval L, Sobottka SB, Geiger KD, Schackert G, Salzer R (2006) Biochim Biophys Acta 1758:883–891

    CAS  Google Scholar 

  94. Kneipp J, Miller L, Joncic M, Kittel M, Lasch P, Beekes M, Naumann D (2003) BBA Mol Basis Disease 1639:152–158

    CAS  Google Scholar 

  95. Wang Q, Kretlow A, Naumann D, Miller L (2005) Vib Spectrosc 38:61–69

    CAS  Google Scholar 

  96. Menze BH, Petrich W, Hamprecht FA (2007) Anal Bioanal Chem 387:1801–1807

    CAS  Google Scholar 

  97. Werner G, Boecker D, Haar H, Kuhr H, Mischler R (1998) Proc SPIE-Int Soc Opl Eng 3257:91–100

    CAS  Google Scholar 

  98. Heise H, Bitter A (1995) J Mol Struct 348:21–24

    CAS  Google Scholar 

  99. Petibois C, Rigalleau V, Mellin A, Perromat A, Cazorla G, Gin H, Deleris G (1999) Clin Chem 45:1530–1535

    CAS  Google Scholar 

  100. Petrich W, Dolenko B, Fruh J, Ganz M, Greger H, Jacob S, Keller F, Nikulin A, Otto M (2000) Appl Opt 39:3372–3379

    Article  CAS  Google Scholar 

  101. Heise H, Marback R, Koschinsky T, Gries F (1994) Appl Spectrosc 48:85–95

    CAS  Google Scholar 

  102. Levin IW, Bhargava R (2005) Annu Rev Phys Chem 56:429–474

    CAS  Google Scholar 

  103. Fernandez DC, Bhargava R, Hewitt SM, Levin IW (2005) Nat Biotechnol 23:469–474

    CAS  Google Scholar 

  104. Bhargava R, Fernandez DC, Hewitt SM, Levin IW (2006) Biochim Biophys Acta 1758:830–845

    CAS  Google Scholar 

  105. Gazi E, Dwyer J, Lockyer N, Gardner P, Vickerman JC, Miyan J, Hart CA, Brown M, Shanks JH, Clarke N (2003) Faraday Discuss 126:41–59

    Google Scholar 

  106. German MJ, Hammiche A, Ragavan N, Tobin MJ, Cooper LJ, Matanhelia SS, Hindley AC, Nicholson CM, Fullwood NJ, Pollock HM, Martin FL (2006) Biophys J 90:3783–3795

    CAS  Google Scholar 

  107. Gazi E, Dwyer J, Gardner P, Ghanbari-Siahkali A, Wade AP, Miyan J, Lockyer NP, Vickerman JC, Clarke NW, Shanks JH, Scott LJ, Hart CA, Brown M (2003) J Pathol 201:99–108

    CAS  Google Scholar 

  108. Haka AS, Kidder LH, Lewis EN (2001) Proc SPIE-Int Soc Opt Eng 4259:47–55

    CAS  Google Scholar 

  109. Cohenford MA, Godwin TA, Cahn F, Bhandare P, Caputo TA, Rigas B (1997) Gynecol Oncol 66:59–65

    CAS  Google Scholar 

  110. Cohenford MA, Rigas B (1998) Proc Natl Acad Sci USA 95:15327–15332

    CAS  Google Scholar 

  111. Lowry SR (1998) Cell Mol Biol 44:169–177

    CAS  Google Scholar 

  112. Romeo M, Burden F, Quinn M, Wood B, McNaughton D (1998) Cell Mol Biol 44:179–187

    CAS  Google Scholar 

  113. Shaw RA, Leroux M, Paraskevas M, Guijon FB, Kotowich S, Mantsch HH (1998) Proc SPIE-Int Soc Opt Eng 3257:42–50

    CAS  Google Scholar 

  114. Walsh Michael J, German Matthew J, Singh M, Pollock Hubert M, Hammiche A, Kyrgiou M, Stringfellow Helen F, Paraskevaidis E, Martin-Hirsch Pierre L, Martin Francis L (2007) Cancer Lett 246:1–11

    CAS  Google Scholar 

  115. Walsh Michael J, Singh Maneesh N, Pollock Hubert M, Cooper Leanne J, German Matthew J, Stringfellow Helen F, Fullwood Nigel J, Paraskevaidis E, Martin-Hirsch Pierre L, Martin Francis L (2007) Biochem Biophys Res Commun 352:213–219

    CAS  Google Scholar 

  116. Fabian H, Wessel R, Jackson M, Schwartz A, Lasch P, Fichtner I, Mantsch HH, Naumann D (1998) Proc SPIE-Int Soc Opt Eng 3257:13–23

    CAS  Google Scholar 

  117. Jackson M, Kim K, Tetteh J, Mansfield JR, Dolenko B, Somorjai RL, Orr FW, Watson PH, Mantsch HH (1998) Proc SPIE-Int Soc Opt Eng 3257:24–34

    CAS  Google Scholar 

  118. Fabian H, Lasch P, Boese M, Haensch W (2002) Biopolymers 61:354–357

    Google Scholar 

  119. Lasch P, Naumann D (1998) Cell Mol Biol 44:189–202

    CAS  Google Scholar 

  120. Fabian H, Choo LP, Szendrei GI, Jackson M, Halliday WC, Otvos L Jr, Mantsch HH (1993) Appl Spectrosc 47:1513–1518

    CAS  Google Scholar 

  121. Pizzi N, Choo LP, Mansfield J, Jackson M, Halliday WC, Mantsch HH, Somorjai RL (1995) Artif Intell Med 7:67–79

    CAS  Google Scholar 

  122. Griebe M, Daffertshofer M, Stroick M, Syren M, Ahmad–Nejad P, Neumaier M, Backhaus J, Hennerici MG, Fatar M (2007) Neurosci Lett 420:29–33

    CAS  Google Scholar 

  123. Mariey L, Signolle JP, Amiel C, Travert J (2001) Vib Spectrosc 26:151–159

    CAS  Google Scholar 

  124. Amiali NM, Mulvey MR, Sedman J, Louie M, Simor AE, Ismail AA (2007) J Microbiol Methods 68:236–242

    CAS  Google Scholar 

  125. Preisner O, Lopes JA, Guiomar R, Machado J, Menezes JC (2007) Anal Bioanal Chem 387:1739–1748

    CAS  Google Scholar 

  126. Zhao HJ, Parry RL, Ellis DI, Griffith GW, Goodacre R (2006) Vib Spectrosc 40:213–218

    Google Scholar 

  127. Lin M, Al-Holy-Al M, Chang S-S, Huang Y, Cavinato AG, Kang D-H, Rasco BA (2005) Int J Food Microbiol 105:369–376

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support of this work by the National Institute of Health within grant R01-EB000508.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Mizaikoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Mizaikoff, B. Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy. Anal Bioanal Chem 391, 1641–1654 (2008). https://doi.org/10.1007/s00216-008-1989-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1989-9

Keywords

Navigation