Skip to main content
Log in

Stress response physiology of thermophiles

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Thermo (or hyperthermo) philic microorganisms are ubiquitous having a wide range of habitats from freshly fallen snow to pasteurized milk to geothermal areas like hot springs. The variations in physicochemical conditions, viz., temperature, pH, nutrient availability and light intensity in the habitats always pose stress conditions for the inhabitants leading to slow growth or cell death. The industrial processes used for harvesting secondary metabolites such as enzymes, toxins and organic acids also create stressed environments for thermophiles. The production of DNA-binding proteins, activation of reactive oxygen species detoxification system, compatible solute accumulation, expression of heat shock proteins and alterations in morphology are a few examples of physiological changes demonstrated by these microscopic lifeforms in stress. These microorganisms exhibit complex genetic and physiological changes to minimize, adapt to and repair damage caused by extreme environmental disturbances. These changes are termed as ‘stress responses’ which enable them to stabilize their homeostasis. The exploration of important thermophilic factors would pave the way in engineering the microbial strains for various biotechnological applications. This review article presents a picture of physiological responses of thermophiles against various stress conditions as their mechanisms to respond to stress make them model organisms to further explore them for basic and applied biology purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abed RMM, Al-Thukair A, de Beer D (2006) Bacterial diversity of a cyanobacterial mat degrading petroleum compounds at elevated salinities and temperatures. FEMS Microbiol Ecol 57:290–301

    Article  CAS  PubMed  Google Scholar 

  • Adams D, Ribbons DW (1988) The metabolism of aromatic compounds by thermophilic bacilli. Appl Biochem Biotechnol 17:231–244

    Article  CAS  Google Scholar 

  • Adams MM, Gomez-Garcia MR, Grossman AR, Bhaya D (2008) Phosphorus deprivation responses and phosphate utilization in a thermophilic Synechococcus sp. from microbial mats. J Bacteriol 190(24):8171–8184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aiking H, Stijnman A, van Garderen C, van Heerikhuizen H, van’t Riet J (1984) Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes CTC 418 growing in continuous culture. Appl Environ Microbiol 47:374–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ajon M, Fröls S, van Wolferen M, Stoecker K, Teichmann D, Driessen AJ et al (2011) UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili. Mol Microbiol 82:807–817

    Article  CAS  PubMed  Google Scholar 

  • Alarico S, Empadinhas N, Simões C, Silva Z, Henne A, Mingote A, Santos H, da Costa MS (2005) Distribution of genes for the synthesis of trehalose and mannosylglycerate in Thermus spp. and direct correlation with halotolerance. Appl Environ Microbiol 71:2460–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allaby M (2005) A dictionary of ecology. Oxford University Press, Inc., Oxford

    Google Scholar 

  • Ambily Nath IV, Loka Bhararthi PA (2011) Diversity in transcripts and translational pattern of stress proteins in marine extremophiles. Extremophiles 15(2):129–153

    Article  CAS  PubMed  Google Scholar 

  • Amo T, Atomi H, Imanaka T (2003) Biochemical properties and regulated gene expression of the superoxide dismutase from the facultatively aerobic hyperthermophile Pyrobaculum calidifontis. J Bacteriol 185(21):6340–6347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrä S, Frey G, Nitsch M, Baumeister W, Stetter KO (1996) Purification and structural characterization of the thermosome from the hyperthermophilic archaeum. FEBS Lett 379(2):127–131

    Article  PubMed  Google Scholar 

  • Andrade CMMC, Pereira N Jr, Antranikian G (1999) Extremely thermophilic microorganisms and their polymerhydrolytic enzymes. Rev Microbiol 30:287–298

    Article  CAS  Google Scholar 

  • Annweiler E, Richnow HH, Hebenbrock S, Antranikian G, Garms C, Francke W et al (2000) Naphthalene degradation and incorporation of naphthalene derived carbon into the biomass by the thermophilic Bacillus thermoleovorans. Appl Environ Microbiol 66:518–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anton J, Oren A, Benlloch S, Rodriguez-Valera R, Amann R, Rossello-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491

    Article  CAS  PubMed  Google Scholar 

  • Argüelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224

    Article  PubMed  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15(4):165–171

  • Baker GC, Gaffar S, Cowan DA, Suharto AR (2001) Bacterial community analysis of Indonesian hot springs. FEMS Microbiol Lett 200:103–109

    Article  CAS  PubMed  Google Scholar 

  • Balhesteros H, Mazzon RR, da Silva CAPT, Lang EAS, Marques MV (2010) CspC and CspD are essential for Caulobacter crescentus stationary phase survival. Arch Microbiol 192:747–758

    Article  CAS  PubMed  Google Scholar 

  • Beblo K, Douki T, Schmalz G et al (2011) Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation. Arch Microbiol 193:797–809

    Article  CAS  PubMed  Google Scholar 

  • Beblo-Vranesevic K, Galinski EA, Rachel R, Huber H, Rettberg P (2016) Influence of osmotic stress on dessication and irradiation tolerance of (hyper)-thermophilic microorganisms. Arch Microbiol

  • Beh M, Strauss G, Huber R, Stetter KO, Fuchs G (1993) Enzymes of the reductive citric-acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the Archaebacterium Thermoproteus neutrophilus. Arch Microbiol 160:306–311

    Article  CAS  Google Scholar 

  • Belkova NL, Tazaki K, Zakharova JR, Parfenova VV (2007) Activity of bacteria in water of hot springs from Southern and Central Kamchatskaya geothermal provinces, Kamchatka Peninsula, Russia. Microbiol Res 162:99–107

    Article  CAS  PubMed  Google Scholar 

  • Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267

    Article  CAS  PubMed  Google Scholar 

  • Benignetti D (1905) Di un germe termofilo isolato dai fanghi d’Acqui. Riv d’igiene santa pubbl 16:449–455

    Google Scholar 

  • Bhardwaj KN, Tiwari SC, Bahuguna YM (2010) Screening of Thermophilic cyanobacteria isolated from tapoban geothermal field, Uttarakhand Himalaya for the production of antibacterial compounds. Asian J Exp Biol Sci 1(4):787–791

    Google Scholar 

  • Bhaya D (1996) Molecular responses of cyanobacteria to macronutrient limitation. J Sci Ind Res 55:630–637

    CAS  Google Scholar 

  • Blau O (1906) Ueber die Temperaturmaxima der Sporenkeimung und der Sporenbildung, sowie die supramaximalen Totungszeiten der Sporen der Bakterien, auch derjenigen mit hohen Temperaturmaxima. Zentr Bakt Parasitenk Infek II 15:97–143

    Google Scholar 

  • Borges N, Marugg JD, Empadinhas N, da Costa MS, Santos H (2004) Specialized roles of the two pathways for the synthesis of mannosylglycerate in osmoadaptation and thermoadaptation of Rhodothermus marinus. J Biol Chem 279:9892–9898

    Article  CAS  PubMed  Google Scholar 

  • Borges N, Jorge CD, Goncalves LG, Gonclaves S, Matias PM, Santos H (2014) Mannosylglycerate: structural analysis of biosynthesis and evolutionary history. Extremophiles 18:835–852

    Article  CAS  PubMed  Google Scholar 

  • Briggs BR, Brodie EL, Tom LM, Dong H, Jiang H, Huang Q, Wang S, Hou W, Wu G, Huang L, Hedlund BP, Zhang C, Dijkstra P, Hungate BA (2014) Seasonal patterns in microbial communities inhabiting the hot springs of Tengchong, Yunnan Province, China. Environ Microbiol 16(6):1579–1591. doi:10.1111/1462-2920.12311

    Article  CAS  PubMed  Google Scholar 

  • Brim H, Venkateswaran A, Kostandarithes HM, Fredrickson JK, Daly MJ (2003) Engineering Deinococcus geothermalis for bioremediation of hightemperature radioactive waste environments. Appl Environ Microbiol 69:4575–4582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AD (1990) Microbial water stress physiology: principles and perspectives. Wiley, Chichester

    Google Scholar 

  • Bruini G (1905) Ueber die thermophile Mikrobenflora des menschlichen Darmkanals. Zentr Bakt Parasitenk Infek I Orig 38(177–185):298–307

    Google Scholar 

  • Budanov AV, Sabina AA, Feinstein E, Koonin E, Chumakov PM (2004) Regeneration of peroxiredoxins by p53- regulated sestrins homologs of bacterial AhpD. Science 304:596–600

    Article  CAS  PubMed  Google Scholar 

  • Burdette DS, Jung SH, Shen GJ, Hollingsworth RI et al (2002) Physiological function of alcohol dehydrogenases and long-chain C(30) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus. Appl Environ Microbiol 68:1914–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capes MD, DasSarma P, DasSarma S (2012) The core and unique proteins of haloarchaea. BMC Genom 13:39. doi:10.1186/1471-2164-13-39

    Article  CAS  Google Scholar 

  • Carreto L, Moore E, Nobre MF, Waite R, Riley PW, Sharp RJ, da Costa MS (1996) Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int J Syst Bacteriol 46:460–465

    Article  CAS  Google Scholar 

  • Catterina G (1904) Beitrag zum Studium der thermophilen Bakterien. Zentr Bakt Parasitenk Infek II 12:353–355

    Google Scholar 

  • Cava F, Hidalgo A, Berenguer J (2009) Thermus thermophilus as biological model. Extremophiles 13:213–231

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Chamkha M, Mnif S, Sayadi S (2008) Isolation of thermophilic and halophilic tyrosol degrading Geobacillus from a Tunisian high temperature oil field. FEMS Microbiol Lett 283:23–29

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Kwok CF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay MK, Kern R, Mistou M-Y, Dandekar AM, Uratsu SL, Richarme G (2004) The chemical chaperone proline relieves the thermosensitivity of a dnaK deletion mutant at 42 °C. J Bacteriol 186:8149–8152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatziefthimiou AD, Medina-Crespo M, Wang Y, Vetriani C, Barkay T (2007) The isolation and initial characterization of mercury resistant chemolithotrophic thermophilic bacteria from mercury rich geothermal springs. Extremophiles. doi:10.1007/s00792-007-0065-2

    PubMed  Google Scholar 

  • Chen M-Y, Wu S-H, Lin G-H, Lu C-P, Lin Y-T, Chang W-C, Tsay S-S (2004) Rubrobacter taiwanensis sp. nov., a novel thermophilic, radiation-resistant species isolated from hot springs. Int J Syst Evol Microbiol 54:1849–1855

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  PubMed  Google Scholar 

  • Clark LL, Ingall ED, Benner R (1998) Marine phosphorus is selectively remineralized. Nature 393:426

    Article  CAS  Google Scholar 

  • Colangeli R, Haq A, Arcus VL, Summers E, Magliozzo RS, McBride A, Mitra AK, Radjainia M, Khajo A, Jacobs WR Jr, Salgame P, Alland D (2009) The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates. Proc Natl AcadSci USA 106(11):4414–4418

    Article  CAS  Google Scholar 

  • Cooper CR, Daugherty AJ, Tachdjian S, Blum PH, Kelly RM (2009) Role of vapBC toxin antitoxin loci in the thermal stress response of Sulfolobus solfataricus. Biochem Soc Trans 37:123–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  CAS  PubMed  Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606

    Article  CAS  PubMed  Google Scholar 

  • da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61:117–153

    PubMed  Google Scholar 

  • Daly MJ (2012) Death by protein damage in irradiated cells. DNA Repair 11:12–21

    Article  CAS  PubMed  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY et al (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5(4):e92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Kruyff E (1909) Les bacteries thermophiles dans les tropiques. Bull. Du Departement de l’Agr. aux Indes neerlandaises. Microbiologie 4(30)

  • DeVeaux LC, Müller JA, Smith JR, Petrisko J, Wells DP, DasSarma S (2007) Extremely radiation-resistant mutants of a halophilic archaeon with increased single-stranded DNA-binding protein (RPA) gene expression. Radiat Res 168:507–514

    Article  CAS  PubMed  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  PubMed  Google Scholar 

  • DiRuggiero J et al (1997) Repair of extensive ionizing-radiation DNA damage at 95 °C in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 179(14):4643–4645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dizdaroglu M (1985) Formation of an 8-hydroxyguanine moiety in deoxyribonucleic acid on gamma-irradiation in aqueous solution. Biochemistry 24:4476–4481

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692

    Article  CAS  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13(4):17R–27R

    Article  CAS  PubMed  Google Scholar 

  • Emmerhoff OJ, Klenk H-P, Birkeland N-K (1998) Characterization and sequence comparison of temperature-regulated chaperonins from the hyperthermophilic archaeon Archaeoglobus fulgidus. Gene 215:431–438

    Article  CAS  PubMed  Google Scholar 

  • Empadinhas N, da Costa MS (2006) Diversity and biosynthesis of compatible solutes in hyper/thermophiles. Int Microbiol 9:199–206

    CAS  PubMed  Google Scholar 

  • Empadinhas N, Marugg JD, Borges N, Santos H, da Costa MS (2001) Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemical and genetic characterization of key enzymes. J Biol Chem 276:43580–43588

    Article  CAS  PubMed  Google Scholar 

  • Erauso G, Reysenbach A-L, Godfroy A, Meunier J-R, Crump B, Partensky F, Baross JA, Marteinsson V, Barbier G, Pace NR, Prieur D (1993) Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349

    Article  CAS  Google Scholar 

  • Esteves AM, Chandrayan SK, McTernan PM, Borges N, Adams MWW, Santos H (2014) Mannosylglycerate and di-myo-inositol phosphate have interchangeable roles during adaptation of Pyrococcus furiosus to heat stress. Appl Environ Microbiol 80(14):4226–4233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evrard C, Capron A, Marchand C, Clippe A, Waittez R, Soumillion P, Knoops B, Declercq J-P (2004) Crystal structure of a dimeric oxidized form of human peroxiredoxin 5. J Mol Biol 337:1079–1090

    Article  CAS  PubMed  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2004) Butanol fermentation research: upstream and downstream manipulations. Chem Rec 4:305–314

    Article  CAS  PubMed  Google Scholar 

  • Ezeji TC, Karcher PM, Qureshi N, Blaschek HP (2005) Improving performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation. Bioprocess Biosyst Eng 27:207–214

    Article  CAS  PubMed  Google Scholar 

  • Ferreira AC, Nobre MF, Rainey FA, Silva MT, Waite R, Burghardt J, Chung AP, da Costa MS (1997) Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947

    Article  CAS  PubMed  Google Scholar 

  • Fillippidou S, Jaussi M, Junier T, Wunderlin T, Jeanneret N, Regensprurg S, Li P-E, Lo C-C, Johnson S, McMurry K, Gleasner CD, Vuyisich M, Chaln PS, Junier P (2015) Genome sequence of Aeribacillus pallidus strain GS3372, an endospore-forming bacterium isolated in a deep geothermal reservoir. GenomeA 3:00981-15

    Google Scholar 

  • Fröls S, Gordon PMK, Panlilio MA, Duggin IG, Bell SD, Sensen CW et al (2007) Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage. J Bacteriol 189:8708–8718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fröls S, Ajon M, Wagner M, Teichmann D, Zolghadr B, Folea M et al (2008) UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol Microbiol 70:938–952

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara S, Aki R, Yoshida M, Higashibata H, Imanaka T, Fukuda W (2008) Expression profiles and physiological roles of two types of molecular chaperonins from the hyperthermophilic archaeon Thermococcus kodakarensis. Appl Environ Microbiol 74(23):7306–7312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Futterer O, Angelov A, Liesegang H, Gottschalk G, Schleper Schepers B, Dock C, Antranikian G, Liebl W (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl AcadSci USA 101:9091–9096

    Article  CAS  Google Scholar 

  • Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:272–328

    CAS  PubMed  Google Scholar 

  • Gao Y, Dai J, Peng H, Xu T (2010) Isolation and characterization of a novel orgnic solvent-tolerant Anoxybacillus sp. PGDY12, a thermophilic Gram positive bacterium. J Appl Microbiol 110:472–478

    Article  PubMed  CAS  Google Scholar 

  • Gehlani A, Patel R, Mangrola A, Dudhagara P (2015) Cultivation-independent comprehensive survey of bacterial diversity in Tulsi Shyam hot springs, India. Genom Data 4:54–56

    Article  Google Scholar 

  • Georgevitch P (1910) Bacillus thermophilus vranjensis. Arch Hyg 72:201–210

    Google Scholar 

  • Georgieva TI, Ahring BK (2007) Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Appl Microbiol Biotechnol 77:61–68

    Article  CAS  PubMed  Google Scholar 

  • Georgieva TI, Mikkelsen MJ, Ahring BK (2008) Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol 145:99–110

    Article  CAS  PubMed  Google Scholar 

  • Ghosh D, Bal B, Kashyap VK, Pal S (2003) Molecular phylogenetic exploration of bacterial diversity in a Bakreshwar (India) hot spring and culture of Shewanella related thermophiles. Appl Environ Microbiol 69(7):4332–4336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaveno MA, Urbieta MS, Ulloa JR, Toril EG, Donati ER (2013) Physiologic versatility and growth flexibility as the main characteristics of a novel thermoacidophilic Acidianus strain isolated from Copahue geothermal area in Argentina. Microb Ecol 65:336–346

    Article  CAS  PubMed  Google Scholar 

  • Gilbert R (1904) Ueber Actinomyces thermophilus und andere Aktinomyceten. Z Hyg Infektionskrankh 47:383–405

    Article  Google Scholar 

  • Givskov M, Eberl L, Moller S, Poulsen LK, Molin S (1994) Responses to nutrient starvation in Pseudomonas putida KT2442: analysis of general cross-protection, cell shape, and macromolecular content. J Bacteriol 176:7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glendinning KJ, Macaskie LE, Brown NL (2005) Mercury tolerance of thermophilic Bacillus sp. and Ureibacillus sp. Biotechnol Lett 27:1657–1662

    Article  CAS  PubMed  Google Scholar 

  • Globig L (1888) Ueber Bakterien-Wachsthum bei 50 bis 70°. Z Hyg Infektionskrankh 3:294–321

    Google Scholar 

  • Golikowa SM (1926) Zur Frage der Thermobiose. Zentr Bakt Parasitenk Infek II 69:178–185

    Google Scholar 

  • Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7:1277–1288

    Article  CAS  PubMed  Google Scholar 

  • Gonclaves LG, Huber R, da Costa MS, Santos H (2003) A variant of the hyperthermophile Archaeoglobus fulgidus adapted to growth at high salinity. FEMS Microbiol Lett 218:239–244

    Article  Google Scholar 

  • Götz D, Paytubi S, Munro S, Lundgren M, Bernanderand R, White MF (2007) Responses of hyperthermophilic crenarchaea to UV irradiation. Genome Biol 8:R220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gromer S, Urig S, Becker K (2004) The thioredoxin system—from science to clinic. Med Res Rev 24:40–89

    Article  CAS  PubMed  Google Scholar 

  • Grossman AR, Bhaya D, Collier JL (1994) Specific and general responses of cyanobacteria to macronutrient deprivation. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms. ASM Press, Washington, DC, pp 112–118

    Google Scholar 

  • Guagliardi A, Cerchia L, Bartolucci S, Rossi M (1994) The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro. Protein Sci 3:1436–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta RS, Naushad S, Baker S (2015) Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 65(Pt 3):105069. doi:10.1099/ijs.0.0701360

    Article  CAS  Google Scholar 

  • Gupta RS, Naushad S, Fabros R, Adeolu M (2016) A phylogenomic reappraisal of familylevel divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov. Antonie Van Leeuwenhoek 109(4):56587. doi:10.1007/s1048201606602

    Article  Google Scholar 

  • Gursahani YH, Gupta SG (2015) Hexavalent chromium reduction by Anoxybacillus rupiensis isolated from hot water spring of Dhapoli, Maharashtra, India. J Pet Environ Biotechnol 6(4):1–5

    CAS  Google Scholar 

  • Haikarainen T, Frioux C, Zhnag LQ, Li DC, Papageorgiou AC (1844) Crystal structure and biochemical characterization of a manganese superoxide dismutase from Chaetomium thermophilum. Biochim Biophys Acta 2:422–429. doi:10.1016/j.bbapap.2013.11.014

    Google Scholar 

  • Halsey TA, Vazquez-Torres A, Gravdahl DJ, Fang FC, Libby SJ (2004) The ferritin-like Dps protein is required for Salmonella enterica serovar Typhimurium oxidative stress resistance and virulence. Infect Immun 72:1155–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmann JD, Wu MF, Kobel PA, Gamo F-J, Wilson M, Morshedi MM et al (2001) Global transcriptional response of Bacillus subtilis to heat shock. J Bacteriol 183:7318–7328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbert AM, Kropinski AM, Jarrell KF (1991) Heat shock response of the archaebacterium Methanococcus voltae. J Bacteriol 173(10):3224–3227

    Article  Google Scholar 

  • Herrero AA, Gomez RF (1980) Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl Environ Microbiol 40:571–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrero AA, Gomez RF, Roberts MF (1982) Ethanol-induced changes in the membrane lipid composition of Clostridium thermocellum. Biochim Biophys Acta 693:195–204

    Article  CAS  PubMed  Google Scholar 

  • Hetzer A, Daughney CJ, Morgan HW (2006) Cadmium ion biosorption by the thermophilic bacteria Geobacillus stearothermophilus and Geobacillus thermocatenulatus. Appl Environ Microbiol 72(6):4020–4027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holden JF (2012) Hot Environments. In: Schaechter M (ed) Schmidt TM. Topics in ecological and environmental microbiology Elsevier Inc, Amsterdam, pp 313–332

    Google Scholar 

  • Hou W et al (2013) A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16SrRNA gene pyrosequencing. PLoS ONE 8(1):e53350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchinson F (1985) Chemical changes induced in DNA by ionizing radiation. Prog Nucleic Acid Res Mol Biol 32:115–154

    Article  CAS  PubMed  Google Scholar 

  • Imlay JA (2006) Iron-sulphur clusters and the problem with oxygen. Mol Microbiol 59(4):1073–1082

    Article  PubMed  Google Scholar 

  • Imlay JA (2008) Cellular defense against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isermann K, Liebau E, Roeder T, Bruchhaus I (2004) A peroxiredoxin specifically expressed in two types of pharyngeal neurons is required for normal growth and egg production in Caenorhabditis elegans. J Mol Biol 338:745–755

    Article  CAS  PubMed  Google Scholar 

  • Jepson HF, Jensen B (2004) Accumulation of trehalose in the thermophilic fungus Chaetomium thermophilum var. coprophilum in response heat or salt stress. Soil Biol Biochem 36(10):1669–1674

    Article  CAS  Google Scholar 

  • Jolivet E et al (2003) Thermococcus gammatolerans sp nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851

    Article  CAS  PubMed  Google Scholar 

  • Jolivet E, Corre E, L’Haridon S, L’Haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov., and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8:219–227

    Article  CAS  PubMed  Google Scholar 

  • Jorge CD, Lamosa P, Santos H (2007) α-d-mannopyranosyl-(1 → 2)-α-d-glucopyranosyl-(1 → 2)-glycerate in the thermophilic bacterium Petrotoga miotherma- structure, cellular content and function. FEBS J 274(12):3120–3127

    Article  CAS  PubMed  Google Scholar 

  • Juhnke H, Krems B, Kötter P, Entian KD (1996) Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol Gen Genet 252:456–464

    Article  CAS  PubMed  Google Scholar 

  • Jung YH, Yi J-Y, Jung HJ, Lee YK, Lee HK, Naicker MC, Uh J-H, Jo IS, Jung EJ, Im H (2010) Overexpression of cold shock protein A of Psychromonas arctica KOPRI 22215 confers cold-resistance. Protein J 29:136–142

    Article  CAS  PubMed  Google Scholar 

  • Kagawa HK, Osipiuk J, Maltsev N, Overbeek R, Quaite-Randall E, Joachimiak A, Trent JD (1995) The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae. J Mol Biol 253:712–725

    Article  CAS  PubMed  Google Scholar 

  • Kambourova M, Mandeva R, Dimova D, Poli A, Nicolaus B, Tommonaro G (2009) Production and characterization of a microbial glucan, synthesized by Geobacillus tepidamans V264 isolated from Bulgarian hot spring. Carbohydr Polym 77(2):338–343

    Article  CAS  Google Scholar 

  • Kang H, Hwang SY, Kim YM, Kim E, Kim Y-S, Kim S-K et al (2003) Degradation of phenanthrene and naphthalene by a Burkholderia species strain. Can J Microbiol 49:139–144

    Article  CAS  PubMed  Google Scholar 

  • Karlinski J (1895) Zur Kenntniss der Bakterien der Thermalquellen. Hyg Rundschau 5:685–689

    Google Scholar 

  • Kato S, Sasaki K, Watanabe K, Yumoto I, Kamagata Y (2014) Physiological and transcriptomic analyses of the thermophilic, aceticlastic methanogen Methanosaeta thermophila responding to ammonia stress. Microbes Environ 29(2):162–167

    Article  PubMed  PubMed Central  Google Scholar 

  • Kayhanian M (1999) Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ Technol 20:355–365

    Article  CAS  Google Scholar 

  • Keasling JD (1997) Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Ann N Y Acad Sci 829:242–249

    Article  CAS  PubMed  Google Scholar 

  • Kecha M, Benallaoua S, Touzel JP, Bonaly R, Duchiron F (2007) Biochemical and phylogenetic characterization of novel terrestrial hyperthermophillic archaeon pertaining to the genus Pyrococcus from an Algerian hydrothermal hot spring. Extremophiles 11:65–73

    Article  CAS  PubMed  Google Scholar 

  • Kenne L, Lindberg B (1983) Bacterial polysaccharides. In: Aspinall GO (ed) The Polysaccharides, vol 2. Academic Press, New York, pp 287–363

    Chapter  Google Scholar 

  • Kim JI, Sharma AK, Abbott SN, Wood EA, Dwyer DW, Jambura A, Minton KW, Inman RB, Daly MJ, Cox MM (2002) RecA protein from the extremely radioresistant bacterium Deinococcus radiodurans: expression, purification, and characterization. J Bacteriol 184:1649–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2001) Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 57:631–638

    Article  CAS  PubMed  Google Scholar 

  • Kminek G, Bada JL, Pogliano K, Ward JF (2003) Radiation-dependent limit for the viability of bacterial spores in halite fluid inclusions and on Mars. Radiat Res 159:722–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp S, Schmidt-Krey I, Hebert H, Bergman T, Jörnvall H, Ladenstein R (1994) The molecular chaperonin TF55 from the thermophilic archaeon Sulfolobus solfataricus: a biochemical and structural characterization. J Mol Biol 242:297–307

    Google Scholar 

  • Koga Y (2012) Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea 2012:789652. doi:10.1155/2012/789652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kongpol A, Kato J, Vangnai AS (2008) Isolation and characterization of Deinococcus geothermalis T27, a slightly thermophilic and organic colvent- tolerant bacterium able to survive in the presence of high concentrations of ethyl acetate. FEMS Microbiol Lett 286:227–233

    Article  CAS  PubMed  Google Scholar 

  • Kongpol A, Pongtharangkul T, Kato J, Honda K, Ohtake H, Vangnai AS (2009) Characterization of an organic-solvent-tolerant Brevibacillus agri strain 13 able to stabilize solvent ⁄ water emulsion. FEMS Microbiol Lett 297:225–233

    Article  CAS  PubMed  Google Scholar 

  • Konings WN, Albers S-V, Koning S, Driessen AJM (2002) The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Van Leeuwenhoek 81:61–72

    Article  CAS  PubMed  Google Scholar 

  • Kornberg A, Rao NN, Ault-Riche D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125

    Article  CAS  PubMed  Google Scholar 

  • Kottemann M, Kish A, Iloanusi C, Bjork S, DiRuggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC-1 to desiccation and gamma irradiation. Extremophiles 9:219–227

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Nussinov R (2001) How do thermophilic proteins deal with heat? Cell Mol Life Sci 58:1216–1233

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014) Deciphering the diversity of culturable thermotolerant bacteria from Manikaran hot springs. Ann Microbiol 64:741–751

    Article  CAS  Google Scholar 

  • Lamosa P, Martins LO, da Costa MS, Santos H (1998) Effects of temperature, salinity, and medium composition on compatible solute accumulation by Thermococcus spp. Appl Environ Microbiol 64:3591–3598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamosa P, Burke A, Peist R, Huber R, Liu MY, Silva G, Rodrigues-Pousada C, LeGall J, Maycock C, Santos H (2000) Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 66:1974–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapaglia C, Hartzell PL (1997) Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 63(8):3158–3163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larmony S, Garnier F, Hoste A, Nadal M (2015) A specific proteomic response of Sulfolobus solfatricus P2 to gamma radiations. Biochemie 118:270–277

    Article  CAS  Google Scholar 

  • Lau MC, Aitchison JC, Pointing SB (2009) Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet. Extremophiles 13:139–149

    Article  PubMed  Google Scholar 

  • le Tam T, Antelmann H, Eymann C, Albrecht D, Bernhardt J, Hecker M (2006) Proteome signatures for stress and starvation in Bacillus subtilis as revealed by a 2-D gel image color coding approach. Proteomics 6:4565–4585

    Article  CAS  Google Scholar 

  • Lenski RE, Bennett AF (1993) Evolutionary response of Escherichia coli to thermal stress. Am Nat 142:S47–S64

    Article  PubMed  Google Scholar 

  • Leuko S, Domingos C, Parpart A, Reitz G, Rettberg P (2015) The survival and resistance of Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae to simulated outer space solar radiation. Astrobiology 15(11):987–997. doi:10.1089/ast.2015.1310

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zhu L, Wang W (2016) Improving the thermostability and stress tolerance of an archaeon hyperthermophilic superoxide dismutase by fusion with a unique N-terminal domain. Springer Plus 5:241. doi:10.1186/s40064-016-1854-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liedert C, Peltola M, Bernhardt J, Neubauer P, Salkinoja-Salonen P (2012) Physiology of resistant Deinococcus geothermalis bacterium aerobically cultivated in low-manganese medium. J Bacteriol 194:1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim JH, Yu YG, Han YS, Cho S, Ahn BY, Kim SH, Cho Y (1997) The crystal structure of an Fe-superoxide dismutase from the hyperthermophile Aquifex pyrophilus at 1.9 A resolution: structural basis for thermostability. J Mol Biol 270(2):259–274

    Article  CAS  PubMed  Google Scholar 

  • Lin F-H, Forsdyke DR (2007) Prokaryotes that grow optimally in acid have purine-poor codons in long open reading frames. Extremophiles 11:9–18

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zhang Y, Zhang W (2014) RNA-seq-based analysis of cold shock response in Thermoanaerobacter tengcongenesis, a bacterium harbouring a single cold shock protein encoding gene. PLoS ONE 9(3):e93289. doi:10.1371/journal.pone.0093289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lovitt RW, Shen GJ, Zeikus JG (1988) Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J Bacteriol 170:2809–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacFadyen A, Blaxall FR (1896) Thermophilic bacteria. J Path Bact 3:87–99; Brit Med J 2:644

  • MacKintosh RW, Fewson CA (1988) Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus. Substrate specificities and inhibition studies. Biochem J 255:653–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mansilla MC, Cybulski LE, Albanesi D, de Mendoza D (2004) Control of membrane lipid fluidity by molecular thermosensors. J Bacteriol 186(20):6681–6688

  • Madshus IH (1988) Regulation of intracellular pH in eukaryotic cells. Biochem J 250:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245

    Article  CAS  PubMed  Google Scholar 

  • Mancuso Nichols C, Garon lardière S, Bowman JP, Nichols PD, Gibson JAE, Guézennec J (2005) Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49:578–589

    Article  CAS  Google Scholar 

  • Marco S, Ureña D, Carrascosa JL, Waldmann T, Peters J, Hegerl R, Pfeifer G, Sack- Kongehl H, Baumeister W (1994) The molecular chaperone TF55: assesment of symmetry. FEBS Lett 341:152–155

    Article  CAS  PubMed  Google Scholar 

  • Martins LO, Santos H (1995) Accumulation of mannosylglycerate and di-myo-inositol-phosphate by Pyrococcus furiosus in response to salinity and temperature. Appl Environ Microbiol 61:3299–3303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martins LO, Carreto LS, da Costa MS, Santos H (1996) New compatible solutes related to Di-myo-inositol-phosphate in members of the order Thermotogales. J Bacteriol 178:5644–5651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins LO, Huber R, Huber H, Stetter KO, da Costa MS, Santos H (1997) Organic solutes in hyperthermophilic Archaea. Appl Environ Microbiol 63:896–902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martins LO, Empadinhas N, Marugg JD, Miguel C, Ferreira C, da Costa MS, Santos H (1999) Biosynthesis of mannosylglycerate in the thermophilic bacterium Rhodothermus marinus. J Biol Chem 274:35407–35414

    Article  CAS  PubMed  Google Scholar 

  • Matallana-Surget S, Wattiez R (2013) Impact of solar radiation on gene expression in bacteria. Proteomes 1:70–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178(3):633–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mega R, Manzoku M, Shinkai A, Nakagawa N, Kuramitsu S, Masui R (2010) Very rapid induction of a cold shock protein by temperature downshift in Thermus thermophilus. Biochem Biophys Res Commun 399:336–340

    Article  CAS  PubMed  Google Scholar 

  • Mehetre GT, Paranjpe AS, Dastager SG, Dharne MS (2015) Complete metagenome sequencing based bacterial diversity and functional insights from basaltic hot spring of Unkeshwar, Maharshtra, India. Genomics Data 7:140–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Meier B, Parak F, Desideri A, Rotilio G (1997) Comparative stability studies on the iron and manganese forms of the cambialistic superoxide dismutase from Propionibacterium shermanii. FEBS Lett 414(1):122–124

    Article  CAS  PubMed  Google Scholar 

  • Michels M, Bakker EP (1985) Generation of a large, protonophore-sensitive proton motive force and pH difference in the acidophilic bacteria Thermoplasma acidophilum and Bacillus acidocaldarius. J Bacteriol 161:231–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mikawa T, Kato R, Sugahara M, Kuramitsu S (1998) Thermostable repair enzyme for oxidatiove DNA damage from extremely thermophilic bacterium, Thermus thermophilus HB8. Nucleic Acids Res 26(4):903–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milo RE, Duffner FM, Muller R (1999) Catechol 2,3-dioxygenase from the thermophilic, phenol-degrading Bacillus thermoleovorans strain A2 has unexpected low thermal stability. Extremophiles 3:185–190

    Article  CAS  PubMed  Google Scholar 

  • Minic Z (2015) Proteomic studies of the effects of different stress conditions on central carbon metabolism in microorganisms. J Proteomics Bioinform 8:080–090. doi:10.4172/jpb.1000355

    Google Scholar 

  • Miquel P (1888) Monographie d’un bacille vivant au dela de 70 centigrades. Ann Microgr 1:3–10

    Google Scholar 

  • Mishra V, Lal R (2001) Enzymes and operons mediating xenobiotic degradation in bacteria. Crit Rev Microbiol 27:133–166

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi M (1897) Ueber das massenhafte Vorkommen von Eisenbakterien in den Thermen von Ikao. J Coll Sci Imp Univ Tokyo 10:139–142

    Google Scholar 

  • Miyoshi A, Rochat T, Gratadoux JJ, Loir LL, Costa O, Langella P, Azevedo V (2003) Oxidative stress in Lacctococcus lactis. Genet Mol Res 2:348–349

    CAS  PubMed  Google Scholar 

  • Moat AG, Foster JW, Spector MP (2002) Microbial physiology. Willey, Hoboken

    Book  Google Scholar 

  • Mongra AC (2012) Distribution pattern of cyanobacteria in hot water springs of Tattapani, Himachal Pradesh. India. J Acad Indus Res 1(7):363–370

    Google Scholar 

  • Mostertz J, Scharf C, Hecker M, Homuth G (2004) Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology 150:497–512

    Article  CAS  PubMed  Google Scholar 

  • Müller R, Antranikian G, Maloney S, Sharp R (1998) Thermophilic degradation of environmental pollutants. In: Antranikian G (ed) Biotechnology of extremophiles Springer, Berlin Heidelberg New York, pp 155–169 (Advances in Biochemical Engineering/Bio-technology, 61)

  • Mutzel A, Reinscheid U, Atranikian G, Muller R (1996) Isolation and characterization of a thermophilic Bacillus strain that degrades phenol and cresols as sole carbon source at 70 °C. Appl Microbiol Biotechnol 46:593–596

    Article  CAS  Google Scholar 

  • Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, Yamada M, Tabata S (2003) Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res 10:137–145

    Article  CAS  PubMed  Google Scholar 

  • Nazina TN, Tourova TP, Poltaraus AB et al (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446

    Article  CAS  PubMed  Google Scholar 

  • Nazina TN, Lebedeva EV, Poltaraus AB, Tourova TP, Grigoryan AA, Sokolova DS, Lysenko AM, Osipov GA (2004) Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. Int J Syst Evol Microbiol 54:2019–2024

    Article  CAS  PubMed  Google Scholar 

  • Nazina TN, Sokolova DS, Shestakova NM et al (2005) The phylogenetic diversity of aerobic organotrophic bacteria from the Dagang high-temperature oil field. Microbiology 74:401–409

    CAS  PubMed  Google Scholar 

  • Negre L (1913) Bacteries thermophiles des sables du Sahara. Compt Rend Soc Biol 74:814–816

    CAS  Google Scholar 

  • Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sinauer Associates, Sunderland

    Google Scholar 

  • Nicolaus B, Manca MC, Romano I, Lama L (1993) Production of an exopolysaccharide from two thermophilic archaea belonging to the genus Sulfolobus. FEMS Microbiol Lett 109(2–3):203–206

    Article  CAS  Google Scholar 

  • Niederberger TD, Ronimus RS, Morgan HW (2008) The microbial ecology of a high temperature nearneutral spring situated in Rotoura, New Zealand. Microbiol Res 163(5):594–603

    Article  CAS  PubMed  Google Scholar 

  • Niehaus F, Bertoldo C, Kähler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729

    Article  CAS  PubMed  Google Scholar 

  • Nikitaki Z, Hellweg CE, Georgakilas AG, Ravanat J-L (2015) Stress-induced DNA damage biomarkers: applications and limitations. Front Chem 3:35–55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nordstrom DK, Ball JW, McCleskey RB (2005) Ground water to surface water: chemistry of thermal outflows in Yellowstone National Park. In: Inskeep WP, McDermott TR (eds) Geothermal biology and geochemistry in Yellowstone National Park: proceeding of the Thermal Biology Institute, Yellowstone National Park, WY, October 2003. Montana State University Publications, Bozeman, pp 73–94

    Google Scholar 

  • Nunes OC, Manaia CM, da Costa MS, Santos H (1995) Compatible solutes in the thermophilic bacteria Rhodothermus marinus and ‘Thermus thermophilus’. Appl Environ Microbiol 61(6):2351–2357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oprescu V (1898) Studien utber thermophile Bakterien. Arch Hyg 33:164–186

    Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A, Mana L (2002) Amino acid composition of bulk protein and salt relationships of selected enzymes of Salinibacter ruber, an extremely halophilic bacterium. Extremophiles 6:217–223

    Article  CAS  PubMed  Google Scholar 

  • Osorio G, Jerez CA (1996) Adaptive response of the archaeon Sulfolobus acidocaldarius BC65 to phosphate starvation. Microbiology 142:1531–1536

    Article  CAS  PubMed  Google Scholar 

  • Ota IM, Varshavsky A (1993) A yeast protein similar to bacterial two-component regulators. Science 262:566–569

    Article  CAS  PubMed  Google Scholar 

  • Özdemir S, Kılınç E, Poli A, Nicolaus B (2013) Biosorption of heavy metals (Cd2+, Cu2+, Co2+ and Mn2+) by thermophilic bacteria, Geobacillus thermantarcticus and Anoxybacillus amylolyticus: equilibrium and kinetic studies. Bioremediat J 17(2):86–96

    Article  CAS  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  • Patil S, Unnikrishnan G (2015) Isolation, characterization and identification of heavy metal tolerating thermophiles from hot water spring. EJBB 3(7):17–22

    Google Scholar 

  • Pavlopoulou A, Savva GD, Louka M, Bagos PG, Vorgias CE, Michalopoulos I, Georgakilas AG (2016) Unravelling the mechanisms of extreme radioresistance in prokaryotes: lessons from nature. Mutat Res Rev Res 767:92–107. doi:10.1016/j.mrrev.2015.10.001

    Article  CAS  Google Scholar 

  • Perroncito E, Varalda L (1887) Intorno alle cosi dette muffe delle termidi Valdieri presso Cimeo (Piemonte). Notarisia 2:333

    Google Scholar 

  • Phadtare S, Severinov K (2010) RNA remodeling and gene regulation by cold shock proteins. RNA Biol 7:788–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phadtare S, Hwang J, Severinov K, Inouye M (2003) CspB and CspL, thermostable cold-shock proteins from Thermotoga maritima. Genes Cells 8:801–810

    Article  CAS  PubMed  Google Scholar 

  • Phipps BM, Hoffman A, Stetter KO, Baumeister W (1991) A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J 10:1711–1722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phipps BM, Typke D, Hegerl R, Volker S, Hoffmann A, Stetter KO, Baumeister W (1993) Structure of a molecular chaperone from a thermophilic archaebacterium. Nature 361:475–477

    Article  CAS  Google Scholar 

  • Piette F, Leprince P, Feller G (2012) Is there a cold shock response in the Antarctic psychrophile Pseudoalteromonas haloplanktis? Extremophiles 16:681–683

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitsch L (1895) Ueber die thermophilen Bakterien. Z Hyg Infektionskrankh 20:154–164

    Google Scholar 

  • Ramakrishnan V, Verhagen MFJM, Adams MWW (1997) Characterization of di-myo-inositol-1,1′-phosphate in the hyperthermophilic bacterium Thermotoga maritima. Appl Environ Microbiol 63:347–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsay B, Wiedenheft B, Allen M, Gauss GH, Lawrence CM, Young M, Douglas T (2006) Dps-like protein from the hyperthermophilic archaeon Pyrococcus furiosus. J Inorg Biochem 100(5–6):1061–1068

    Article  CAS  PubMed  Google Scholar 

  • Reinders A, Bűrckert N, Hohmann S, Thevelein JM, Boller T, Wiemken A, De Virgilio C (1997) Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol 24:687–696

    Article  CAS  PubMed  Google Scholar 

  • Remonsellez F, Orell A, Jerez CA (2006) Copper tolerance of the thermoacidophilic archeon: sulfolobus metallicus: possible role of polyphosphate metabolism. Microbiology 152:59–66

    Article  CAS  PubMed  Google Scholar 

  • Reysenbach A-L, Wickham GS, Pace NR (1994) Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus spring, Yellowstone National Park. Appl Environ Microbiol 60(6):2113–2119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reysenbach A-L, Ehringer M, Hershberger K (2000) Microbial diversity at 83 °C in the Calcite Springs, Yellowstone National Park: another environment where the Aquificales and “Korarchaeota” coexist. Extremophiles 4:61–67

    CAS  PubMed  Google Scholar 

  • Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Rinker KD, Kelly RM (1996) Growth physiology of the hyperthermophilic archaeon Thermococcus litoralis: development of a sulfur-free defined medium, characterization of an exopolysaccharide, and evidence of biofilm formation. Appl Environ Microbiol 62(12):4478–4485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robb F, Antranikian G, Grogan D, Driessen A (2008) Thermophiles, biology and technology at high temperatures. CRC Press, Boca Raton

    Google Scholar 

  • Robinson CK, Webb K, Kaur A et al (2011) A major role for nonenzymatic antioxidant processes in the radioresistance of Halobacterium salinarum. J Bacteriol 193(7):1653–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roeßler M, Müller V (2001) Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol 3:743–754

    Article  Google Scholar 

  • Rudolph J, Oesterhelt D (1995) Chemotaxis and phototaxis require a CheA histidine kinase in the archaeon Halobacterium salinarum. EMBO J 14:667–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rui B, Shen T, Zhou H, Liu J, Chen J, Pan X, Liu H, Wu J et al (2010) A systematic investigation of Escherichia coli central carbon metabolism in response to superoxide stress. BMC Syst Biol 4:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sames T (1900) Zur Kenntniss der bei hoherer Temperatur wachsenden Bakterienund Streptothrixarten. Z Hyg Infektionskrankh 33:313–362

    Article  Google Scholar 

  • Santos H, da Costa MS (2001) Organic solutes from thermophiles and hyperthermophiles. Methods Enzymol 334:302–315

    Article  CAS  PubMed  Google Scholar 

  • Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509

    Article  CAS  PubMed  Google Scholar 

  • Santos H, Lamosa P, Faria TQ, Borges N, Neves C (2007) The physiological role, biosynthesis and mode of action of compatible solutes from (hyper) thermophiles. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 86–103

    Chapter  Google Scholar 

  • Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Kameya M, Fushinobu S, Wakagi T, Arai H, Ishil M, Igarashi Y (2012) A novel enzymatic system against oxidative stress in the thermophilic hydrogen-oxidizing bacterium Hydrogenobacter thermophilus. PLoS ONE 7(4):e34825. doi:10.1371/journal.pone.0034825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saum SH, Pfeiffer F, Palm P, Rampp M, Schuster SC, Műller V, Oesterheldt D (2013) Chloride and organic osmlytes: a hybrid stratergy to cope with elevated salanities by the moderately halophilic, chloride dependent bacterium Halobacillus halophilus. Environ Microbiol 15(5):1619–1633

    Article  CAS  PubMed  Google Scholar 

  • Schaecter (2014) Bacterial hopanoids-the lipids that last forever (small things considered in microbe http://schaechter.asmblog.org/schaechter/2014/09/bacterial-hopanoids-the-lipids-that-lastforever.html)

  • Schaffer C, Franck WL, Scheberl A, Kosma P, McDermott TR, Messner P (2004) Classification of isolates from locations in Austria and Yellowstone National Park as Geobacillus tepidamans sp. nov. Int J Syst Evol Microbiol 54(6):2361–2368

    Article  CAS  PubMed  Google Scholar 

  • Schauder R, Widdel F, Fuchs G (1987) Carbon assimilation pathways in sulfate-reducing bacteria II Enzymes of a reductive citric-acid cycle in the autotrophic Desulfobacter-Hydrogenophilus. Arch Microbiol 148:218–225

    Article  CAS  Google Scholar 

  • Schillinger A (1898) Ueber thermophile Bakterien. Hyg Rundschau 8:568–570

    Google Scholar 

  • Schmalisch M, Langbein I, Stülke J (2002) The general stress protein Ctc of Bacillus subtilis is a ribosomal protein. J Mol Microbiol Biotechnol 4:495–501

    CAS  PubMed  Google Scholar 

  • Scholz S, Sonnenbichler J, Schäfer W, Hensel R (1992) Di-myo-inositol-1,1′-phosphate: a new inositol phosphate isolated from Pyrococcus woesei. FEBS Lett 306:239–242

    Article  CAS  PubMed  Google Scholar 

  • Sharma A (2000) Thermo-alkali stable celluase-free Xylanase of an extreme thermophile Bacillus (Geobacillus) thermoleovorans. PhD thesis University of Delhi

  • Sharma A, Jani K, Souche YS, Pandey A (2015) Microbial diversity of Soldhar, hot spring, India, assessed by analyzing 16S rRNA and protein coding genes. Annl Microbiol. doi:10.1007/s13213-014-0970-4

    Google Scholar 

  • Shaw AJ, Hogsett DA, Lynd LR (2010) Natural competence in Thermoanaerobacter and Thermoanaerobacterium species. Appl Environ Microbiol 76:4713–4719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl AcadSci USA 98:7835–7840

    Article  CAS  Google Scholar 

  • Shi B, Xia X (2003) Morphological changes of Pseudomonas pseudoalcaligenes in response to temperature selection. Curr Microbiol 46:120–123

    Article  CAS  PubMed  Google Scholar 

  • Shiba H, Kawasumi T, Igarashi Y, Minoda Y (1982) The deficient carbohydrate metabolic pathways and the incomplete tricarboxylic acid cycle in an obligately autotrophic hydrogen-oxidizing bacterium. Agric Biol Chem 46:2341–2345

    CAS  Google Scholar 

  • Shih TW, Pan TM (2011) Stress response of thermophilic Geobacillus sp. NTU 03 caused by heat and heat-induced stress. Microbiol Res 166:346–359

    Article  CAS  PubMed  Google Scholar 

  • Shima S, Herault DA, Berkessel A, Thauer RK (1998) Activation and thermostabilization effects of cyclic 2,3-diphosphoglycerate on enzymes from the hyperthermophilic Methanopyrus kandleri. Arch Microbiol 170:469–472

    Article  CAS  PubMed  Google Scholar 

  • Shimada H, Nemoto N, Shida Y, Oshima T, Yamagishi A (2002) Complete polar lipid composition of Thermoplasma acidophilum HO-62 determined by high-performance liquid chromatography with evaporative light-scattering detection. J Bacteriol 184:556–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siderius M, Van Wuytswinkel O, Reijenga KA, Kelders M, Mager WH (2000) The control of intracellular glycerol in Saccharomyces cerevisiae influences osmotic stress response and resistance to increased temperature. Mol Microbiol 36:1381–1390

    Article  CAS  PubMed  Google Scholar 

  • Silva Z, Borges N, Martins LO, Wait R, da Costa MS, Santos H (1999) Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles 3:163–172

    Article  CAS  PubMed  Google Scholar 

  • Silver S (1998) Genes for all metals—a bacterial view of the Periodic Table. J Ind Microbiol Biotechnol 20(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistances: new surprises. Annu Rev Microbiol 50:753–789

    Article  CAS  PubMed  Google Scholar 

  • Simola M, Hanninen AL, Stranius SM, Makarow M (2000) Trehalose is required for conformational repair of heat-denatured proteins in yeast endoplasmic reticulum but not for maintenance of membrane traffic function after severe heat stress. Mol Microbiol 37:42–53

    Article  CAS  PubMed  Google Scholar 

  • Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vivo and in vitro. Mol Cell 1:639–648

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Subudhi E (2016) Structural insights of microbial community of Deulajhari (India) hot spring using 16S-rRNA based metagenomic sequencing. Genomics Data 7:101–102

    Article  PubMed  Google Scholar 

  • Singh B, Poças-Fonseca MJ, Johri BN, Satyanarayana T (2016) Thermophilic molds: biology and applications. Crit Rev Microbiol 42(6):985–1006

    Article  CAS  PubMed  Google Scholar 

  • Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75(1):133–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slobodkin A, Reysenbach A-L, Strutz N, Dreier M, Wiegel J (1997) Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental Hot Spring. Int J Syst Bacteriol 47(2):541–547

    Article  CAS  PubMed  Google Scholar 

  • Smith MR (1990) The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1:191–206

    Article  CAS  PubMed  Google Scholar 

  • Soppa J (2013) Evolutionary advantages of polyploidy in halophilic archaea. Biochem Soc Trans 41:339–343. doi:10.1042/BST20120315

    Article  CAS  PubMed  Google Scholar 

  • Soppa J (2014) Polyploidy in archaea and bacteria: about desiccation resistance, giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects. J Mol Microbiol Biotechnol 24:409–419. doi:10.1159/000368855

    Article  CAS  PubMed  Google Scholar 

  • Sorkhoh NA, Ibrahim AS, Ghannoum MA, Radwan SS (1993) High-temperature hydrocarbon degradation by Bacillus stearothermophilus from oil-polluted Kuwait desert. Appl Microbiol Biotechnol 39:123–126

    Article  CAS  Google Scholar 

  • Sprott GD, Shaw KM, Jarrell KF (1984) Ammonia/potassium exchange in methanogenic bacteria. J Biol Chem 259:12602–12608

    CAS  PubMed  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25(3–4):207–218

    Article  CAS  PubMed  Google Scholar 

  • Stan-Lotter H, Fendrihan S (2015) Halophilic archaea: life with desiccation, radiation and oligotrophy over geologic times. Life 5:1487–1496

    Article  PubMed  PubMed Central  Google Scholar 

  • Stepanova E, Lee J, Ozerova M, Semenova E, Datsenko K, Wanner BL, Severinov K, Borukhov S (2007) Analysis of promoter targets for Escherichia coli transcription elongation factor GreA in vivo and in vitro. J Bacteriol 189:8772–8785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiol Rev 18:149–158

    Article  CAS  Google Scholar 

  • Stewart WDP (1970) Nitrogen fixation by blue-green algae in Yellowstone thermal areas. J Phycology 9:261–268

    Article  CAS  Google Scholar 

  • Stubs D, Fuchs TM, Schneider B, Bosserhoff A, Gross R (2005) Identification and regulation of cold-inducible factors of Bordetella bronchiseptica. Microbiology 151:1895–1909

    Article  PubMed  CAS  Google Scholar 

  • Sung S, Liu T (2003) Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere 53:43–52

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Collins MD, Iijima E, Komagata K (1988) Chemotaxonomic characterization of a radiotolerant bacterium Arthrobacter radiotolerans: description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol Lett 52:33–40

    Article  CAS  Google Scholar 

  • Suzuki I, Lee D, Mackay B, Harahuc L, Oh JK (1999) Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans. Appl Environ Microbiol 65:5163–5168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor MP, Esteban C, Leak DJ (2008) Development of a versatile shuttle vector for gene expression in Geobacillus spp. Plasmid 60:45–52

    Article  CAS  PubMed  Google Scholar 

  • Tekere M, Lotter A, Olivier J Venter S (2015) Bacterial diversity in some South African thermal springs: a metagenomic analysis. Proceedings World Geothermal Congress. Melbourne, Australia, 19–25 Apr, 2015

  • Thevelein JM (1996) Regulation of trehalose metabolism and its relevance to cell growth and function. In: Brambl R, Marzluf GA (eds) The mycota III. Biochemistry and molecular biology. Springer, Berlin, pp 395–420

    Chapter  Google Scholar 

  • Thompson AH, Studholme DJ, Green EM, Leak DJ (2008) Heterologous expression of pyruvate decarboxylase in Geobacillus thermoglucosidasius. Biotechnol Lett 30:1359–1365

    Article  CAS  PubMed  Google Scholar 

  • Thotsaporn K, Sucharitakul J, Wongratana J, Suadee C, Chaiyen P (2004) Cloning and expression of p-hydroxyphenylacetate 3- hydroxylase from Acinetobacter baumannii: evidence of the divergence of enzymes in the class of two-protein component aromatic hydroxylases. Biochim Biophys Acta 1680:60–66

    Article  CAS  PubMed  Google Scholar 

  • Tirelli E (1907) I termofili delle acque potabili. (Riforma medica 10:265). Zentr Bakt Parasitenk Infek II 19:328

  • Topanurak S, Sinchaikul S, Sookkheo B, Phutrakul S, Chen ST (2005) Functional proteomics and correlated signaling pathway of the thermophilic bacterium Bacillus stearothermophilus TLS33 under cold- shock stress. Proteomics 5:4456–4471

    Article  CAS  PubMed  Google Scholar 

  • Trent JD (1996) A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in archaea. FEMS Microbiol Rev 18(2–3):249–258

    Article  CAS  Google Scholar 

  • Trent JD, Osipiuk J, Pinkau T (1990) Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. strain B12. J Bacteriol 172(3):1478–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trent JD, Nimmesgern E, Wall JS, Hartl F-U, Horwich A (1991) A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein tcomplex polypeptide-1. Nature 354:490–493

    Article  CAS  PubMed  Google Scholar 

  • Trent JD, Kagawa HK, Yaoi T, Olle E, Zaluzec NJ (1997) Chaperonin filaments: the archaeal cytoskeleton? Proc Natl AcadSci USA 94:5383–5388

    Article  CAS  Google Scholar 

  • Tsiklinsky P (1903) Sur la flora microbienne thermophile du canal intestinal del’homme. Ann Inst Pasteur 17:217–240

    Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  PubMed  Google Scholar 

  • Uemori T, Ishino Y, Toh H, Asada K, Kato I (1993) Organisation and nucleotide sequence of the DNA polymerase gene from Pyrococcus furiosus. Nucl Acid Res 21:259–265

    Article  CAS  Google Scholar 

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    Article  CAS  PubMed  Google Scholar 

  • van de Vossenberg JLCM, Driessen AJ, Koning WN (1998) The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2:163–170

    Article  PubMed  Google Scholar 

  • van Tieghem P (1881) Sur les bacteriacĕes vivant a la tempdrature de 74 °C. Bull soc Botan Fr 28:35–36

    Article  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Wolferen M, Ajon M, Driessen AJM, Albers S-V (2013) Molecular analysis of the UV- inducible pilli operon from Sulfolobus acidocaldarius. MicrobiologyOpen 2(6):928–937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wahlund TM, Tabita FR (1997) The reductive tricarboxylic acid cycle of carbon dioxide assimilation: initial studies and purification of ATP-citrate lyase from the green sulfur bacterium Chlorobium tepidum. J Bacteriol 179:4859–4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanarska M, Krawczyk B, Hildebrandt P, Kur J (2011) RecA proteins from Deinococcus geothermalis and Deinococcus murrayi- cloning, purification and biochemical characterisation. BMC Mol Biol 12(17):1–13

    Google Scholar 

  • Wang X, Yang H, Ruan L, Liu X, Li F, Xu X (2008) Cloning and characterization of a thermostable superoxide dismutase from the thermophilic bacterium Rhodothermus sp. XMH10. J Ind Microbiol Biotechnol 35(2):133–139. doi:10.1007/s10295-007-0274-9

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Cen Z, Zhao J (2015) The survival mechanism of thermophiles at high temperatures: an angle of omics. Physiology 30:97–106

    Article  CAS  PubMed  Google Scholar 

  • Webb KM, DiRuggiero J (2012) Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea. Archaea 2012:1–11. doi:10.1155/2012/845756

    Article  CAS  Google Scholar 

  • Webb KM et al (2013) Effects of intracellular Mn on the radiation resistance of the halophilic archaeon Halobacterium salinarum. Extremophiles 17(3):485–497

    Article  CAS  PubMed  Google Scholar 

  • Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290

    Article  CAS  PubMed  Google Scholar 

  • Westall F, Loizeau D, Foucher F, Bost N, Betrand M, Vago J, Kminek G (2013) Habitability on Mars from a microbial point of view. Astrobiology 13:887–897

    Article  PubMed  Google Scholar 

  • Whyte LG, Hawari J, Zhou E, Bourbonnière L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedenheft B, Mosolf J, Willits D, Yeager M, Dryden KA, Young M, Douglas T (2005) An archaeal antioxidant: characterization of a Dps-like protein from Sulfolobus solfataricus. Proc Natl AcadSci USA 102(3):10551–10556

    Article  CAS  Google Scholar 

  • Williams E et al (2007a) Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation. Extremophiles 11(1):19–29

    Article  CAS  PubMed  Google Scholar 

  • Williams TI, Combs JC, Lynn BC, Strobel HJ (2007b) Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl Microbiol Biotechnol 74:422–432

    Article  CAS  PubMed  Google Scholar 

  • Wood ML, Dizdaroglu M, Gajewski E, Essigmann JM (1990) Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 29:7024–7032

    Article  CAS  PubMed  Google Scholar 

  • Woodside EE, Kocholaty W (1964) Carbohydrate and lipid content of radiation-resistant and sensitive strains of E coli. J Bacteriol 87(5):1140–1146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wuertz S, Muller E, Spaeth R, Pfleiderer P, Flemming H-C (2000) Detection of heavy metals in bacterial biofilms and microbial floes with the fluorescent complexing agent Newport Green. J Ind Microbiol Biotechnol 24:116–123

    Article  CAS  Google Scholar 

  • Yoshida T, Yohda M, Iida T, Maruyama T, Taguchi H, Yazaki K, Ohta T, Odaka M, Endo I, Kagawa Y (1997) Structural and functional characterization of homooligomeric complexes of a and ß chaperonin subunits from the hyperthermophilic archaeum Thermococcus strain KS-1. J Mol Biol 273:635–645

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaka T, Yano K, Yamaguchi H (1973) Isolation of highly radioresistant bacterium, Arthrobacter radiotolerans nov. sp. Agric Biol Chem 37:2269–2275

    Article  Google Scholar 

  • Yousefi-Nejad M, Naderi-Manesh H, Khajeh K (2011) Proteomics of early and late cold shock stress on thermophilic bacterium, Thermus sp GH5. J Proteomics 74:2100–2111

    Article  CAS  PubMed  Google Scholar 

  • Zarilla KA, Perry JJ (1987) Bacillus thermoleovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endospore-forming bacteria. Syst Appl Microbiol 9:258–264

    Article  CAS  Google Scholar 

  • Zeikus JG, Ben-Bassat A, Ng TK, Lamed RJ (1981) Thermophilic ethanol fermentations. Basic Life Sci 18:441–461

    CAS  PubMed  Google Scholar 

  • Zhang D, Wang J, Pan X (2006) Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions. J Hazard Mater B 138:589–593

    Article  CAS  Google Scholar 

  • Zhu H, Liu J, Qu J, Gao X, Pan T, Cui Z, Zhao X, Lu JR (2013) Stress fermentation strategies for the production of hyperthermostable superoxide dismutase from Thermus thermophilus HB27: effects of ions. Extremophiles 17(6):995–1002. doi:10.1007/s00792-013-0581-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Rawat.

Additional information

Communicated by Yusuf Akhter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranawat, P., Rawat, S. Stress response physiology of thermophiles. Arch Microbiol 199, 391–414 (2017). https://doi.org/10.1007/s00203-016-1331-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1331-4

Keywords

Navigation