Skip to main content

Regulation of Trehalose Metabolism and Its Relevance to cell Growth and Function

  • Chapter
Biochemistry and Molecular Biology

Part of the book series: The Mycota ((MYCOTA,volume 3))

Abstract

Trehalose is a disaccharide (α-d-glucopyranosyl α-d-glucopyranoside) commonly found in fungi and present at particularly high concentrations in resting cells and survival forms, such as spores and sclerotia. Two specific lines of research with respect to trehalose have received much attention. The first is in control of trehalose mobilization during the initiation of growth in resting cells and, more recently, the possible role of trehalose as a stress protectant. With respect to trehalose mobilization in fungi, two mechanisms have been proposed to trigger its onset, depending on the type of trehalase present in a particular species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alabran DM, Ball DH, Reese ET (1983) Comparison of the trehalase of Trichoderma reesei with those from other sources. Carbohydr Res 123: 179–181

    Article  PubMed  CAS  Google Scholar 

  • Anchordoguy TJ, Crowe JH, Griffin FJ, Clark WH (1988) Cryopreservation of sperm from the marine shrimp Sicyona engentis. Cryobiology 25: 238–243

    Article  PubMed  CAS  Google Scholar 

  • App H, Holzer H (1989) Purification and characterization of neutral trehalase from the yeast ABYS1 mutant. J Biol Chem 264: 17583–17588

    PubMed  CAS  Google Scholar 

  • Arguelles JC, Gacto M (1985) Evidence for regulatory trehalase activity in Candida utilis. Can J Microbiol 31: 529–537

    Article  CAS  Google Scholar 

  • Arguelles JC, Gaeta M (1986) Comparative study of two trehalases from Candida utilis. Microbiologia 2: 105–114

    PubMed  CAS  Google Scholar 

  • Arguelles JC, Gacto M (1988) Differential location of regulatory and non-regulatory trehalases in Candida utilis cells. Antonie Leeuwenhoek 54: 555–565

    Article  PubMed  CAS  Google Scholar 

  • Arguelles JC, Vicente-Soler J, Gacto M (1986) Protein phosphorylation and trehalase activation in Candida utilis. FEMS Microbiol Lett 34: 361–365

    Article  CAS  Google Scholar 

  • Attfield PV (1987) Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett 225: 259–263

    Article  PubMed  CAS  Google Scholar 

  • Attfield PV, Raman A, Northcott CJ (1992) Construction of Saccharomyces cerevisiae strains that accumulate relatively low concentrations of trehalose, and their application in testing the contribution of the disaccharide to stress tolerance. FEMS Microbiol Lett 94: 271–276

    Article  CAS  Google Scholar 

  • Barton JK, den Hollander JA, Hopfield JJ, Shulman RG (1982) 13C nuclear magnetic resonance study of trehalose mobilization in yeast spores. J Bacteriol 151: 177–185

    Google Scholar 

  • Becher dos Passos J, Vanhalewyn M, Brandao RL, Castro IM, Nicoli JR, Thevelein JM (1992) Glucose-induced activation of plasma membrane HF-ATPase in mutants of the yeast Saccharomyces cerevisiae affected in cAMP metabolism, cAMP-dependent protein phosphorylation and the initiation of glycolysis. Biochim Biophys Acta 1136: 57–67

    Article  Google Scholar 

  • Becker JU, Shehata MI, Mizani SM (1982) Influence of nitrogen sources on glycogen metabolism in Saccharomyces carlsbergensis. J Gen Microbiol 128: 455–461

    CAS  Google Scholar 

  • Belazzi T, Wagner A, Wieser R, Schanz M, Adam G, Hartig A, Ruis H (1991) Negative regulation of transcription of the Saccharomyces cerevisiae catalase T (CTTI) gene by cAMP is mediated by a positive control element. EMBO J 10: 585–592

    PubMed  CAS  Google Scholar 

  • Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M, Schoppink P, van der Zee P, Wiemken A (1992) Characterization of the 56kDa subunit of trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF], a regulator of carbon catabolite inactivation. Eur J Biochem 209: 951–959

    Article  PubMed  CAS  Google Scholar 

  • Bhandal IS, Hauptmann RM, Widholm JM (1985) Trehalose as cryoprotectant for the freeze preservation of carrot and tobacco cells. Plant Physiol 78: 430–432

    Article  PubMed  CAS  Google Scholar 

  • Bissinger PH, Wieser R, Hamilton B, Ruis H (1989) Control of Saccharomyces cerevisiae catalase T gene (CTT1) expression by nutrient supply via the RAS-cyclic AMP pathway. Mol Cell Biol 9: 1309–1315

    PubMed  CAS  Google Scholar 

  • Blakeley D, Tolliday B, Colaço C, Roser B (1990) Dry instant blood typing plate for bedside use. Lancet 336: 854–855

    Article  PubMed  CAS  Google Scholar 

  • Blazquez MA, Stucka R, Feldmann H, Gancedo C (1992) Isolation in Schizosaccharomyces pombe of a homolog of the Saccharomyces cerevisiae CIF] gene. In: Worksh on control of gene expression in yeast. The Centre for International Meetings on Biology, Instituto Juan March de Estudios e Investigaciones 9: 60

    Google Scholar 

  • Boiteux A (1992) Metabolic studies on synchronously dividing yeast cells. Energy metabolism during cellular division. Proc 10th Small Meet on Yeast — Transport and Energetics. Marburg, Germany, p 28

    Google Scholar 

  • Boorstein WR, Craig EA (1990) Regulation of a yeast HSP70 gene by a cAMP responsive transcriptional control element. EMBO J 9: 2543–2553

    PubMed  CAS  Google Scholar 

  • Boos W, Ehmann U, Bremer E, Middendorf A, Postma P (1987) Trehalase of Escherichia coll. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J Biol Chem 262: 13212–13218

    Google Scholar 

  • Bourret JA (1986) Evidence that a glucose-mediated rise in cyclic AMP triggers germination of Piloholus longipes spores. Exp Mycol 10: 60–66

    Article  CAS  Google Scholar 

  • Brana AF, Mendez C, Diaz LA, Manzanal MB, Hardisson C (1986) Glycogen and trehalose accumulation during colony development in Streptomyces antibioticus. J Gen Microbiol 132: 1319–1326

    PubMed  CAS  Google Scholar 

  • Breedveld MW, Zevenhuizen LPTM, Zehnder AJB (1991) Osmotically regulated trehalose accumulation and cyclic beta-(1,2)-glucan excretion by Rhizobium leguminosarum biovar trifolii TA-1. Arch Microbiol 156: 501506

    Google Scholar 

  • Broach JR, Deschenes RJ (1990) The function of RAS genes in Saccharomyces cerevisiae. Adv Cancer Res 54: 79–139

    Article  PubMed  CAS  Google Scholar 

  • Brownlee C, Jennings DH (1981) The content of soluble carbohydrates and their translocation in mycelium of Serpula lacrimans. Trans Br Mycol Soc 77: 615–619

    Article  CAS  Google Scholar 

  • Burke MJ (1985) The glassy state and survival of anhydrous biological systems. In: Leopold AC (ed) Membranes, metabolism and dry organisms. Cornell Univ Press, Ithaca, NY, pp 358–363

    Google Scholar 

  • Cabib E, Leloir LF (1958) The biosynthesis of trehalose phosphate. J Biol Chem 231: 259–275

    PubMed  CAS  Google Scholar 

  • Callaerts G, Iserentant D, Verachtert H (1993) Relation between trehalose and sterol accumulation during oxygenation of cropped yeast. J Am Soc Brew Chem 51: 7577

    Google Scholar 

  • Cameron S, Levin L, Zoller M, Wigler M (1988) cAMPindependent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae. Cell 53: 555–566

    Google Scholar 

  • Carrillo D, Vicente-Soler J, Gacto M (1992) Activation of neutral trehalase by fermentable sugars and cAMP in the fission yeast Schizosaccharomyces pombe. FEMS Microbial Lett 98: 61–66

    Article  CAS  Google Scholar 

  • Charlab R, Oliveira DE, Panek AD (1985) Investigation of the relationship between sstl and fdp mutations in yeast and their effect on trehalose synthesis. Braz J Med Biol Res 18: 447–454

    PubMed  Google Scholar 

  • Cherry JR, Johnson TR, Dollard C, Shuster JR, Denis CL (1989) Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1. Cell 56: 409–419

    Article  PubMed  CAS  Google Scholar 

  • Clegg JS (1985) The physical properties and metalic status of Artemia cysts at low water contents: the “water replacement hypothesis”. In: Leopold AC (ed) Membranes, metabolism and dry organisms. Cornell Univ Press, Ithaca, NY, pp 169–187

    Google Scholar 

  • Cochrane VW (1958) The physiology of fungi. Wiley, New York

    Google Scholar 

  • Colaço C, Sen S, Thangavelu M, Pinder S, Roser B (1992) Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Biotechnology 10: 10071011

    Google Scholar 

  • Coote PJ, Jones MV, Edgar K, Cole MB (1992) TPK gene products mediate cAMP-independent thermotolerance in Saccharomyces cerevisiae. J Gen Microbial 138: 25512557

    Google Scholar 

  • Costa-Carvalho VLA, Panek AD, Rocha-Ledo MHM (1983) Glycogen accumulation by Saccharomyces cerevisiae: influence of specific growth rate. IRCS Med Sci 11: 120–121

    CAS  Google Scholar 

  • Cotter DA (1975) Spores of the cellular slime mold Dictyostelium discoideum. In: Gerhardt P, Costilow RN, Sadoff HL (eds) Spores VI. Am Soc Microbiol, Washington, DC, pp 61–72

    Google Scholar 

  • Coutinho C, Bernardes E, Felix D, Panek A (1988) Trehalose as cryoprotectant for preservation of yeast strains. J Biotechnol 7: 23–32

    Article  CAS  Google Scholar 

  • Coutinho CC, Silva JT, Panek AD (1992) Trehalase activity and its regulation during growth of Saccharomyces cerevisiae. Biochem Int 26: 521–530

    PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms. Science 223: 701–703

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Carpenter JF, Crowe LM, Anchordoguy TJ (1990) Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology 27: 219–231

    Article  CAS  Google Scholar 

  • Crowe JH, Panek AD, Crowe LM, Panek AC, Dearaujo PD (1991) Trehalose transport in yeast cells. Biochem Int 24: 721–730

    PubMed  CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54: 579–599

    Article  CAS  Google Scholar 

  • De Antoni GL, Perez P, Abraham A, Anon MC (1989) Trehalose, a cryoprotectant for Lactobacillus bulgaricus. Cryobiology 26: 149–153

    Article  Google Scholar 

  • De Araujo PS, Panek AC, Crowe JH, Crowe LM, Panek AD (1991) Trehalose-transporting membrane vesicles from yeasts. Biochem Int 24: 731–737

    PubMed  Google Scholar 

  • De Koning W, Groenveld K, Oehlen LJWM, Berden JA, Van Dam K (1991) Changes in the activities of key enzymes of glycolysis during the cell cycle in yeast: a rectification. J Gen Microbiol 137: 971–976

    Article  PubMed  Google Scholar 

  • Dellamora-Ortiz GM, Ortiz CHD, Maia JCC, Panek AD (1986) Partial purification and characterization of the interconvertible forms of trehalase from Saccharomyces cerevisiae. Arch Biochem Biophys 251: 205–214

    Article  PubMed  CAS  Google Scholar 

  • De Virgilio C, Simmen U, Hottiger T, Boller T, Wiemken A (1990) Heat shock induces enzymes of trehalose metabolism, trehalose accumulation, and thermotolerance in Schizosaccharomyces pombe, even in the presence of cycloheximide. FEBS Lett 273: 107–110

    Article  PubMed  Google Scholar 

  • De Virgilio C, Bürckert N, Boller T, Wiemken A (199la) A method to study the rapid phosphorylation-related modulation of neutral trehalase activity by temperature shifts in yeast. FEBS Lett 291: 355–358

    Google Scholar 

  • De Virgilio C, Muller J, Boller T, Wiemken A (1991b) A constitutive, heat shock-activated neutral trehalase occurs in Schizosaccharomyces pombe in addition to the sporulation-specific acid trehalase. FEMS Microbiol Lett 84: 85–90

    Google Scholar 

  • De Virgilio C, Piper P, Boller T, Wiemken A (1991e) Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp-104 and in the absence of protein synthesis. FEBS Lett 288: 86–90

    Article  PubMed  Google Scholar 

  • De Virgilio C, Bürckert N, Bell W, Jenti B, Boller T, Wiemken A (1993) Disruption of TPS2, the gene encoding the 100 kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 212: 315–323

    Article  PubMed  Google Scholar 

  • Dewerchin MA, Van Laere AJ (1984) Trehalase activity and cyclic AMP content during early development of Mucor rounii spores. J Bacteriol 158: 575–579

    PubMed  CAS  Google Scholar 

  • Donnini C, Puglisi PP, Vecli A, Marmiroli N (1988) Germination of Saccharomyces cerevisiae ascospores without trehalose mobilization as revealed by in vivo 13C nuclear magnetic resonance spectroscopy. J Bacteriol 170: 37893791

    Google Scholar 

  • Dumont JE, Jauniaux JC, Roger PP (1989) The cyclic AMP-mediated stimulation of cell proliferation. Trends Biochem Sci 14: 67–71

    Article  PubMed  CAS  Google Scholar 

  • Elbein AD (1974) The metabolism of a-a-trehalase. Adv Carbohydr Chem Biochem 30: 227–256

    Article  PubMed  CAS  Google Scholar 

  • Elliott B, Futcher B (1993) Stress resistance of yeast cells is largely independent of cell cycle phase. Yeast 9: 33–42

    Article  PubMed  CAS  Google Scholar 

  • Emyanitoff RG, Wright BE (1979) Effect of intracellular carbohydrates on heat resistance of Dictyostelium descoideum spores. J Bacteriol 140: 1008–1012

    PubMed  CAS  Google Scholar 

  • Engelberg D, Perlman R, Levitzki A (1989) Transmembrane signalling in Saccharomyces cerevisiae. Cell Signalling 1: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Engelberg D, Poradosu E, Simchen E. Levitzki A (1990) Adenylyl cyclase activity of the fission yeast Schizosaccharomyces pombe is not regulated by guanyl nucleotides. FEBS Lett 261: 413–418

    PubMed  CAS  Google Scholar 

  • Farkas I, Hardy TA, Depaoliroach AA, Roach PJ (1990) Isolation of the GSYI gene encoding yeast glycogen synthase and evidence for the existence of a second gene. J Biol Chem 265: 20879–20886

    PubMed  CAS  Google Scholar 

  • Farkas I, Hardy TA, Goebl MG. Roach PJ (1991) Two glycogen synthase isoforms in Saccharomyces cerevisiae are coded by distinct genes that are differentially controlled. J Biol Chem 266:15602–15607

    Google Scholar 

  • François J, Van Schaftingen E, Hers H-G (1984) The mechanism by which glucose increases frutose-2,6hisphosphate concentration in Saccharomyces cerevisiae. A cyclic-AMP-dependent activation of phosphofructokinase 2. Eur J Biochem 145: 187–193

    Article  PubMed  Google Scholar 

  • François J, Eraso P, Gancedo C (1987) Changes in the concentration of cAMP, frutose-2,6-bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose. Eur J Biochem 164: 369–373

    Article  PubMed  Google Scholar 

  • François J, Neves M-J, Hers H-G (1991) The control of trehalose biosynthesis in Saccharomyces cerevisiae: evidence for a catabolite inactivation and repression of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Yeast 7: 575–587

    Article  PubMed  Google Scholar 

  • Franks F. Hatley RHM, Mathias SF (1991) Materials science and the production of shelf-stable biologicals. Biopharm 4: 38–42

    Google Scholar 

  • Fukui Y, Kozasa T, Kaziro Y, Takeda T, Yamamoto M (1986) Role of a ras homolog in the life cycle of Schizosaccharomyces pombe. Cell 44: 329–336

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM, Chalmers K. Reed RH (1987) The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. FEMS Microbial Lett 48: 249–254

    Article  CAS  Google Scholar 

  • Gélinas P, Fiset G, LeDuy A, Goulet J (1989) Effect of growth conditions and trehalose content on cryotolerance of bakers’ yeast in frozen doughs. Appl Environ Microbiol 55: 2453–2459

    PubMed  Google Scholar 

  • Giver HM, Styrvold OB, Kaasen J. Strom AR (1988) Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170: 2841–2849

    Google Scholar 

  • Gibbs JB, Marshall MS (1989) The ras oncogene — an important regulatory element in lower eucaryotic organisms. Microbial Rev 53: 171–185

    CAS  Google Scholar 

  • Gonzalez MI. Stucka R, Blazquez MA, Feldmann H, Gancedo C (1992) Molecular cloning of CIFI,a yeast gene necessary for growth on glucose. Yeast 8:183192

    Google Scholar 

  • Gottlieb D (1978) The germination of fungus spores. Merrow, Newcastle-upon-Tyne, Meadowfie Id Press, Shildon

    Google Scholar 

  • Grba S, Oura E, Suomalainen H (1975) On the formation of glycogen and trehalose in baker’s yeast. Eur J Appl Microbiol 2: 29–37

    Article  CAS  Google Scholar 

  • Grba S, Oura E, Suomalainen H (1979) Formation of trehalose and glycogen in growing baker’s yeast. Finn Chem Lett 1979: 61–64

    Google Scholar 

  • Green JL, Angell CA (1989) Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J Phys Chem 93: 2880–2882

    Article  CAS  Google Scholar 

  • Gupta J, Harris SD, Cotter DA (1987) Evidence for nonregulatory trehalase activity in Dictyostelium discoideum. Curr Microbiol 16: 101–104

    Article  CAS  Google Scholar 

  • Gutierrez C, Ardourel M, Bremer E, Middendorf A, Boos W, Ehmann U (1989) Analysis and DNA sequence of the osmoregulated treA gene encoding the periplasmic trehalase of Escherichia coil K12. Mol Gen Genet 217: 347–354

    Article  PubMed  CAS  Google Scholar 

  • Hall BG (1983) Yeast thermotolerance does not require protein synthesis. J Bacteriol 156: 1363–1365

    PubMed  CAS  Google Scholar 

  • Hammond JBW, Nichols R (1976) Carbohydrate metabolism in Agaricus bisporus (Lange) Sing.: changes in soluble carbohydrate during growth of mycelium and sporphore. J Gen Microbiol 95: 309–320

    Google Scholar 

  • Harris DS, Cotter DA (1987) Vacuolar (lysosomal) trehalase of Saccharomyces cerevisiae. Curr Microbiol 15: 247–249

    Article  CAS  Google Scholar 

  • Hengge-Aronis R, Klein W, Lange R, Rimmele M, Boos W (1991) Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coll. J Bacteriol 173: 7918–7924

    PubMed  CAS  Google Scholar 

  • Hino A, Mihara K, Nakashima K, Takano H (1990) Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts. Appl Environ Microbiol 56: 1386–1391

    PubMed  CAS  Google Scholar 

  • Hirimburegama K, Durnez P, Keleman J, Oris E, Vergauwen R, Mergelsberg H, Thevelein JM (1992) Nutrient-induced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger. J Gen Microbiol 138: 2035–2043

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S, Huse K, Valentin E, Mbonyi K, Thevelein JM, Zimmermann FK (1992) Glucose-induced regulatory defects in the Saccharomyces cerevisiae growth initiation mutant bypl and identification of MIGI as a partial suppressor. J Bacteriol 174: 4183–4188

    PubMed  CAS  Google Scholar 

  • Hohmann S, Neves MJ, de Koning W, Alijo R, Ramos J, Thevelein JM (1993) The growth and signalling defects of the ggsl (fdpllbypl) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII. Curr Genet 23: 281–289

    Article  PubMed  CAS  Google Scholar 

  • Honadel TE, Killian GJ (1988) Cryopreservation of murine embryos with trehalose and glycerol. Cryobiology 25: 331–337

    Article  PubMed  CAS  Google Scholar 

  • Hottiger T, Boller T, Wiemken A (1987a) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett 220: 113–115

    Article  PubMed  CAS  Google Scholar 

  • Hottiger T, Schmutz P, Wiemken A (1987b) Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J Bacteriol 169: 5518–5522

    PubMed  CAS  Google Scholar 

  • Hottiger T, Boller T, Wiemken A (1989) Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotectant? FEBS Lett 255: 431434

    Google Scholar 

  • Hottiger T, De Virgilio C, Bell W, Boller T, Wiemken A (1992) Canavanine treatment of yeast induces thermotolerance. Yeast 8 (Spec Iss): S91

    Google Scholar 

  • Iida H (1988) Multistress resistance of Saccharomyces cerevisiae is generated by insertion of retrotransposon Ty into the 5’ coding region of the adenylate cyclase gene. Mol Cell Biol 8: 5555–5560

    PubMed  CAS  Google Scholar 

  • Iida H, Yahara I (1984) Specific early-G1 blocks accompanied with stringent response in Saccharomyces cerevisiae lead to growth arrest in resting state similar to the Go of higher eukaryotes. J Cell Biol 98: 1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Shimoda C (1981a) Changes in trehalose content and trehalase activity during spore germination in fission yeast, Schizosaccharomyces pombe. Arch Microhiol 129: 19–22

    Article  CAS  Google Scholar 

  • Inoue H, Shimoda C (1981 b) Induction of trehalase activity on a nitrogen-free medium: a sporulation-specific event in the fission yeast, Schizosaccharomyces pombe. Mol Gen Genet 183: 32–36

    Google Scholar 

  • Jacquet M, Camonis 1 (1985) Contrôle du cycle de divisiion cellulaire et de la sporulation chez Saccharomyces cerevisiae par le système de I’AMP cyclique. Biochimie 67: 35–43

    CAS  Google Scholar 

  • Kaasen I, Falkenberg P, Styrvold OB, Strom AR (1992) Moecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coll. Evidence that transcription is activated by katF (appR). J Bacteriol 174: 889–898

    Google Scholar 

  • Keller F, Schellenberg M, Wiemken A (1982) Localization of trehalase in vacuoles and trehalose in the cytosol of yeast (Saccharomyces cerevisiae). Arch Microhiol 131: 298–301

    Article  CAS  Google Scholar 

  • Killick KA, Wright BE (1972a) Trehalose synthesis during differentiation in Dictyostelium discoideum. HI. In vitro unmaking of trehalose 6-phosphate synthetase. J Biol Chem 247: 2967–2969

    Google Scholar 

  • Killick KA, Wright BE (1972b) Trehalose synthesis during differentiation in Dictyostelium discoideum. IV. Secretion of trehalase and in vitro expression of trehalose 6-phosphate synthetase activity. Biochem Biophys Res Commun 48: 1476–1481

    Article  PubMed  CAS  Google Scholar 

  • Kline L, Sugihara TF (1968) Factors affecting the stability of frozen bread doughs. I. Prepared by the straight dough method. Bakers Dig 42: 44–50

    Google Scholar 

  • Kobayashi N, McEntee K (1993) Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol Cell Biol 13: 248–256

    PubMed  CAS  Google Scholar 

  • Kopp M, Müller H, Holzer H (1993) Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. J Biol Chem 268: 4766–4774

    PubMed  CAS  Google Scholar 

  • Kotyk A, Michaljanicova D (1979) Uptake of trehalose by Saccharomyces cerevisiae. J Gen Microbiol 110: 323–332

    Article  PubMed  CAS  Google Scholar 

  • Küenzi MT, Fiechter A (1969) Changes in carbohydrate composition and trehalase activity during the budding cycle of Saccharomyces cerevisiae. Arch Mikrobiol 64: 396–407

    Article  PubMed  Google Scholar 

  • Küenzi MT, Fiechter A (1972) Regulation of carbohydrate composition of Saccharomyces cerevisiae under growth limitation. Arch Mikrobiol 84: 254–265

    Article  PubMed  Google Scholar 

  • Levine H, Slade L (1992) Another view of trehalose for drying and stabilizing biological materials. Biopharm 5: 36–40

    CAS  Google Scholar 

  • Lewis JG, Learmonth RP, Watson K (1993) Role of growth phase and ethanol in freeze-thaw stress resistance of Saccharomyces cerevisiae. Appl Environ Microhiol 59: 1065–1071

    CAS  Google Scholar 

  • Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae. Response to nutrient limitation. J Bacteriol 143: 1384–1394

    Google Scholar 

  • Londesborough J, Varimo K (1984) Characterization of two trehalases in baker’s yeast. Biochem J 219:511–518 Londesborough J, Vuorio 0 (1991) Trehalose-6-phosphate synthase/phosphatase complex from backers’ yeast: purification of a proteolytically activated form. J Gen Microbiol 137: 323–330

    Google Scholar 

  • Ma H, Botstein D (1986) Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression. Mol Cell Biol 6: 4046–4052

    PubMed  CAS  Google Scholar 

  • Mackay MA, Norton RS, Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130: 2177–2191

    CAS  Google Scholar 

  • Mackenzie KF, Singh KK, Brown AD (1988) Water stress plating hypersensitivity of yeasts: protective role of trehalose in Saccharomyces cerevisiae. J Gen Microbiol 134: 1661–1666

    PubMed  CAS  Google Scholar 

  • Mager WH, Moradas Ferreira P (1993) Stress response of yeast. Biochem J 290: 1–13

    PubMed  CAS  Google Scholar 

  • Malone RE (1990) Dual regulation of meiosis in yeast. Cell 61: 375–378

    Article  PubMed  CAS  Google Scholar 

  • Marchler G, Schuller C, Wieser R, Adam G, Ruis H (1992) A heat shock factor-independent stress control element of the Saccharomyces cerevisiae CTTI promotor regulated by protein kinase A, nitrogen starvation and heat shock. Yeast 8 (Spec Iss): 5154

    Google Scholar 

  • Marino C, Curto M, Bruno R, Rinaudo MT (1989) Trehalose synthase and trehalose behaviour in yeast cells in anhydrobiosis and hydrobiosis. Int J Biochem 21: 1369–1375

    Article  CAS  Google Scholar 

  • Martegani E, Baroni M, Vanoni M (1986) Interaction of cAMP with the CDC25-mediated step in the cell cycle of budding yeast. Exp Cell Res 162: 544–548

    Article  PubMed  CAS  Google Scholar 

  • Martin MC, Diaz LA, Manzanal MB, Hardisson C (1986) Role of trehalose in the spores of Streptomyces. FEMS Microbiol Lett 35: 49–54

    Article  Google Scholar 

  • Matsumoto K, Uno I, Ishikawa T (1985) Genetic analysis of the role of cAMP in yeast. Yeast 1: 15–24

    Article  PubMed  CAS  Google Scholar 

  • Mbonyi K, Van Aelst L, Argüelles JC, Jans AWH, Thevelein JM (1990) Glucose-induced hyperaccumulation of cAMP and absence of glucose repression in yeast strains with reduced activity of cAMP-dependent protein kinase. Mol Cell Biol 10: 4518–4523

    PubMed  CAS  Google Scholar 

  • McBride MJ, Ensign JC (1987a) Effects of intracellular trehalose content on Streptomyces griseus spores. J Bacteriol 169: 4995–5001

    PubMed  CAS  Google Scholar 

  • McBridge MJ, Ensign JC (1987b) Metabolism of endogenous trehalose by Streptomyces griseus spores and by spores or cells of other Actinomycetes. J Bacteriol 169: 5002–5007

    Google Scholar 

  • McDougall J, Kaasen I, Strom AR (1993) A yeast gene for trehalose-6-phosphate synthase and its complementation of an Escherichia coil otsA mutant. FEMS Microbiol Lett 107: 25–30

    Article  PubMed  CAS  Google Scholar 

  • Merritt PP (1960) The effect of preparation on the stability and performance of frozen, unbaked, yeast-leavened doughs. Bakers Dig 34: 57

    Google Scholar 

  • Mittenbühler K, Holzer H (1988) Purification and characterization of acid trehalase from the yeast suc2 mutant. J Biol Chem 263: 8537–8543

    PubMed  Google Scholar 

  • Neves MJ, François J (1992) On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. Biochem J 288: 859–864

    PubMed  CAS  Google Scholar 

  • Neves MJ, Jorge JA, François JM, Terenzi HF (1991) Effects of heat shock on the level of trehalose and glycogen. and on the induction of thermotolerance in Neurospora crassa. FEBS Lett 283: 19–22

    Article  PubMed  CAS  Google Scholar 

  • Nikawa J, Cameron S, Toda T, Ferguson KW, Wigler M (1987) Rigorous feedback control of cAMP levels in Saccharomyces cerevisiae. Genes Dev 1: 931–937

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Uno K, Ohta S (1986) Selection of yeasts for breadmaking by the frozen dough method. Appt Environ Microbiol 52: 941–943

    CAS  Google Scholar 

  • Operti MS, Oliveira DE, Freitas-Valle AB, Oestreicher EG, Mattoon JR, Panek AD (1982) Relationships between trehalose metabolism and maltose utilization in Saccharomyces cerevisiae. Ill. Evidence for alternative pathways of trehalose synthesis. Curr Genet 5:69–76 Ortiz CH, Maia JCC, Tenan MN, Braz-Padrao GR, Mattoon JR, Panek AD (1983) Regulation of yeast trehalase by a monocyclic, cyclic AMP-dependent phosphorylation-dephosphorylation cascade system. J Bacteriol 153: 644–651

    Google Scholar 

  • Otting G, Liepinsh E, Wuthrick K (1991) Protein hydration in aqueous solution. Science 254: 974–980

    Article  PubMed  CAS  Google Scholar 

  • Padrao GRB, Malamud DR, Panek AD, Mattoon JR (1982) Regulation of energy metabolism in yeast. Inheritance of a pleiotropic mutation causing defects in metabolism of energy reserves, ethanol utilization and formation of cytochrome a.a3. Mol Gen Genet 185: 255261

    Google Scholar 

  • Panek AD (1963) Function of trehalose in baker’s yeast (Saccharomyces cerevisiae). Arch Biochem Biophys 100: 422–425

    Article  CAS  Google Scholar 

  • Panek AD, Bernardes EJ (1983) Trehalose: its role in germination of Saccharomyces cerevisiae. Curr Genet 7: 393–397

    Article  CAS  Google Scholar 

  • Panek AC, de Araujo PS, Neto VM, Panek AD (1987) Regulation of the trehalose-6-phosphate synthase complex in Saccharomyces. Curr Genet 11: 459–465

    Article  PubMed  CAS  Google Scholar 

  • Panek AD, Sampaio AL, Braz GC, Baker SJ, Mattoon JR (1980) Genetic and metabolic control of trehalose and glycogen synthesis. New relationships between energy reserves, catabolite repression and maltose utilization. Cell Mol Biol 25: 345–354

    Google Scholar 

  • Panek AD, Ferreira R. Panek AC (1989) Comparative studies between the glucose-induced phosphorylation signal and the heat shock response in mutants of Saccharomyces cerevisiae. Biochimie 71: 313–318

    CAS  Google Scholar 

  • Panek AC, Araujo PS, Poppe SC, Panek AD (1990) On the determination of trehalose-6-phosphate synthase in Saccharomyces. Biochem Int 21.695–704

    Google Scholar 

  • Pardo LA, Sanchez SM, Lazo PS, Ramos S (1991) In vitro activation of the Saccharomyces cerevisiae Ras/ adenylate cyclase system by glucose and some of its analogues. FEBS Lett 290: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Parry JM, Davies PJ, Evians WE (1976) The effects of “cell age” upon the lethal effects of physical and chemical mutagens in the yeast Saccharomyces cerevisiae. Mol Gen Genet 146: 27–35

    Article  PubMed  CAS  Google Scholar 

  • Paschoalin VMF, Costa-Carvalho VLA, Panek AD (1986) Further evidence for the alternative pathway of trehalose synthesis linked to maltose utilization in.Saccharomyces. Curr Genet 10: 725–731

    Article  PubMed  CAS  Google Scholar 

  • Paschoalin VMF, Silva JT, Panek AD (1989) Identification of an ADPG-dependent trehalose synthase in Saccharomyces. Curr Genet 16: 81–87

    Article  PubMed  CAS  Google Scholar 

  • Payen R (1949) Variation des teneurs en glycogène et en tréhalose pendant le séchage de la levure. Can J Res 27B: 749–756

    Article  Google Scholar 

  • Pillar TM, Bradshaw RE (1991) Heat shock and stationary phase induce transcription of the Saccharomyces cerevisiae iso-2-cytochrome c gene. Curr Genet 20: 185188

    Google Scholar 

  • Piper PW, Lockheart A (1988) A temperature-sensitive mutant of Saccharomyces cerevisiae defective in the specific phosphatase of trehalose biosynthesis. FEMS Microbiol Lett 49: 245–250

    Article  CAS  Google Scholar 

  • Plesset J, Ludwig JR, Cox BS, McLaughlin CS (1987) Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae. J Bacteriol 169: 779–784

    PubMed  CAS  Google Scholar 

  • Pollock GE, Holmstrom CD (1951) The trehalose content and the quality of active dry yeast. Cereal Chem 28: 498505

    Google Scholar 

  • Praekelt UM, Meacock PA (1990) HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Mol Gen Genet 223: 97–106

    Article  PubMed  CAS  Google Scholar 

  • Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Forster R, Warr RSC, Moore DJ, Stewart WDP (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Rev 39: 51–56

    Article  CAS  Google Scholar 

  • Reed SI (1992) The role of p34 kinases in the G1 to S-phase transition. Annu Rev Cell Biol 8: 529–561

    Article  PubMed  CAS  Google Scholar 

  • Rose M, Albig W, Entian KD (1991) Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinase-PI and hexokinase-PII. Eur J Biochem 199: 511–518

    Article  PubMed  CAS  Google Scholar 

  • Roser BJ (1991a) Trehalose drying: a novel replacement for freeze-drying. Biopharm 5: 44–53

    Google Scholar 

  • Roser BJ (1991b) Trehalose, a new approach to premium dried foods. Trends Food Sci Technol 2: 166–169

    Article  CAS  Google Scholar 

  • Roth R (1970) Carbohydrate accumulation during the sporulation of yeast. J Bacteriol 101: 53–57

    PubMed  CAS  Google Scholar 

  • Roth R, Sussman M (1968) Trehalose 6-phosphate synthetase (uridine diphosphate glucose: D-glucose 6-phosphate 1-glucosyltransferase) and its regulation during slime mold development. J Biol Chem 243: 5081–5087

    PubMed  CAS  Google Scholar 

  • Rothman-Denes LB, Cabib E (1970) Two forms of yeast glycogen synthetase and their role in glycogen accumulation. Proc Natl Acad Sci USA 66: 967–974

    Article  PubMed  CAS  Google Scholar 

  • Ruf J, Wacker H, James P, Maffia M, Seiler P, Galand G, von Kieckebusch A, Semenza G, Mantei N (1990) Rabbit small intestinal trehalase. Purification, cDNA cloning, expression, and verification of glycosylphosphatidylinositol anchoring. J Biol Chem 265: 15034–15039

    Google Scholar 

  • Sacktor B (1968) Trehalase and the transport of glucose in the mammalian kidney and intestine. Proc Natl Acad Sci USA 60: 1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Sacktor B, Berger SJ (1969) Formation of trehalose from glucose in the renal cortex. Biochem Biophys Res Commun 35: 796–800

    Article  PubMed  CAS  Google Scholar 

  • Saenger W (1989) Structure and dynamics of water surrounding biomolecules. Annu Rev Biophys Chem 16: 93114

    Google Scholar 

  • Sanchez Y, Lindquist SL (1990) HSP104 required for induced thermotolerance. Science 248: 1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Y, Taulien J, Borkovich KA, Lindquist S (1992) Hsp104 is required for tolerance to many forms of stress. EMBO J 11: 2357–2364

    PubMed  CAS  Google Scholar 

  • Schenberg-Frascino A, Moustacchi E (1972) Lethal and mutagenic effects of elevated temperature on haploid yeast. Mol Gen Genet 115: 243–257

    Article  PubMed  CAS  Google Scholar 

  • Semenza G (1981) Intestinal oligo-and disaccharidases. In: Randle PJ, Steiner DF, Whelan WJ (eds) Carbohydrate metabolism and its disorders, vol 3. Academic Press, London, pp 425–479

    Google Scholar 

  • Shin D-Y, Matsumoto K, Iida H, Uno 1, Ishikawa T (1987) Heat Shock Response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation. Mol Cell Biol 7: 244–250

    PubMed  CAS  Google Scholar 

  • Slade L, Levine H (1988) Non-equilibrium behavior of small carbohydrate-water systems. Pure Appl Chem 60: 1841–1864

    Article  CAS  Google Scholar 

  • Smith SE (1967) Carbohydrate translocation in orchid mycorrhizas. New Phytol 66: 371–378

    Article  CAS  Google Scholar 

  • Stewart LC, Richtmeyer NK, Hudson CS (1950) The preparation of trehalose from yeast. J Am Chem Soc 72: 2059–2061

    Article  CAS  Google Scholar 

  • Strom AR, Falkenberg P, Landfald B (1986) Genetics of osmoregulation in Escherichia coli: uptake and biosynthesis of organic osmolytes. FEMS Microbiol Rev 39: 7986

    Google Scholar 

  • Sugihara TF, Kline L (1986) Factors affecting the stability of frozen bread doughs. II. Prepared by the sponge and dough method. Bakers Dig 42: 51–54, 69

    Google Scholar 

  • Sumida M, Ogura S, Miyata S, Arai M, Murao S (1989) Purification and some properties of trehalase from Chaetomium aureum MS — 27. J Ferment Bioeng 67: 8386

    Article  Google Scholar 

  • Suomalainen H, Pfäffii S (1961) Changes in the carbohydrate reserves of baker’s yeast during growth and on standing. J Inst Brew 67: 249–254

    CAS  Google Scholar 

  • Sussman AS (1954) Changes in the permeabilty of ascospores of Neurospora tetrasperma during germination. J Gen Physiol 38: 59–77

    Article  PubMed  CAS  Google Scholar 

  • Sussman AS, Halvorson HO (1966) Spores. Their dor- mancy and germination. Harper & Row, New York

    Google Scholar 

  • Tanaka K, Matsumoto K, Toh-e A (1988) Dual regulation of the expression of the polyubiquitin gene by cyclic AMP and heat shock in yeast. EMBO J 7: 495–502

    PubMed  CAS  Google Scholar 

  • Tereshina VM, Polotebnova MV, Feofilova EP (1988) Trehalase activity of spores of the wild-type strain of Cunninghamella japonica and mutants with a reduced rate of trehalase synthesis. Microbiology 56: 587–592

    Google Scholar 

  • Thevelein JM (1984a) Cyclic-AMP content and trehalase activation in vegetative cells and ascospores of yeast. Arch Microbiol 138: 64–67

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM (1984b) Activation of trehalase by heat shock in yeast ascospores. Correlation with total cellular cyclic-AMP content. Curr Microbiol 10: 159–164

    Article  CAS  Google Scholar 

  • Thevelein JM (1984e) Regulation of trehalose mobilization in fungi. Microbiol Rev 48: 42–59

    PubMed  CAS  Google Scholar 

  • Thevelein JM (1988) Regulation of trehalase activity by phosphorylation-dephosphorylation during developmental transitions in fungi. Exp Mycol 12: 1–12

    Article  CAS  Google Scholar 

  • Thevelein JM (1991) Fermentable sugars and intracellular acidification as specific activators of the RAS adenylate cyclase signalling pathway in yeast — the relationship to nutrient induced cell cycle control. Mol Microbiol 5: 1301–1307

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM (1992) The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae. In: Grivell L (ed) Molecular biology of yeasts. Antonie Leeuwenhoek, J Microbiology 62: 109–130, Kluwer, Dordrecht

    Google Scholar 

  • Thevelein JM, Beullens M (1985) Cyclic AMP and the stimulation of trehalase activity in the yeast Saccharomyces cerevisiae by carbon sources, nitrogen sources and inhibitors of protein synthesis. J Gen Microbiol 131: 3199–3209

    PubMed  CAS  Google Scholar 

  • Thevelein JM, den Hollander JA, Shulman RG (1982) Changes in the activity and properties of trehalase during early germination of yeast ascospores: correlation with trehalose breakdown as studied by in vivo “C NMR. Proc Natl Acad Sci USA 79: 3503–3507

    Article  PubMed  CAS  Google Scholar 

  • Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M (1985) In yeast, Ras proteins are controlling elements of adenylate cyclase. Cell 40: 27–36

    Google Scholar 

  • Tripp ML, Paznokas JL (1982) Glucose-initiated germination of Mucor racemosus sporangiospores. J Gen Microbiol 128: 477–483

    PubMed  CAS  Google Scholar 

  • Trivedi NB, Jacobson G (1986) Recent advances in baker’s yeast. Prog Ind Microbiol 23: 45–71

    CAS  Google Scholar 

  • Uno I, Matsumoto K, Adachi K, Ishikawa T (1983) Genetic and biochemical evidence that trehalase is a substrate of cAMP-dependent protein kinase in yeast. J Biol Chem 258: 10867–10872

    PubMed  CAS  Google Scholar 

  • Van Aelst L, Boy-Marcotte E, Camonis JH. Thevelein JM, Jacquet M (1990) the C-terminal part of the CDC25 gene product plays a key role in signal transduction in the glucose-induced modulation of cAMP level in Saccharomyces cerevisiae. Eur J Biochem 193: 675–680

    Google Scholar 

  • Van Aelst L, Hohmann S, Zimmermann FK, Jans AWH, Thevelein JM (1991) A yeast homologue of the bovine lens fibre MIP gene family complements the growth defect of a Saccharomyces cerevisiae mutant on fermentable sugars but not its defect in glucose-induced RAS-mediated cAMP signalling. EMBO J 10: 2095–2104

    PubMed  Google Scholar 

  • Van Aelst L, Hohmann S, Bulaya B, De Koning W, Sierkstra L, Neves MJ, Luyten K, Alijo R, Ramos J, Coccetti P, Martegani E, de Magalhäes-Rocha NM, Brandäo RL, Van Dijck P, Vanhalewyn M, Durnez P, Jans AWH, Thevelein JM (1993) Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae. Mol Microbial 8: 927–943

    Article  Google Scholar 

  • van de Poll KW, Schamhart DHJ (1977) Characterization of a regulatory mutant of fructose-l,6-diphosphatase in Saccharomyces carlsbergensis. Mol Gen Genet 154: 6166

    Article  Google Scholar 

  • Vandercammen A, François J, Hers H-G (1989) Characterization of trehalose-6-phosphate synthetase and trehalose-6-phosphate phosphatase of Saccharomyces cerevisiae. Eur J Biochem 182: 613–620

    Article  PubMed  CAS  Google Scholar 

  • Van der Plaat JB (1974) Cyclic 3’,5’-adenosine monophosphate stimulates trehalose degradation in backers’ yeast. Biochem Biophys Res Commun 56: 580–587

    Article  PubMed  Google Scholar 

  • Van Dijck P, Colarizzon D, Smet P. Theelein JM (1995) Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appt Environm Microbiol 61: 109–115

    Google Scholar 

  • Van Doorn J, Scholte ME, Postma PW, van Driel R, van Dam K (1988a) Regulation of trehalase activity during the cell cycle of Saccharomyces cerevisiae. J Gen Microbiol 134: 785–790

    PubMed  Google Scholar 

  • Van Doom J, Valkenburg JAC, Scholte ME, Oehlen LJ, van Driel R, Postma PW, Nanninga N, van Dam K (1988b) Changes in activities of several enzymes involved in carbohydrate metabolism during the cell cycle of Saccharomyces cerevisiae. J Bacterial 170: 4808–4815

    Google Scholar 

  • Vanhalewyn M, Thevelein JM (1992) Lcrl a mutation in the yeast adenylate cyclase gene. Yeast 8(Spec Iss):S391

    Google Scholar 

  • Van Laere AJ (1986a) Biochemistry of spore germination in Phycomyces. FEMS Microbiol Rev 32: 189–198

    Google Scholar 

  • Van Laere AJ (1986b) Resistance of germinating Phycomyces spores to desiccation, freezing, and acids. FEMS Microbiol Ecol 38: 251–256

    Article  Google Scholar 

  • Van Laere AJ (1989) Trehalose, reserve or stress metabolite. FEMS Microbiol Rev 63: 201–210

    Google Scholar 

  • Van Laere A, Slegers LK (1987) Trehalose breakdown in germinating spores of Mucor rouxii. FEMS Microbiol Lett 41: 247–252

    Article  Google Scholar 

  • Van Laere A, François A, Overloop K, Verbeke M, Van Gerven L (1987) Relation between germination, trehalose and the status of water in Phycomyces blakeslceanus spores as measured by proton-NMR. J Gen Microbiol 133: 239–245

    Google Scholar 

  • Van Mulders RM, Van Laere AJ (1984) Cyclic AMP, trehalase and germination of Phycomyces hlakesleeanus spores. J Gen Microbial 130: 541–547

    Google Scholar 

  • Vicente-Soler J, Arguelles JC, Gacto M (1989) Presence of two trehalose-6-phosphate synthase enzymes in Candida utilis. FEMS Microbial Lett 61: 273–278

    Article  CAS  Google Scholar 

  • Vicente-Soler J. Arguelles JC, Gacto M (1991) Proteolytic activation of a,a-trehalose 6-phosphate synthase in Candida utilis. FEMS Microbial Lett 82: 157–161

    Google Scholar 

  • Von Meyenburg HK (1969) Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth. Arch Mikrobiol 66: 289–303

    Article  Google Scholar 

  • Vuorio O, Londesborough J. Kalkkinen N (1992) Trehalose synthase: purification of the intact enzyme and cloning of the structural genes. Yeast 8 (Spec Iss): S626

    Google Scholar 

  • Walton EF, Carter BLA, Pringle JR (1979) An enrichment method for temperature-sensitive and auxotrophic mutants of yeast. Mol Gen Genet 171: 111–114

    Article  Google Scholar 

  • Werner-Washburne M, Becker J, Kosic-Smithers J, Craig EA (1989) Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J Bacterial 171: 26802688

    Google Scholar 

  • Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Anionic Leeuwenhock 58: 209–217

    Article  CAS  Google Scholar 

  • Wieser R, Adam G, Wagner A, Schuller C, Marchler G, Ruis H, Krawiec Z, Bilinski T (1991) Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase-T of Saccharomyces cerevisiae. J Biol Chem 266: 12406–12411

    PubMed  CAS  Google Scholar 

  • Winkler K, Kienle I, Burgert M. Wagner JC, Holzer H (1991) Metabolic regulation of the trehalose content of vegetative yeast. FEBM Lett 291: 269–272

    Article  CAS  Google Scholar 

  • Yost HJ, Lindquist S (1991) Heat shock proteins affect RNA processing during the heat shock response of Saccharomyces cerevisiae. Mol Cell Biol 11: 1062–1068

    PubMed  CAS  Google Scholar 

  • Zevenhuizen LPTM (1992) Levels of trehalose and glycogen in Athrohacterglohiformis under conditions of nutrient starvation and osmotic stress. Anfonie Leeuwenhoek 61: 61–68

    Article  CAS  Google Scholar 

  • Zikmanis PB, Laivenieks MG, Auzinya LP, Kulaev IS, Beker ME (1985) Relationship between the content of high-molecular-weight polyphosphates and trehalose and viability of populations following dehydratation of the yeast Saccharomyces cerevisiae. Microbiology 54: 326–330

    Google Scholar 

  • Zikmanis PB, Kruche RV, Auzinya LP, Margevicha MV, Becker E (1988) Distribution of trehalose between dehydrated Saccharomyces cerevisiae cells and the rehydratation medium. Microbiology 57: 414–416

    Google Scholar 

  • Zimmermann ALS, Terenzi HF, Jorge JA (1990) Purification and properties of an extracellular conidial trehalase from Humicola grisea Var Thermoidea. Biochim Biophys Acta 1036: 41–46

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thevelein, J.M. (1996). Regulation of Trehalose Metabolism and Its Relevance to cell Growth and Function. In: Brambl, R., Marzluf, G.A. (eds) Biochemistry and Molecular Biology. The Mycota, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10367-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10367-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10369-2

  • Online ISBN: 978-3-662-10367-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics