Skip to main content

An Overview of Survival Strategies of Psychrophiles and Their Applications

  • Chapter
  • First Online:
Survival Strategies in Cold-adapted Microorganisms

Abstract

Psychrophiles are capable of surviving under extreme cold conditions, subzero temperatures. They have adapted various mechanisms like altered membrane fluidity, antifreeze proteins, cold shock proteins, chaperones, trehalose, exopolysaccharides, synthesis of carotenoid pigments, production of ice nucleating proteins, decreased flagellar motility, etc. Psychrophiles mainly find their application in environmental bioremediation, in preventing food spoilage, as cell factories for production of various enzymes, and also in degradation of oil spills in oceans. They have proved to be a boon for the agriculture due to their plant growth-promoting properties at low temperatures. Development of microbial consortium and genetic engineering may be fruitful in the coming future in plant biotechnology. This chapter describes the cold tolerance mechanisms in psychrophilic microorganisms and the application of such microbes in different industrial sectors and agriculture. We also included the gaps and overcome strategies in the agriculture application of cold-tolerant microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F, Horikoshi K (2001) The biotechnological potential of piezophiles. Trends Biotechnol 19:102–108

    CAS  PubMed  Google Scholar 

  • Aertsen A, Meersman F, Hendrick MEG, Vogel RF, Michiels CW (2009) Biotechnology under high pressure: applications and implications. Trends Biotechnol 27:434–441

    CAS  PubMed  Google Scholar 

  • Ajar NY, Priyanka V, Vinod K, Shashwati GS, Anil KS (2017) Extreme cold environments: a suitable niche for selection of novel Psychrotrophic microbes for biotechnological applications. Adv Biotech Micro 2(2):555584

    Google Scholar 

  • Amend JP, Rogers KL, Shock EL, Gurrieri S, Inguaggiato S (2003) Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology 1:37–58

    CAS  Google Scholar 

  • Araújo R, Silva C, Machado R, Casal M, Cunha AM, Rodriguez-Cabello JC, Cavaco-Paulo A (2009) Proteolytic enzyme engineering: a tool for wool. Biomacromolecules 10(6):1655–1661

    PubMed  Google Scholar 

  • Atkins PW, Locke JW (2004) Physical chemistry, 7th edn. Oxford University Press, Oxford

    Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    CAS  PubMed  Google Scholar 

  • Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595:367–381

    CAS  PubMed  Google Scholar 

  • Benforte FC, Colonnella MA, Ricardi MM, Solar Venero EC, Lizarraga L, López NI, Tribelli PM (2018) Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis. PLoS One 13(2):e0192559

    PubMed  PubMed Central  Google Scholar 

  • Bergholz PW, Bakermans C, Tiedje JM (2009) Psychrobacter arcticus 273-4 uses resource efficiency and molecular motion adaptations for subzero temperature growth. J Bacteriol 191:2340–2352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berry ED, Foegeding PM (1997) Cold temperature adaptation and growth of microorganisms. J Food Prot 60(12):1583–1594

    PubMed  Google Scholar 

  • Cavicchioli R (2006) Cold-adapted archaea. Nat Rev Microbiol 4:331–343

    CAS  PubMed  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. J Microbial Biotechnol 4(4):449–460

    CAS  Google Scholar 

  • Collins RE, Deming JW (2013) An inter-order horizontal gene transfer event enables the catabolism of compatible solutes by Colwellia psychrerythraea 34H. Extremophiles 17:601–610

    CAS  PubMed  PubMed Central  Google Scholar 

  • D'Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7(4):385–389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dartnell L (2007) Extremophiles. In: Dartnell L (ed) Life in the universe: a beginner’s guide. Oneworld Publications, Cambridge

    Google Scholar 

  • Das Sarma, S. (2002). Arora P. Halophiles, encyclopedia of life sciences; Nature Publishing Group: London

    Google Scholar 

  • Das Sarma S (2006) Extreme halophiles are models for astrobiology. Microbe 1:120–126

    Google Scholar 

  • De Maayer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15(5):508–517

    PubMed  PubMed Central  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    CAS  PubMed  Google Scholar 

  • Desbruyères FD, Almeida A, Biscoito M, Comtet T, Khripounoff A, Le Bris N, Sarradin PM, Segonzac M (2000) A review of the distribution of hydrothermal vent communities along the northern mid-Atlantic ridge: dispersal vs. environmental controls. Hydrobiologia 440:201–216

    Google Scholar 

  • Divya K, Naga PP (2015) Psychrophilic yeast isolates for cold-active lipase production. Int J Sci Progr Res 10(2):93–97

    Google Scholar 

  • Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL (2004) Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30(3):322–328

    Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1(3):200–208

    CAS  PubMed  Google Scholar 

  • Gareeb AP, Setati ME (2009) Assessment of alkaliphilic haloarchaeal diversity in Sua pan evaporator ponds in Botswana. Afr J Biotechnol 8:259–267

    CAS  Google Scholar 

  • Ghobakhlou AF, Johnston A, Harris L, Antoun H, Laberge S (2015) Microarray transcriptional profiling of Arctic Mesorhizobium strain N33 at low temperature provides insights into cold adaption strategies. BMC Genomics 16:383

    PubMed  PubMed Central  Google Scholar 

  • Gilbert JA, Hill PJ, Dodd C, Laybourn-Parry J (2004) Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150(Pt 1):171–180

    CAS  PubMed  Google Scholar 

  • Goldstein J, Pollitt NS, Inouye M (1990) Major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A 87(1):283–287. https://doi.org/10.1073/pnas.87.1.283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodchild A, Saunders NFW, Ertan H, Raftery M, Guilhaus M, Curmi PMG, Cavicchioli R (2004) A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoi desburtonii. Mol Microbiol 53:309–321

    CAS  PubMed  Google Scholar 

  • Grant WD (2003) Alkaline environments and biodiversity. In: Gerdsy C, Glansdorff N (eds) Extremophiles: basic concepts. Encyclopedia of Life Support Systems, Paris

    Google Scholar 

  • Guan Z, Tian B, Perfumo A, Goldfine H (2013) The polar lipids of Clostridium psychrophilum, an aenaerobic psychrophile. Biochem Biophys Acta 1831:1108–1112

    CAS  PubMed  Google Scholar 

  • Hickey DA, Singer GA (2004) Genomic and proteomic adaptations to growth at high temperature. Genome Biol 5:117.1–117.7

    Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 1999(63):735–750

    Google Scholar 

  • Horikoshi K (2006) Alkaliphiles: genetic properties and applications of enzymes. Springer, Berlin

    Google Scholar 

  • Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156. https://doi.org/10.1128/MMBR.00016-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenicke R (1996) Stability and folding of ultrastable proteins: eye lens crystallins and enzymes from thermophiles. FASEB J 10:84–92

    CAS  PubMed  Google Scholar 

  • Jia Z, Davies PL (2002) Antifreeze proteins: an unusual receptor-ligand interaction. Trends Biochem Sci 27(2):101–106

    CAS  PubMed  Google Scholar 

  • Jung YH, Yi JY, Jung HJ, Lee YK, Lee HK, Naicker MC, Uh JH, Jo IS, Jung EJ, Im H (2010) Overexpression of cold shock protein a of Psychromonas arctica KOPRI 22215 confers cold-resistance. Protein J 29(2):136–142

    CAS  PubMed  Google Scholar 

  • Kotelnikova S (2002) Microbial production and oxidation of methane in deep subsurface. Earth Sci Rev 58:367–395

    CAS  Google Scholar 

  • Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep-Sea Res I 49:2163–2181

    CAS  Google Scholar 

  • Krulwich TA, Ito M, Hicks DB, Gilmour R, Guffanti AA (1998) pH homeostasis and ATP synthesis: studies of two processes that necessitate inward proton translocation in extremely alkaliphilic Bacillus species. Extremophiles 2:217–222

    CAS  PubMed  Google Scholar 

  • Kumar S, Nussinov R (2001) How do thermophilic proteins deal with heat? Cell Mol Life Sci 58:1216–1233

    CAS  PubMed  Google Scholar 

  • Lim J, Thomas T, Cavicchioli R (2000) Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcoides burtonii. J Mol Biol 297:553–556

    CAS  PubMed  Google Scholar 

  • Litchfield CD, Gillevet PM (2002) Microbial diversity and complexity in hypersaline environments: a preliminary assessment. J Ind Microbiol Biotechnol 28:48–55

    CAS  PubMed  Google Scholar 

  • Madern D, Ebel C, Zaccai G (2006) Halophilic adaptation of enzymes. Extremophiles 2000(4):91–98

    Google Scholar 

  • Mahdieh H, Moghaddam S, Soltani J (2014) Psychrophilic endophytic fungi with biological activity inhabit Cupressaceae plant family. Symbiosis 63:79–86

    Google Scholar 

  • Margesin R, Schinner F, Marx JC, Gerday C (2008) Psychrophiles: from biodiversity to biotechnology. Springer, New York

    Google Scholar 

  • Marguet E, Forterre P (1998) Protection of DNA by salts against thermodegradation at temperatures typical for hyperthermophiles. Extremophiles 2:115–122

    CAS  PubMed  Google Scholar 

  • Martins RF, Davids W, Al-Sond WA, Levander F, Radström P, Hatti-Kaul R (2001) Starch-hydrolyzing bacteria from Ethiopian soda lakes. Extremophiles 5:135–144

    CAS  PubMed  Google Scholar 

  • Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A 102(31):10913–10918. https://doi.org/10.1073/pnas.0504766102. Epub 2005 Jul 25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mezzina MP, Pettinari MJ (2016) Phasins multifaceted polyhydroxyalkanoate granule-associated proteins. Appl Environ Microbiol 82:5060–5067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michael T, Madigan M, Orent A (1999) Thermophilic and halophilic extremophiles. Curr Opin Microbiol 2:265–269

    Google Scholar 

  • Middleton AJ, Marshall CB, Faucher F, Bar-Dolev M, Braslavsky I, Campbel, l R. L., et al. (2012) Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. J Mol Biol 416:713–724. https://doi.org/10.1016/j.jmb.2012.01.032

    Article  CAS  PubMed  Google Scholar 

  • Mocali S, Chiellini C, Fabiani A, Decuzzi S, Pascale D, Parrilli E, Tutino ML, Perrin E, Bosi E, Fondi M et al (2017) Ecology of cold environments: new insights of bacterial metabolic adaptation through an integrated genomic-phenomic approach. Sci Rep 7:839

    PubMed  PubMed Central  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morozkina EV, Slutskaya ES, Fedorova TV, Tugay TI, Golubeva LI, Koroleva OV (2010) Extremophilic microorganisms: biochemical adaptation and biotechnological application. Appl Biochem Microbiol 46:1–14

    CAS  Google Scholar 

  • Muryoi N, Sato M, Kaneko S, Kawahara H, Obata H, Yaish MW, Griffith M, Glick BR (2004) Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium pseudomonas putida GR12-2. J Bacteriol 186(17):5661–5671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mykytczuk NCS, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG (2013) Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7:1211–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mykytczuk NCS, Lawrence JR, Omelon CR, Southam G, Whyte LG (2016) Microscopic characterization of the bacterial cell envelope of Planococcus halocryophilus Or1 during subzero growth at −15 °C. Polar Biol 39:701–712

    Google Scholar 

  • Nakagawa S, Takai K (2006) The isolation of thermophiles from deep-sea hydrothermal environments. In: Rainey FA, Oren A (eds) Methods in microbiology: extremophiles. Elsevier, New York

    Google Scholar 

  • Nakasone K, Ikegami A, Kato C, Usami R, Horikoshi K (1998) Mechanisms of gene expression controlled by pressure in deep-sea microorganisms. Extremophiles 2:149–154

    CAS  PubMed  Google Scholar 

  • Nichols, C. A., Guezennec, J., & Bowman, J. P. (2005a). Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Marine biotechnology Springer, New York, 7(4), 253–271

    Google Scholar 

  • Nichols CM, Lardiere SG, Bowman JP, Nichols PD, Gibson JAE, Guezennec J (2005b) Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49:578–589

    CAS  PubMed  Google Scholar 

  • Nichols D, Miller MR, Davies NW, Goodchild A, Raftery M, Cavicchioli R (2004) Cold adaptation in the Antarctic archaeon, Methanococcoides burtonii, involves membrane lipid unsaturation. J Bacteriol 186:8508–8515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nunn BL, Slattery KV, Cameron KA, Timmins-Schiffman E, Junge K (2015) Proteomics of Colwellia psychrerythraea at subzero temperatures—a life with limited movement, flexible membranes and vital DNA repair. Environ Microbiol 17:2319–2335

    CAS  PubMed  Google Scholar 

  • Ogata K, Yoshida N, Ohsugi M, Tani Y (1971) Studies on antibiotics produced by psychrophilic microorganisms. Agric Biol Chem 35(1):79–85

    CAS  Google Scholar 

  • Oren A (2004) Adaptation of halophilic archaea to life at high salt concentrations. In: Lauchli A, Luttge U (eds) Salinity: environment—plants—molecules. Springer, Dordrecht

    Google Scholar 

  • Pedersen K, Nilsson E, Arlinger J, Hallbeck L, O’Neill A (2004) Distribution, diversity and activity of microorganisms in the hyper-alkaline spring waters of Maqarin in Jordan. Extremophiles 8:151–164

    CAS  PubMed  Google Scholar 

  • Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136

    CAS  PubMed  Google Scholar 

  • Ramana KV, Singh L, Dhaked RK (2000) Biotechnological application of psychrophiles and their habitat to low temperature. J Sci Ind Res 59:87–101

    CAS  Google Scholar 

  • Rampelotto PH (2013) Extremophiles and extreme environments. Life (Basel, Switzerland) 3(3):482–485. https://doi.org/10.3390/life3030482

    Article  Google Scholar 

  • Rodrigues DF, Jesus EC, Ayala-del-Río HL, Pellizari VH, Gilichinsky D, Sepulveda-Torres L, Tiedje JM (2009) Biogeography of two cold-adapted genera: psychrobacter and exiguobacterium. ISME J 3:658–665

    CAS  PubMed  Google Scholar 

  • Rohwerder T, Sand W (2007) Oxidation of inorganic sulfur compounds in acidophilic prokaryotes. Eng Life Sci 7:301–309

    CAS  Google Scholar 

  • Ronholm J, Raymond-Bouchard I, Creskey M, Cyr T, Cloutis EA, Whyte LG (2015) Characterizing the surface-exposed proteome of Planococcus halocryophilus during cryophilic growth. Extremophiles 19:619–629

    CAS  PubMed  Google Scholar 

  • Rothschild L (2007) Extremophiles: defining the envelope for the search for life in the universe. In: Pudritz R, Higgs P, Stone J (eds) Planetary systems and the origins of life. Cambridge University Press, Cambridge

    Google Scholar 

  • Russell NJ, Evans RI, terSteeg PF, Hellemons J, Verheul A, Abee T (1995) Membranes as a target for stress adaption. Int J Food Microbiol 28:255–261

    CAS  PubMed  Google Scholar 

  • Salwan R, Sharma V (2020) Physiological and biotechnological aspects of extremophiles. Academic Press, London, pp 13–22

    Google Scholar 

  • Satyanarayana T, Raghukumar C, Shivaji S (2005) Extremophilic microbes: diversity and perspectives. Curr Sci 89:78–90

    Google Scholar 

  • Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk HP, Zillig W (1995) Picrophilus gen. nov. fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177:7050–7059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Scott JH, Cody GD, Fogel ML, Hazen RM, Hemley RJ, Huntress WT (2002) Microbial activity at gigapascal pressures. Science 295:1514–1516

    CAS  PubMed  Google Scholar 

  • Shukla L, Suman A, Yadav AN, Verma P, Saxena AK (2016) Syntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment. J Appl Biol Biotechnol 4(2):30–37

    CAS  Google Scholar 

  • Souza TV, Araujo JN, da Silva VM, Liberato MV, Pimentel AC, Alvarez TM, Squina FM, Garcia W (2015) Chemical stability of a cold-active cellulase with high tolerance toward surfactants and chaotropic agent. Biotechnol Rep 9:1–8

    Google Scholar 

  • Takai K, Moser DP, DeFlaun M, Onstott TC, Fredrickson JK (2001) Archaeal diversity in waters from deep south African gold mines. Appl Environ Microbiol 67:5750–5760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas-Keprta KL, Wentworth SJ, McKay DS, Taunton AE, Allen CC, Romanek CS, Gibson EK (1997) Subsurface terrestrial microfossils from Columbia River basalt samples: analogs of features in Martian meteorite Allan Hills 84001. Meteorit Planet Sci 32:128–129

    Google Scholar 

  • Tribelli PM, López NI (2018) Reporting key features in cold-adapted bacteria. Life (Basel, Switzerland) 8(1):8

    Google Scholar 

  • Ulrih NP, Gmajner D, Raspor P (2009) Structural and physicochemical properties of polar lipids from thermophilic archaea. Appl Microbiol Biotechnol 84:249–260

    CAS  PubMed  Google Scholar 

  • Watson K, Arthur H, Morton H (1978) Thermal adaptation in yeast: obligate psychrophiles are obligate aerobes, and obligate thermophiles are facultative anaerobes. J Bacteriol 136(2):815–817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson SL, Kelley DL, Walker VK (2006) Ice-active characteristics of soil bacteria selected by ice-affinity. Environ Microbiol 8(10):1816–1824

    CAS  PubMed  Google Scholar 

  • Xu Y, Nogi Y, Kato C, Liang Z, Ruger HJ, De Kegel D, Glansdorff N (2003) Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol 53:533–538

    CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119(6):683–693

    CAS  PubMed  Google Scholar 

  • Yadav AN, Verma P, Sachan S, Kaushik R, Saxena AK (2015b) Mitigation of cold stress for growth and yield of wheat (Triticum aestivum L.) by psychrotrophic pseudomonads from cold deserts of Indian Himalayas. In: Proceeding of 56th AMI and international symposium on emerging discoveries in microbiology

    Google Scholar 

  • Yamagishi A, Kawaguchi Y, Hashimoto H, Yano H, Imai E, Kodaira S et al (2018) Environmental data and survival data of Deinococcus aetherius from the exposure facility of the Japan experimental module of the international space station obtained by the Tanpopo mission. Astrobiology 18:1369–1374. https://doi.org/10.1089/ast.2017.1751

    Article  PubMed  Google Scholar 

  • Yayanos AA (1995) Microbiology to 10,500 meters in the deep-sea. Annu Rev Microbiol 49:777–805

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S., Chaturvedi, U., Sharma, K., Vaishnav, A., Singh, H.B. (2022). An Overview of Survival Strategies of Psychrophiles and Their Applications. In: Goel, R., Soni, R., Suyal, D.C., Khan, M. (eds) Survival Strategies in Cold-adapted Microorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-16-2625-8_6

Download citation

Publish with us

Policies and ethics