Skip to main content
Log in

Extended singular spectrum analysis for processing incomplete heterogeneous geodetic time series

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The singular spectrum analysis (SSA) is a powerful tool to de-noise the geodetic time series and extract geophysical signals of interest. However, when missing data exists in geodetic time series, the ordinary SSA cannot be directly used to process them. Moreover, the heterogeneous properties of the geodetic time series are usually not considered in ordinary SSA, though their formal errors are provided beforehand. In this contribution, we develop an extended singular spectrum analysis (ESSA) to directly process the incomplete and heterogeneous geodetic time series. To validate the proposed approach, we select the 27 vertical position time series of GNSS permanent stations located in the Chinese mainland for analysis, and the results are compared with that of the improved SSA (ISSA, Shen et al. in Nonlinear Process Geophys 22(4):371–376, 2015) which is an effective approach for analyzing the time series with missing data. The results show that (i) our ESSA method performs faster than ISSA, with mean reductions in computation time by 40.14% for 27 stations; moreover, the time consumption of ISSA is more sensitive to the window size and the length of observations than that of ESSA; (ii) the ESSA method can extract more signals than ISSA in terms of fitting errors and root-mean-square ratios of extracted signals over residuals, specifically for the consideration of formal errors. The power spectrum analysis shows that the power of annual oscillation extracted by ESSA is stronger than that by ISSA; (iii) the repeated simulations based on the real data further demonstrate that the signals extracted by ESSA are closer to the true signals than ISSA, and the accuracy improvement is portal to the percentage of data missing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated and analyzed as well as the code of the proposed method during the study are accessible via https://github.com/JKP1575540259/ESSA_JG.

References

  • Alothman AO, Bos M, Fernandes R, Radwan AM, Rashwan M (2020) Annual sea level variations in the Red Sea observed using GNSS. Geophys J Int 221(2):826–834

    Article  Google Scholar 

  • Amiri-Simkooei AR (2016) Non-negative least-squares variance component estimation with application to GPS time series. J Geod 90(5):451–466

    Article  Google Scholar 

  • Amiri-Simkooei AR, Tiberius C, Teunissen PJG (2007) Assessment of noise in GPS coordinate time series: methodology and results. J Geophys Res Solid Earth 112:B07413. https://doi.org/10.1029/2006JB004913

    Article  Google Scholar 

  • Argus DF, Peltier WR, Drummond R, Moore AW (2014) The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys J Int 198(1):537–563

    Article  Google Scholar 

  • Bao Z, Chang G, Zhang L, Chen G, Zhang S (2021) Filling missing values of multi-station GNSS coordinate time series based on matrix completion. Measurement 183:109862

    Article  Google Scholar 

  • Bloßfeld M, Rudenko S, Kehm A et al (2018) Consistent estimation of geodetic parameters from SLR satellite constellation measurements. J Geod 92:1003–1021

    Article  Google Scholar 

  • Bos MS, Fernandes RMS, Williams SDP, Bastos L (2013) Fast error analysis of continuous GNSS observations with missing data. J Geod 87(4):351–360

    Article  Google Scholar 

  • Bos MS, Montillet JP, Williams SDP, Fernandes RMS (2020) Introduction to geodetic time series analysis. In: Montillet JP, Bos M (eds) Geodetic time series analysis in earth sciences. Springer geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-21718-1_2

    Chapter  Google Scholar 

  • Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Phys D 20(2–3):217–236

    Article  Google Scholar 

  • Chen Q, van Dam T, Sneeuw N, Collilieux X, Weigelt M, Rebischung P (2013) Singular spectrum analysis for modeling seasonal signals from GPS time series. J Geodyn 72:25–35

    Article  Google Scholar 

  • Chen Q, Poropat L, Zhang L, Dobslaw H, Weigelt M, Van Dam T (2018) Validation of the EGSIEM GRACE gravity fields using GNSS coordinate timeseries and in-situ ocean bottom pressure records. Remote Sens 10(12):1976

    Article  Google Scholar 

  • Chen B, Bian J, Ding K, Wu H, Li H (2020) Extracting seasonal signals in GNSS coordinate time series via weighted nuclear norm minimization. Remote Sens 12(12):2027

    Article  Google Scholar 

  • Davis JL, Wernicke BP, Tamisiea ME (2012) On seasonal signals in geodetic time series. J Geophys Res Solid Earth 117:B01403

    Article  Google Scholar 

  • Deng L, Jiang W, Li Z, Chen H, Wang K, Ma Y (2017) Assessment of second-and third-order ionospheric effects on regional networks: case study in China with longer CMONOC GPS coordinate time series. J Geod 91(2):207–227

    Article  Google Scholar 

  • Devi SG, Selvam K, Rajagopalan SP (2011) An abstract to calculate big o factors of time and space complexity of machine code. In: Proceedings of the international conference SEISCON, July, pp 844–847. https://doi.org/10.1049/cp.2011.0483

  • Didova O, Gunter B, Riva R, Klees R, Roese-Koerner L (2016) An approach for estimating time-variable rates from geodetic time series. J Geod 90(11):1207–1221

    Article  Google Scholar 

  • Ding H, Xu X, Pan Y, Jiang W, van Dam T (2020) A time-varying 3-D displacement model of the ~ 5.9-year westward motion and its applications for the global navigation satellite system positions and velocities. J Geophys Res Solid Earth. 125(4):e2019JB018804

    Article  Google Scholar 

  • Dong D, Fang P, Bock Y, Webb Y, Prawirodirdjo L, Kedar S, Jamason P (2006) Spatiotemporal filtering using principal component analysis and Karhunen–Loeve expansion approaches for regional GPS network analysis. J Geophys Res Solid Earth 111:3405–3421

    Article  Google Scholar 

  • Fang J, He M, Luan W, Jiao J (2021) Crustal vertical deformation of Amazon Basin derived from GPS and GRACE/GFO data over past two decades. Geod Geodyn 12(6):441–450

    Article  Google Scholar 

  • Figueiredo M, Almeida A, Ribeiro B (2011) Wavelet decomposition and singular spectrum analysis for electrical signal denoising. IEEE Int Conf Syst 32(14):3329–3334

    Google Scholar 

  • Fu Y, Argus DF, Landerer FW (2015) GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon. J Geophys Res Solid Earth 120(1):552–566

    Article  Google Scholar 

  • Ghaderpour E, Pagiatakis SD (2019) LSWAVE: A MATLAB software for the least-squares wavelet and cross-wavelet analyses. GPS Solut 23(2):1–8

    Article  Google Scholar 

  • Gillard JW, Zhigljavsky A (2016) Weighted norms in subspace-based methods for time series analysis. Numer Linear Algebr Appl 235:947–967

    Article  Google Scholar 

  • Golyandina N (2010) On the choice of parameters in singular spectrum analysis and related subspace-based methods. Stat Interface 3(3):259–279

    Article  Google Scholar 

  • Golyandina N, Zhigljavsky A (2013) Singular spectrum analysis for time series. Springer briefs in statistics. Springer

    Google Scholar 

  • Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time-series structure: SSA and related techniques. Chapman & Hall/CRC

    Book  Google Scholar 

  • Goudarzi MA, Cocard M, Santerre R (2013) GPS interactive time series analysis software. GPS Solut 17(4):595–603

    Article  Google Scholar 

  • Gruszczynska M, Klos A, Gruszczynski M, Bogusz J (2016) Investigation of time-changeable seasonal components in the GPS height time series: a case study for Central Europe. Acta Geodyn Geomater 13(3):281–289

    Google Scholar 

  • Gruszczynska M, Klos A, Rosat S, Bogusz J (2017) Deriving common seasonal signals in GPS position time series: by using multichannel singular spectrum analysis. Acta Geodyn Geomater 14(3):267–278

    Google Scholar 

  • Guo J, Shi K, Liu X, Sun Y, Li W, Kong Q (2019) Singular spectrum analysis of ionospheric anomalies preceding great earthquakes: case studies of Kaikoura and Fukushima earthquakes. J Geodyn 124:1–13

    Article  Google Scholar 

  • He X, Bos MS, Montillet JP, Fernandes RMS (2019) Investigation of the noise properties at low frequencies in long GNSS time series. J Geod 93(9):1271–1282

    Article  Google Scholar 

  • Ji K, Shen Y (2020) A wavelet-based outlier detection and noise component analysis for GNSS position time series. In: Freymueller JT, Sánchez L (eds) Beyond 100: The next century in geodesy. International association of geodesy symposia, vol 152. Springer, Cham. https://doi.org/10.1007/1345_2020_106

    Chapter  Google Scholar 

  • Ji K, Shen Y, Wang F (2020) Signal extraction from GNSS position time series using weighted wavelet analysis. Remote Sens 12(6):992

    Article  Google Scholar 

  • Jiang W, Li Z, van Dam T, Ding W (2013) Comparative analysis of different environmental loading methods and their impacts on the GPS height time series. J Geod 87(7):687–703

    Article  Google Scholar 

  • Jiang W, Ma J, Li Z, Zhou X, Zhou B (2018) Effect of removing the common mode errors on linear regression analysis of noise amplitudes in position time series of a regional GPS network & a case study of GPS stations in Southern California. Adv Space Res 61(10):2521–2530

    Article  Google Scholar 

  • Jiang Z, Hsu YJ, Yuan L, Yang X, Ding Y, Tang M, Chen C (2021a) Characterizing spatiotemporal patterns of terrestrial water storage variations using GNSS vertical data in Sichuan, China. J Geophys Res Solid Earth 126(12):e2021JB022398

    Article  Google Scholar 

  • Jiang Z, Hsu YJ, Yuan L, Huang D (2021b) Monitoring time-varying terrestrial water storage changes using daily GNSS measurements in Yunnan, southwest China. Remote Sens Environ 254:112249

    Article  Google Scholar 

  • Khazraei SM, Amiri-Simkooei AR (2019) On the application of Monte Carlo singular spectrum analysis to GPS position time series. J Geod 93(9):1401–1418

    Article  Google Scholar 

  • King NE, Argus D, Langbein J, et al (2007). Space geodetic observation of expansion of the San Gabriel Valley, California, aquifer system, during heavy rainfall in winter 2004–2005. J Geophys Res Solid Earth 112(B3):B03409

    Google Scholar 

  • Klos A, Bos MS, Bogusz J (2018a) Detecting time-varying seasonal signal in GPS position time series with different noise levels. GPS Solut 22(1):1–11

    Article  Google Scholar 

  • Klos A, Gruszczynska M, Bos MS, Boy J, Bogusz J (2018b) Estimates of vertical velocity errors for IGS ITRF2014 stations by applying the improved singular spectrum analysis method and environmental loading models. Pure Appl Geophys 175:1823–1840

    Article  Google Scholar 

  • Klos A, Bos MS, Fernandes RM, Bogusz J (2019) Noise-dependent adaption of the Wiener filter for the GPS position time series. Math Geosci 51(1):53–73

    Article  Google Scholar 

  • Klos A, Karegar MA, Kusche J, Springer A (2020) Quantifying noise in daily GPS height time series: harmonic function versus GRACE-assimilating modeling approaches. IEEE Geosci Remote Sens Lett 18(4):627–631

    Article  Google Scholar 

  • Klos A, Dobslaw H, Dill R, Bogusz J (2021) Identifying the sensitivity of GPS to non-tidal loadings at various time resolutions: examining vertical displacements from continental Eurasia. GPS Solut 25(3):1–17

    Article  Google Scholar 

  • Koulali A, Clarke PJ (2020) Effect of antenna snow intrusion on vertical GPS position time series in Antarctica. J Geod 94(10):1–11

    Article  Google Scholar 

  • Langbein J (2017) Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors. J Geod 91(8):985–994

    Article  Google Scholar 

  • Langbein J, Johnson H (1997) Correlated errors in geodetic time series: implications for time-dependent deformation. J Geophys Res Solid Earth 102(B1):591–603

    Article  Google Scholar 

  • Li W, Shen Y (2018) The consideration of formal errors in spatiotemporal filtering using principal component analysis for regional GNSS position time series. Remote Sens 10(4):534

    Article  Google Scholar 

  • Li W, Shen Y, Li B (2015) Weighted spatiotemporal filtering using principal component analysis for analyzing regional GNSS position time series. Acta Geod Geophys 50(4):419–436

    Article  Google Scholar 

  • Li Y, Xu C, Yi L, Fang R (2018) A data-driven approach for denoising GNSS position time series. J Geod 92(8):905–922

    Article  Google Scholar 

  • Li Z, Chen W, van Dam T, Rebischung P, Altamimi Z (2020) Comparative analysis of different atmospheric surface pressure models and their impacts on daily ITRF2014 GNSS residual time series. J Geod 94(4):1–20

    Article  Google Scholar 

  • Liu N, Dai W, Santerre R, Kuang C (2018) A MATLAB-based Kriged Kalman filter software for interpolating missing data in GNSS coordinate time series. GPS Solut 22(1):1–8

    Article  Google Scholar 

  • Mao A, Harrison CGA, Dixon TH (1999) Noise in GPS coordinate time series. J Geophys Res 104(B2):2797–2816

    Article  Google Scholar 

  • Marcus M, Khan NA (1959) A note on the Hadamard product. Can Math Bull 2(2):81–83

    Article  Google Scholar 

  • Ming F, Yang Y, Zeng A, Zhao B (2017) Spatiotemporal filtering for regional GPS network in China using independent component analysis. J Geod 91(4):419–440

    Article  Google Scholar 

  • Montenbruck O, Steigenberger P, Prange L et al (2017) The multi-GNSS experiment (MGEX) of the international GNSS service (IGS)—achievements, prospects and challenges. Adv Space Res 59(7):1671–1697

    Article  Google Scholar 

  • Montillet JP, Tregoning P, McClusky S, Yu K (2013) Extracting white noise statistics in GPS coordinate time series. IEEE Geosci Remote Sens Lett 10(3):563–567

    Article  Google Scholar 

  • Montillet JP, Melbourne TI, Szeliga WM (2018) GPS vertical land motion corrections to sea-level rise estimates in the Pacific Northwest. J Geophys Res Oceans 123(2):1196–1212

    Article  Google Scholar 

  • Prawirodirdjo L, Ben‐Zion Y, Bock Y (2006) Observation and modeling of thermoelastic strain in Southern California Integrated GPS Network daily position time series. J Geophys Res Solid Earth 111(B2):B02408

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vettering WT, Flannery BP (2003) Numerical recipes in C++: the art of scientific computing (2nd edn) 1 numerical recipes example book (C++) (2nd edn) 2 numerical recipes multi-language code CD ROM with linux or unix single-screen license revised version 3. Eur J Phys 24(3):329–330

    Article  Google Scholar 

  • Ran J, Bian J, Chen G, Zhang Y, Liu W (2022) A truncated nuclear norm regularization model for signal extraction from GNSS coordinate time series. Adv Space Res 70(2):336–349

    Article  Google Scholar 

  • Rangelova E, Sideris MG, Kim JW (2012) On the capabilities of the multi-channel singular spectrum method for extracting the main periodic and non-periodic variability from weekly GRACE data. J Geodyn 54:64–78

    Article  Google Scholar 

  • Richter A, Ivins E, Lange H et al (2016) Crustal deformation across the Southern Patagonian Icefield observed by GNSS. Earth Planet Sci Lett 452:206–215

    Article  Google Scholar 

  • Riel B, Simons M, Agram P, Zhan Z (2014) Detecting transient signals in geodetic time series using sparse estimation techniques. J Geophys Res 119(6):5140–5160

    Article  Google Scholar 

  • Scargle JD (1982) Studies in astronomicaltime series analysis. ii-statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263:835–853. https://doi.org/10.1086/160554

    Article  Google Scholar 

  • Schoellhamer DH (1996) Factors affecting suspended-solids concentrations in south San Francisco Bay, California. J Geophys Res-Oceans 101(C5):12087–12095

    Article  Google Scholar 

  • Schoellhamer DH (2001) Singular spectrum analysis for time series with missing data. Geophys Res Lett 28(16):3187–3190

    Article  Google Scholar 

  • Schoellhamer DH, Mumley TE, Leatherbarrow JE (2007) Suspended sediment and sediment-associated contaminants in San Francisco Bay. Environ Res 105(1):119–131

    Article  Google Scholar 

  • Shen Y, Li W, Xu G, Li B (2014) Spatiotemporal filtering of regional GNSS network’s position time series with missing data using principle component analysis. J Geod 88(1):1–12

    Article  Google Scholar 

  • Shen Y, Peng F, Li B (2015) Improved singular spectrum analysis for time series with missing data. Nonlinear Process Geophys 22(4):371–376

    Article  Google Scholar 

  • Shen Y, Guo J, Liu X, Kong Q, Guo L, Li W (2018) Long-term prediction of polar motion using a combined SSA and ARMA model. J Geod 92(3):333–343

    Article  Google Scholar 

  • Snay RA, Soler T (2008) Continuously operating reference station (CORS): history, applications, and future enhancements. J Surv Eng-ASCE 134(4):95–104

    Article  Google Scholar 

  • Springer A, Karegar MA, Kusche J, Keune J, Kurtz W, Kollet S (2019) Evidence of daily hydrological loading in GPS time series over Europe. J Geod 93(10):2145–2153

    Article  Google Scholar 

  • Tehranchi R, Moghtased-Azar K, Safari A (2021) Fast approximation algorithm to noise components estimation in long-term GPS coordinate time series. J Geod 95(2):1–16

    Article  Google Scholar 

  • Tiampo KF, Mazzotti S, James TS (2012) Analysis of GPS measurements in eastern Canada using principal component analysis. Pure Appl Geophys 169(8):1483–1506

    Article  Google Scholar 

  • Tian Y, Shen Z (2016) Extracting the regional common-mode component of GPS station position time series from dense continuous network. J Geophys Res Solid Earth. https://doi.org/10.1002/2015JB012253

    Article  Google Scholar 

  • Uhlemann M, Gendt G, Ramatschi M, Deng Z (2015) GFZ global multi-GNSS network and data processing results. In: Rizos C, Willis P (eds) IAG 150 years. International association of geodesy symposia, vol 143. Springer, Cham. https://doi.org/10.1007/1345_2015_120

    Chapter  Google Scholar 

  • van Dam T, Wahr J, Milly PCD, Shmakin AB, Blewitt G, Lavallée D, Larson KM (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28(4):651–654

    Article  Google Scholar 

  • Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Phys D 35(3):395–424

    Article  Google Scholar 

  • Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Phys D 58(1):95–126

    Article  Google Scholar 

  • Vitti A (2012) Sigseg: a tool for the detection of position and velocity discontinuities in geodetic time-series. GPS Solut 16:405–410

    Article  Google Scholar 

  • Walwer D, Calais E, Ghil M (2016) Data-adaptive detection of transient deformation in geodetic networks. J Geophys Res Solid Earth 121(3):2129–2152

    Article  Google Scholar 

  • Wang X, Cheng Y, Wu S, Zhang K (2016) An enhanced singular spectrum analysis method for constructing nonsecular model of GPS site movement. J Geophys Res Solid Earth 121(3):2193–2211

    Article  Google Scholar 

  • Wang F, Shen Y, Chen T, Chen Q, Li W (2020) Improved multichannel singular spectrum analysis for post-processing GRACE monthly gravity field models. Geophys J Int 223(2):825–839

    Article  Google Scholar 

  • Williams SD, Bock Y, Fang P et al (2004) Error analysis of continuous GPS position time series. J Geophys Res Solid Earth 109(B3):B03412

    Article  Google Scholar 

  • Williams SDP, Penna NT (2011) Non-tidal ocean loading effects on geodetic GPS heights. Geophys Res Lett 38:L09314. https://doi.org/10.1029/2011GL046940

    Article  Google Scholar 

  • Willis P, Fagard H, Ferrage P et al (2010) The international DORIS service (IDS): toward maturity. Adv Space Res 45(12):1408–1420

    Article  Google Scholar 

  • Wu H, Li K, Shi W, Clarke KC, Zhang J, Li H (2015) A wavelet-based hybrid approach to remove the flicker noise and the white noise from GPS coordinate time series. GPS Solut 19(4):511–523

    Article  Google Scholar 

  • Xu C (2016) Reconstruction of gappy GPS coordinate time series using empirical orthogonal functions. J Geophys Res Solid Earth 121(12):9020–9033

    Article  Google Scholar 

  • Xu C, Yue D (2015) Monte Carlo SSA to detect time-variable seasonal oscillations from GPS-derived site position time series. Tectonophysics 665:118–126

    Article  Google Scholar 

  • Yuan P, Jiang W, Wang K, Sneeuw N (2018) Effects of spatiotemporal filtering on the periodic signals and noise in the GPS position time series of the crustal movement observation network of China. Remote Sens 10(9):1472

    Article  Google Scholar 

  • Zvonarev N, Golyandina N (2017) Iterative algorithms for weighted and unweighted finite-rank time-series approximations. Stat Interface 10(1):5–18

    Article  Google Scholar 

Download references

Acknowledgements

This study is sponsored by the National Natural Science Foundation of China (41974002, 42192532, and 42274005). The editors and three reviewers are greatly appreciated for their constructive comments and suggestions. The Crustal Movement Observation Network of China is acknowledged for providing raw position time series. Miss Wei Wang, a PhD student at Tongji University is appreciated for plotting the figures.

Author information

Authors and Affiliations

Authors

Contributions

KJ proposed the key idea, designed and conducted the experiments, and wrote the manuscript. YS improved the theory and checked all the formulae. YS, QC and FW revised the manuscript.

Corresponding author

Correspondence to Yunzhong Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4704 KB)

Appendices

Appendix A: Mapping original time series to reconstructed components

Taking Eq. (6) into account, we can rewrite the term \(a_{k,i - j + 1} v_{j,k}\) in Eq. (7) as,

$$ a_{k,i - j + 1} v_{j,k} { = }\left( {\sum\limits_{h = 1}^{L} {x_{i - j + h} v_{h,k} } } \right)v_{j,k} = \sum\limits_{h = 1}^{L} {v_{h,k} v_{j,k} x_{i - j + h} } $$
(A1)

According to Eq. (7), the reconstructed component of any layer is composed of three segments. For the first segment (\({1} \le i \le L - 1\)), the element \({\text{RC}}_{i}^{k}\) reads as

$$ {\text{RC}}_{i}^{k} = \frac{1}{i}\sum\limits_{j = 1}^{i} {\sum\limits_{h = 1}^{L} {v_{h,k} v_{j,k} x_{i - j + h} } } $$
(A2)

Equation (A2) indicates that there may exist a strong connection between the reconstructed components and the original time series; however, it cannot build a linear mapping between the two items since the elements of the time series overlap in the right hand. To separate these like terms, we rewrite Eq. (A2) as the matrix form,

$$ {\text{RC}}_{i}^{k} = \frac{1}{i}{\varvec{H}}_{i}^{1} \odot {\varvec{G}}_{i}^{1} $$
(A3)

where the symbol ‘\(\odot\)’ is the Hadamard product operator (Marcus and Khan 1959), which takes two matrices of the same dimensions, and produces another matrix where each element is the product of elements of the original two matrices in the same position. The two matrices \({\varvec{H}}_{i}^{1}\) and \({\varvec{G}}_{i}^{1}\) with the size of \(i \times L\) are defined as

$$ \begin{aligned} {\varvec{H}}_{i}^{1} & = \left[ {\begin{array}{*{20}c} {\quad x_{i} } & {\quad x_{{i + 1}} } & {\quad \cdots } & {\quad x_{{i - 1 + L}} } \\ {\quad x_{{i - 1}} } & {\quad x_{i} } & {\quad \cdots } & {\quad x_{{i - 2 + L}} } \\ {\quad \vdots } & {\quad \vdots } & {\quad \ddots } & {\quad \vdots } \\ {\quad x_{1} } & {\quad x_{2} } & {\quad \cdots } & {\quad x_{L} } \\ \end{array} } \right]{\text{ }} \hfill \\ {\varvec{G}}_{i}^{1} & = \left[ {\begin{array}{*{20}c} {\quad v_{{1,k}} v_{{1,k}} } & {\quad v_{{2,k}} v_{{1,k}} } & {\quad \cdots } & {\quad v_{{L,k}} v_{{1,k}} } \\ {\quad v_{{1,k}} v_{{2,k}} } & {\quad v_{{2,k}} v_{{2,k}} } & {\quad \cdots } & {\quad v_{{L,k}} v_{{2,k}} } \\ {\quad \vdots } & {\quad \vdots } & {\quad \cdots } & {\quad \vdots } \\ {\quad v_{{1,k}} v_{{i,k}} } & {\quad v_{{2,k}} v_{{i,k}} } & {\quad \cdots } & {\quad v_{{L,k}} v_{{i,k}} } \\ \end{array} } \right] \hfill \\ \end{aligned} $$
(A4)

Since \({\varvec{H}}_{i}^{1}\) is a Toeplitz matrix, we can reformulate Eq. (A3) by diagonal summation as,

$$ \begin{aligned}{\text{RC}}_{i}^{k} & = \frac{1}{i}\left( {\sum\limits_{j = 1}^{i} {\sum\limits_{h = 1}^{j} {v_{h,k} v_{i - j + h,k} } x_{j} + \sum\limits_{j = i + 1}^{L} {\sum\limits_{h = 1}^{i} {v_{h,k} v_{j - i + h,k} x_{j} } } } }\right. \\ & \quad \quad \quad \left.{+ \sum\limits_{j = L + 1}^{i - 1 + L} {\sum\limits_{h = 1}^{i + L - j} {v_{h,k} v_{j - i + h,k} x_{j} } } } \right)\end{aligned} $$
(A5)

It is now clear from Eq. (A5) that the first segment (\({1} \le i \le L - 1\)) of kth RC can be independently expressed by parts of the original time series. Similarly, for the second segment (\(L \le i \le K\)), the element \({\text{RC}}_{i}^{k}\) reads as,

$$ {\text{RC}}_{i}^{k} = \frac{1}{L}\sum\limits_{j = 1}^{L} {\sum\limits_{h = 1}^{L} {v_{h,k} v_{j,k} x_{i - j + h} } } = \frac{1}{L}{\varvec{H}}_{i}^{2} \odot {\varvec{G}}_{i}^{2} $$
(A6)

where \({\varvec{H}}_{i}^{2}\) and \({\varvec{G}}_{i}^{2}\) are \(L \times L\) matrices and defined as,

$$ \begin{aligned} {\varvec{H}}_{i}^{2} & = \left[ {\begin{array}{*{20}c} {\quad x_{i} } & {\quad x_{{i + 1}} } & {\quad \cdots } & {\quad x_{{i - 1 + L}} } \\ {\quad x_{{i - 1}} } & {\quad x_{i} } & {\quad \cdots } & {\quad x_{{i - 2 + L}} } \\ {\quad \vdots } & {\quad \vdots } & {\quad \ddots } & {\quad \vdots } \\ {\quad x_{{i - L + 1}} } & {\quad x_{{i - L + 2}} } & {\quad \cdots } & {\quad x_{i} } \\ \end{array} } \right] \hfill \\ {\varvec{G}}_{i}^{2} & = \left[ {\begin{array}{*{20}c} {\quad v_{{1,k}} v_{{1,k}} } & {\quad v_{{2,k}} v_{{1,k}} } & {\quad \cdots } & {\quad v_{{L,k}} v_{{1,k}} } \\ {\quad v_{{1,k}} v_{{2,k}} } & {\quad v_{{2,k}} v_{{2,k}} } & {\quad \cdots } & {\quad v_{{L,k}} v_{{2,k}} } \\ {\quad \vdots } & {\quad \vdots } & {\quad \cdots } & {\quad \vdots } \\ {\quad v_{{1,k}} v_{{L,k}} } & {\quad v_{{2,k}} v_{{L,k}} } & {\quad \cdots } & {\quad v_{{L,k}} v_{{L,k}} } \\ \end{array} } \right] \hfill \\ \end{aligned} $$
(A7)

By summing the diagonal elements of \({\varvec{H}}_{i}^{2} \odot {\varvec{G}}_{i}^{2}\) and combining like terms, we can rewrite Eq. (A6) as,

$$\begin{aligned}{\text{RC}}_{i}^{k} &= \frac{1}{L}\left( {\sum\limits_{j = i - L + 1}^{i - 1} {\sum\limits_{h = 1}^{L - i + j} {v_{h,k} v_{i - j + h,k} } x_{j} }}\right. \\& \quad \quad \quad \left.{+ \sum\limits_{h = 1}^{L} {v_{h,k}^{2} } x_{i} +\sum\limits_{i + 1}^{i - 1 + L} {\sum\limits_{h = 1}^{i + L - j}{v_{h,k} } } v_{j - i + h,k} } \right)\end{aligned}$$
(A8)

For the last segment of the time series (\(K + 1 \le i \le N\)), the element \({\text{RC}}_{i}^{k}\) reads as

$$\begin{aligned} {\text{RC}}_{i}^{k} &= \frac{1}{N - i + 1}\sum\limits_{j = i - N + L}^{L} {\sum\limits_{h = 1}^{L} {v_{h,k} v_{j,k} x_{i - j + h} } } \\ &= \frac{1}{N - i + 1}{\varvec{H}}_{i}^{3} \odot {\varvec{G}}_{i}^{3} \end{aligned}$$
(A9)

where

$$ \begin{gathered} {\varvec{H}}_{i}^{3} = \left[ {\begin{array}{*{20}c} {\quad x_{{N - L + 1}} } & {\quad x_{{N - L + 2}} } & {\quad \cdots } & {\quad x_{N} } \\ {\quad x_{{N - L}} } & {\quad x_{{N - L + 1}} } & {\quad \cdots } & {\quad x_{{N - 1}} } \\ {\quad \vdots } & {\quad \vdots } & {\quad \ddots } & {\quad \vdots } \\ {\quad x_{{i - L + 1}} } & {\quad x_{{i - L + 2}} } & {\quad \cdots } & {\quad x_{i} } \\ \end{array} } \right]{\text{ }} \hfill \\ {\varvec{G}}_{i}^{3} = \left[ {\begin{array}{*{20}c} {\quad v_{{1,k}} v_{{i - N + L,k}} } & {\quad v_{{2,k}} v_{{i - N + L,k}} } & {\quad \cdots } & {\quad v_{{L,k}} v_{{i - N + L,k}} } \\ {\quad v_{{1,k}} v_{{i - N + L + 1,k}} } & {\quad v_{{2,k}} v_{{i - N + L + 1,k}} } & {\quad \cdots } & {\quad v_{{L,k}} v_{{i - N + L + 1,k}} } \\ {\quad \vdots } & {\quad \vdots } & {\quad \cdots } & {\quad \vdots } \\ {\quad v_{{1,k}} v_{{L,k}} } & {\quad v_{{2,k}} v_{{L,k}} } & {\quad \cdots } & {\quad v_{{L,k}} v_{{L,k}} } \\ \end{array} } \right] \hfill \\ \end{gathered} $$
(A10)

By following the previous diagonal summation technique, we can rewrite Eq. (A9) as follows:

$$ \begin{aligned}{\text{RC}}_{i}^{k} &= \frac{1}{N - i + 1}\left( {\sum\limits_{j = i - L + 1}^{N - L} {\sum\limits_{h = 1}^{L - i + j} {v_{h,k} v_{i - j + h,k} } x_{j} } }\right.\\ & \quad \left.{+ \sum\limits_{j = N - L + 1}^{i} {\sum\limits_{h = i}^{N} {v_{L + j - h,k} } v_{L + i - h,k} x_{j} } }\right.\\ & \quad \left.{+ \sum\limits_{i + 1}^{N} {\sum\limits_{h = j}^{N} {v_{L + j - h,k} } } v_{i + L - h,k} x_{j} } \right) \end{aligned}$$
(A11)

With Eqs. (A5), (A8), and (A11), we can map the original time series to the kth RC,

$$ {\varvec{RC}}^{k} = \left[ {\begin{array}{*{20}c} {{\text{RC}}_{1}^{k} } & {{\text{RC}}_{2}^{k} } & \cdots & {{\text{RC}}_{N}^{k} } \\ \end{array} } \right]^{T} = {\varvec{B}}^{k} {\varvec{x}} $$
(A12)

where \({\varvec{B}}^{k}\) is a \(N \times N\) coefficient matrix with the entries of,

$$ \begin{aligned} {\varvec{B}}^{k} \left( {i,j} \right) &= \left\{ {\begin{array}{*{20}c} {b_{1}^{k} \left( {i,j} \right),} & {{1} \le i \le L - 1,{ 1} \le {{j}} \le {{N}}} \\ {b_{2}^{k} \left( {i,j} \right),} & {L \le i \le K,{ 1} \le {{j}} \le {{N}}} \\ {b_{3}^{k} \left( {i,j} \right),} & {K + 1 \le i \le N,{ 1} \le {{j}} \le {{N}}} \\ \end{array} } \right. \hfill \\ b_{1}^{k} \left( {i,j} \right) &= \left\{ \begin{gathered} \sum\limits_{h = 1}^{j} {v_{h,k} v_{i - j + h,k} } ,{ 1} \le {{j}} \le {{i}} \hfill \\ \sum\limits_{h = 1}^{i} {v_{h,k} v_{j - i + h,k} } ,{{ i + 1}} \le {{j}} \le L \hfill \\ \sum\limits_{h = 1}^{i + L - j} {v_{h,k} v_{j - i + h,k} } ,{{ L + 1}} \le {{j}} \le i - 1 + L \hfill \\ 0,{{ i + L}} \le {{j}} \le {{N}} \hfill \\ \end{gathered} \right.,\\ b_{2}^{k} \left( {i,j} \right) &= \left\{ \begin{gathered} 0,{ 1} \le {{j}} \le {{i}} - {{L}} \hfill \\ \sum\limits_{h = 1}^{L - i + j} {v_{h,k} v_{i - j + h,k} } ,{{ i}} - {{L + 1}} \le {{j}} \le {{i}} \hfill \\ \sum\limits_{h = 1}^{i + L - j} {v_{h,k} v_{j - i + h,k} } ,{{ i + 1}} \le {{j}} \le i - 1 + L \hfill \\ 0,{{ i + L}} \le {{j}} \le N \hfill \\ \end{gathered} \right. \hfill \\ b_{3}^{k} \left( {i,j} \right) &= \left\{ \begin{gathered} 0,{ 1} \le {{j}} \le {{i}} - {{L}} \hfill \\ \sum\limits_{h = 1}^{L - i + j} {v_{h,k} v_{i - j + h,k} } , \, i - L + 1 \le j \le N - L \hfill \\ \sum\limits_{h = i}^{N} {v_{L + j - h,k} } v_{L + i - h,k} ,{{ N}} - L + 1 \le j \le i \hfill \\ \sum\limits_{h = j}^{N} {v_{L + j - h,k} } v_{L + i - h,k} , \, i + 1 \le j \le N \hfill \\ \end{gathered} \right. \hfill \\ \end{aligned} $$
(A13)

Appendix B: Review of ISSA

The key procedure of ISSA is to calculate the PCs with the available observed data based on the minimum norm criteria. By considering the missing data, the Eq. (6) can be reformulated as

$$ a_{k,i} = \sum\limits_{{i + j - 1 \in S_{i} }} {x_{i + j - 1} v_{j,k} } + \sum\limits_{{i + j - 1 \in \overline{S}_{i} }} {x_{i + j - 1} v_{j,k} } $$
(B1)

where \(1 \le i \le K\), \(S_{{\text{i}}}\) and \(\overline{S}_{{\text{i}}}\) are the index sets of sampling data and missing data, respectively, within the integer interval \(\left[ {i, \, i + L - 1} \right]\), i.e., \(S_{i} \cap \overline{S}_{i} = 0\) and \(S_{i} \cup \overline{S}_{i} = \left[ {i, \, i + L - 1} \right]\). The missing data in Eq. (B1) can be computed with

$$ x_{i + j - 1} = \sum\limits_{m = 1}^{L} {a_{m,i} v_{j,m} } $$
(B2)

By substituting Eq. (B2) into Eq. (B1) and collecting all terms for \(k=1, 2,\dots ,L\), we have

$$ {\varvec{G}}_{i} {{\varvec{\xi}}}_{i} = {\varvec{y}}_{i} $$
(B3)

where

$$ \begin{gathered} {\varvec{G}}_{i} = \left[ {\begin{array}{*{20}c} {\quad 1 - \sum\limits_{{i + j - 1 \in \bar{S}_{i} }} {v_{{j,1}}^{2} } } & {\quad - \sum\limits_{{i + j - 1 \in \bar{S}_{i} }} {v_{{j,1}} v_{{j,2}} } } & {\quad \cdots } & {\quad - \sum\limits_{{i + j - 1 \in \bar{S}_{i} }} {v_{{j,1}} v_{{j,L}} } } \\ {\quad - \sum\limits_{{i + j - 1 \in \bar{S}_{i} }} {v_{{j,2}} v_{{j,1}} } } & {\quad 1 - \sum\limits_{{i + j - 1 \in \bar{S}_{i} }} {v_{{j,2}}^{2} } } & {\quad \cdots } & {\quad - \sum\limits_{{i + j - 1 \in \bar{S}_{i} }} {v_{{j,2}} v_{{j,L}} } } \\ \vdots & \vdots & {\quad \ddots } & \vdots \\ {\quad - \sum\limits_{{i + j - 1 \in \bar{S}_{i} }} {v_{{j,L}} v_{{j,1}} } } & {\quad - \sum\limits_{{i + j - 1 \in \bar{S}_{i} }} {v_{{j,L}} v_{{j,2}} } } & {\quad \cdots } & {\quad 1 - \sum\limits_{{i + j - 1 \in \bar{S}_{i} }} {v_{{j,L}}^{2} } } \\ \end{array} } \right] \hfill \\ {\varvec{\xi }}_{i} = \left[ {\begin{array}{*{20}c} {\quad a_{{1,i}} } & {\quad a_{{2,i}} } & {\quad \cdots } & {\quad a_{{L,i}} } \\ \end{array} } \right]^{T} \hfill \\ {\varvec{y}}_{i} = \left[ {\begin{array}{*{20}c} {\quad \sum\limits_{{i + j - 1 \in S_{i} }} {x_{{i + j - 1}} v_{{j,1}} } } & {\quad \sum\limits_{{i + j - 1 \in S_{i} }} {x_{{i + j - 1}} v_{{j,2}} } } & {\quad \cdots } & {\quad \sum\limits_{{i + j - 1 \in S_{i} }} {x_{{i + j - 1}} v_{{j,L}} } } \\ \end{array} } \right]^{T} \hfill \\ \end{gathered} $$
(B4)

The coefficient matrix \({\varvec{G}}_{i}\) is symmetric and rank-deficient with the number of rank deficiencies equaling the number of missing data within the interval \(\left[ {x_{i} , \, x_{i + L - 1} } \right]\). To obtain a unique solution, Shen et al. (2015) imposed an additional constraint condition,

$$ \min :{{\varvec{\xi}}}_{i}^{T} {{\varvec{\Lambda}}}^{ - 1} {{\varvec{\xi}}}_{i} $$
(B5)

where \({{\varvec{\Lambda}}}\) is a diagonal matrix, with the diagonal elements of \(\lambda_{i} \left( {i = 1, \, 2, \, \ldots , \, L} \right)\). The solution to problem (B3) under the criteria (B5) is

$$ {{{\xi}}}_{i} = {\varvec{\Lambda G}}_{i}^{T} \left( {{\varvec{G}}_{i} {\varvec{\Lambda G}}_{i}^{T} } \right)^{ - } {\varvec{y}}_{i} $$
(B6)

The symbol ‘-’ denotes the pseudo-inverse of a matrix. Once all PCs are computed, we can derive the signals with the dominant PCs as the ordinary SSA. The equation (B6) can be equivalently rewritten as,

$$ {{\varvec{\xi}}}_{i} = {\varvec{\Lambda}} {\varvec{G}}_{i}^{T} \left( {{\varvec{G}}_{i} {\varvec{\Lambda}} {\varvec{G}}_{i}^{T} } \right)^{ - } {\varvec{Q}}_{i} {\varvec{x}}_{1} $$
(B7)

where \({\varvec{Q}}_{i}\) is a \(L \times N_{S}\) matrix with the entries of

$$ {\varvec{Q}}_{i} \left( {j,k} \right) = \left\{ {\begin{array}{*{20}c} {v_{S(k) - i + 1,j} } & {S\left( k \right) \in S_{i} } \\ 0 & {{\text{others}}} \\ \end{array} } \right. $$
(B8)

By stacking all vectors \({{\varvec{\xi}}}_{i} \left( {i = 1,2, \ldots ,K} \right)\) in column order, we will immediately obtain the PC matrix as,

$$ {\varvec{A}} = \left( {\begin{array}{*{20}c} {{\varvec{J}}_{1} {\varvec{x}}_{1} } & {{\varvec{J}}_{2} {\varvec{x}}_{1} } & \cdots & {{\varvec{J}}_{K} {\varvec{x}}_{1} } \\ \end{array} } \right) $$
(B9)

where \({\varvec{J}}_{i} = {\varvec{\Lambda}} {\varvec{G}}_{i}^{T} \left( {{\varvec{G}}_{i}^{T} { {\varvec{\Lambda}} {\varvec{G}}}_{i} } \right)^{ - } {\varvec{Q}}_{i} \). Denoting \({\varvec{\varphi }}_{j}^{i}\) as the ith row vector of \({\varvec{J}}_{j}\), we can readily derive the signals  \({\widehat{{\varvec{s}}}}^{I}\) and the interpolation of missing data  \({\widehat{{\varvec{x}}}}_{2}^{I}\) as

$$ \begin{gathered} {\hat{\varvec{s}}}^{I} = {\varvec{F}}_{1} {\hat{\varvec{s}}} = {\varvec{F}}_{1} {\varvec{Mx}}_{1} \hfill \\ {\hat{\varvec{x}}}_{2}^{I} = {\varvec{F}}_{2} {\hat{\varvec{s}}} = {\varvec{F}}_{2} {\varvec{Mx}}_{1} \hfill \\ \end{gathered} $$
(B10)

Here, the superscript ‘I’ denotes the ISSA and \({\varvec{M}}\) is defined as,

$$ {\varvec{M}}_{i} = \left\{ \begin{gathered} \;\;\;\sum\limits_{{k = 1}}^{d} {\sum\limits_{{j = 1}}^{i} {\frac{1}{i}v_{{j,k}} {\varvec{\varphi }}_{{i - j + 1}}^{k} {\text{ }}\left( {\;\;\;1 \le i \le L - 1} \right)} } \hfill \\ \;\;\;\sum\limits_{{k = 1}}^{d} {\sum\limits_{{j = 1}}^{L} {\frac{1}{L}v_{{j,k}} {\varvec{\varphi }}_{{i - j + 1}}^{k} {\text{ }}\left( {\;\;\;L \le i \le K} \right)} } \hfill \\ \;\;\;\sum\limits_{{k = 1}}^{d} {\sum\limits_{{j = i - N + L}}^{L} {\frac{1}{{N - i + 1}}v_{{j,k}} {\varvec{\varphi }}_{{i - j + 1}}^{k} {\text{ }}\left( {\;\;\;K + 1 \le i \le N} \right)} } \hfill \\ \end{gathered} \right. $$
(B11)

where \({{\varvec{M}}}_{i}\) is the ith row of \({\varvec{M}}\). By comparing Eqs. (31), and (33), and Eq. (B10), we can find that the ESSA and ISSA share similar structures of solutions though they are derived via different strategies.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, K., Shen, Y., Chen, Q. et al. Extended singular spectrum analysis for processing incomplete heterogeneous geodetic time series. J Geod 97, 74 (2023). https://doi.org/10.1007/s00190-023-01764-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-023-01764-8

Keywords

Navigation