Skip to main content
Log in

Comparative analysis of different environmental loading methods and their impacts on the GPS height time series

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Three different environmental loading methods are used to estimate surface displacements and correct non-linear variations in a set of GPS weekly height time series. Loading data are provided by (1) Global Geophysical Fluid Center (GGFC), (2) Loading Model of Quasi-Observation Combination Analysis software (QLM) and (3) our own daily loading time series (we call it OMD for optimum model data). We find that OMD has the smallest scatter in height across the selected 233 globally distributed GPS reference stations, GGFC has the next smallest variability, and QLM has the largest scatter. By removing the load-induced height changes from the GPS height time series, we are able to reduce the scatter on 74, 64 and 41 % of the stations using the OMD models, the GGFC model and QLM model respectively. We demonstrate that the discrepancy between the center of earth (CE) and the center of figure (CF) reference frames can be ignored. The most important differences between the predicted models are caused by (1) differences in the hydrology data from the National Center for Atmospheric Research (NCEP) vs. those from the Global Land Data Assimilation System (GLDAS), (2) grid interpolation, and (3) whether the topographic effect is removed or not. Both QLM and GGFC are extremely convenient tools for non-specialists to use to calculate loading effects. Due to the limitation of NCEP reanalysis hydrology data compared with the GLDAS model, the GGFC dataset is much more suitable than QLM for applying environmental loading corrections to GPS height time series. However, loading results for Greenland from GGFC should be discarded since hydrology data from GLDAS in this region are not accurate. The QLM model is equivalent to OMD in Greenland and, hence, could be used as a complement to the GGFC product to model the load in this region. We find that the predicted loading from all three models cannot reduce the scatter of the height coordinate for some stations in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://geophy.uni.lu/ggfc-about/products.html.

  2. http://www.esrl.noaa.gov/psd/data/gidded/data.ncep.reanalysis.surface.html.

  3. http://ecco.jpl.nasa.gov/thredds/las/kf080/catalog.html.

  4. http://www.esrl.noaa.gov/psd/data/gidded/data.ncep.reanalysis.surfaceflux.html.

  5. http://www-gpsg.mit.edu/~tah/MIT_IGS_AAC/index2.html.

References

  • Blewitt G, Lavallée D, Clarke P, Nurutdinov K (2001) A new global mode of earth deformation: seasonal cycle detected. Science 294(2342). doi:10.1126/science.1065328

  • Blewitt G, Lavallée D (2002) Effect of annual signals on geodetic velocity. J Geophys Res 107(B7). doi:10.1029/2001JB000570

  • Blewitt G (2003). Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B22103). doi:10.1029/2002JB002082

  • Chambers DP, Tamisiea ME, Nerem RS, Ries JC (2007) Effects of ice melting on GRACE observations of ocean mass trends. Geophys Res Lett 34(L05610). doi:10.1029/2006GL029171

  • Clarke PJ, Lavallée DA, Blewitt G, van Dam TM, Wahr JM (2005) Effect of gravitational consistency and mass conservation on seasonal surface mass loading models. Geophys Res Lett 32(L08306). doi:10.1029/2005GL022441

  • Collilieux X, Altamimi Z, Coulot D, van Dam T, Ray J (2010) Impact of loading effects on determination of the International Terrestrial Reference Frame. Adv Space Res 45:144–154

    Article  Google Scholar 

  • Collilieux X, van Dam T, Ray J, Coulot D, Metivier L, Altamimi Z (2012) Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J Geod 86:1–14

    Article  Google Scholar 

  • Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270:105–134

    Article  Google Scholar 

  • Dong D, Dickey JO, Chao Y, Cheng MK (1997) Geocenter variations caused by atmosphere, ocean and surface ground water. Geophys Res Lett 24(15):1867–1870

    Article  Google Scholar 

  • Dong D, Yunck T, Heflin M (2003) Origin of the International Terrestrial Reference Frame. J Geophys Res 108(B42200). doi:10.1029/2002JB002035

  • Dong D, Fang P, Bock Y, Cheng MK, Miyazaki S (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series. J Geophys Res 107(B42103). doi:10.1029/2001JB000573

  • Etopo5 (1988) Data Announcement 88-MGG-02, Digital relief of the surface of the Earth. National Geophysics Data Center. Boulder, Colorado

  • Farrell WE (1972) Deformation of the Earth by surface loads. Rev Geophy Space Phys 10(3):751–797

    Article  Google Scholar 

  • Fukumori I (2002) A partitioned Kalman filter and smoother. Mon Weather Rev 130:1370–1383

    Article  Google Scholar 

  • Fritsche M, Döll P, Dietrich R (2012) Global-scale validation of model-based load deformation of the Earth’s crust from continental water mass and atmospheric pressure variations using GPS. J Geodyn 59–60:133–142

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–470

    Article  Google Scholar 

  • Kim SB, Lee T, Fukumori I (2007) Mechanisms controlling the interannual variation of mixed layer temperature averaged over the Nio-3 region. J Climate 20:3822–3843. doi:10.1175/JCLI4206.1

    Article  Google Scholar 

  • Lavallée DA, Moore P, Clarke PJ, Petrie EJ, van Dam T, King MA (2010) J2: an evaluation of new estimates from GPS, GRACE, and load models compared to SLR. Geophys Res Lett 37(L22403). doi:10.1029/2010GL045229

  • Munekane H, Matsuzaka S (2004) Nontidal ocean mass loading detected by GPS observations in the tropical Pacific region. Geophys. Res. Lett. 31(L08602). doi:10.1029/2004GL019773

  • Nordman M, Mäkinen J, Virtanen H, Johansson JM, Bilker Koivula M, Virtanen J (2009) Crustal loading in vertical GPS time series in Fennoscandia. J Geodyn 48(3–5):144–150. doi:10.1016/j.jog.2009.09.003

    Article  Google Scholar 

  • Nordman M (2010) Improving GPS time series for geodynamic studies. Academic Dissertation in Geophysics, Kirkkonummi

  • Petrov L, and Boy JP (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109(B03405). doi:10.1029/2003JB002500

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteor Soc 85(3):381–394

    Google Scholar 

  • Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12:55–64

    Google Scholar 

  • Rui H (2011) Readme document for global land data assimilation system Version 1 (GLDAS-1). Products at http://disc.sci.gsfc.nasa.gov/services/grads-gds/gldas

  • Scherneck HG, Johansson JM, Koivula H, van Dam T, Davis JL (2003) Vertical crustal motion observed in the BIFROST project. J Geodyn 35:425–441

    Article  Google Scholar 

  • Schuh H, Easterman G, Cretaux JF, Berge-Nguyen M, van Dam T (2004) Investigation of hydrological and atmospheric loading by space geodetic techniques, in international workshop on satellite altimetry for Geodesy, Geophysics and Oceanography, IAG symposium, vol. 126, pp 123–132

  • Steigenberger P, Rothacher M, Schmid R, Rülke A, Fritsche M, Dietrich R, Tesmer V (2009) Effects of different antenna phase center models on GPS-derived reference frame. Geodetic Ref Frames Int Assoc Geodesy Symposia 134:83–88

    Article  Google Scholar 

  • Tesmer V, Steigenberger P, van Dam T, Mayer-Gürr T (2011) Vertical deformations from homogeneously processed GRACE and global GPS long-term series. J Geod 85:291–310. doi:10.1007/s00190-010-0437-8

    Article  Google Scholar 

  • Tregoning P, van Dam T (2005) Atmospheric pressure loading corrections applied to GPS data at the observation level. Geophys. Res Lett 32(L22310). doi:10.1029/2005GL024104

  • Tregoning P, Watson C, Ramillien G, McQueen H, Zhang J (2009) Detecting hydrologic deformation using GRACE and GPS. Geophys. Res Lett 36(L15401). doi:10.1029/2009GL038718

  • van Dam T, Blewitt G, Heflin M (1994) Atmospheric pressure loading effects on global positioning system coordinate determinations. J Geophys Res 99(B12):23939–23950

    Article  Google Scholar 

  • van Dam TM, Herring TA (1994) Detection of atmospheric pressure loading using very long baseline interferometry measurements. J Geophys Res 99(B3). doi:10.1029/93JB02758

  • van Dam TM, Wahr J (1987) Displacements of the Earth’s surface due to atmospheric loading: effects on gravity and baseline measurements. J Geophys Res 92:1282–1286

    Google Scholar 

  • van Dam TM, Wahr J, Chao Y, Leuliette E (1997) Predictions of crustal deformation and of geoid and sea-level variability caused by oceanic and atmospheric loading. Geophys J Int 99:507–517

    Article  Google Scholar 

  • van Dam TM, Wahr JM (1998) Modeling environmental loading effects: a review. Phys Chem Earth 23:1077–1086

    Article  Google Scholar 

  • van Dam T, Wahr J, Milly PCD, Shmakin AB, Blewitt G, Lavallée D, Larson KM (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28(4):651–654

    Article  Google Scholar 

  • van Dam T, Altamimi Z, Collilieux X, Ray J (2010) Topographically induced height errors in predicted atmospheric loading effects. J Geophys Res 115(B07415). doi:10.1029/2009JB006810

  • van Dam T (2010) Updated October 2010. NCEP Derived 6-hourly, global surface displacements at 2.5 x 2.5 degree spacing. Data set accessed YYYY-MM-DD at http://geophy.uni.lu/ncep-loading.html

  • van Dam T (2010) Updated October 2010. GLDAS derived monthly, global surface displacements at 2.5 x 2.5 degree spacing. Data set accessed YYYY-MM-DD at http://geophy.uni.lu/ggfc_hydrology.html

  • van Dam T, Collilieux X, Wuite J, Altamimi Z, Ray J (2012) Nontidal ocean loading effects in GPS height time series. J Geodyn doi:10.1007/s00190-012-0564-5

  • Wang M, Shen ZK, Dong DN (2005) Effects of non-tectonic crustal deformation on continuous GPS position time series and correction to them. Chin J Geophys (in Chinese) 48(5):1045–1052

    Google Scholar 

  • Williams SDP, Penna NT (2011) Non-tidal ocean loading effects on geodetic GPS heights. Geophys Res Lett 38(L09314). doi:10.1029/2011GL046940

  • Yuan LG, Ding XL, Chen W, Kwok S, Chen SB, Hong BS, Zhou JT (2008) Characteristics of daily position time series from the Hong Kong GPS fiducial network. Chin J Geophys 5l(5):1372– 1384

    Google Scholar 

  • Yan HM, Chen W, Zhu YZ, Zhang WM, Zhong M (2009) Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes. Geophys Res Lett 36(L13301). doi:10.1029/2009GL038152

  • Zerbini S, Richter B, Negusini M, Romagnoli C, Simon D, Domenichini F, Schwahn W (2001) Height and gravity variations by continuous GPS, gravity and environmental parameter observations in the southern Po Plain, near Bologna, Italy. Earth Planet Sci Lett 192(3):267–279

    Google Scholar 

  • Zerbini S, Matonti F, Raicich F, Richter B, van Dam T (2004) Observing and assessing non tidal ocean, continuous GPS and gravity data in the Adriatic area. Geophys Res Lett 31(L23609). doi:10.1029/2004GL021185

Download references

Acknowledgments

We thank the GGFC and NRCan for making the global loading and IGS station coordinate time series freely available. We thank D. N. Dong for providing the QOCA software. Figures in this paper are plotted with the GMT and MATLAB software. This research is supported by the National Natural Science Foundation of China (41074022), the National 863 program of China (2012AA12A209), together with the Independent Research Project of Wuhan University (3103002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, W., Li, Z., van Dam, T. et al. Comparative analysis of different environmental loading methods and their impacts on the GPS height time series. J Geod 87, 687–703 (2013). https://doi.org/10.1007/s00190-013-0642-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-013-0642-3

Keywords

Navigation