Skip to main content
Log in

Estimates of Vertical Velocity Errors for IGS ITRF2014 Stations by Applying the Improved Singular Spectrum Analysis Method and Environmental Loading Models

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

A reliable subtraction of seasonal signals from the Global Positioning System (GPS) position time series is beneficial for the accuracy of derived velocities. In this research, we propose a two-stage solution of the problem of a proper determination of seasonal changes. We employ environmental loading models (atmospheric, hydrological and ocean non-tidal) with a dominant annual signal of amplitudes in their superposition of up to 12 mm and study the seasonal signal (annual and semi-annual) estimates that change over time using improved singular spectrum analysis (ISSA). Then, this deterministic model is subtracted from GPS position time series. We studied data from 376 permanent International GNSS Service (IGS) stations, derived as the official contribution to International Terrestrial Reference Frame (ITRF2014) to measure the influence of applying environmental loading models on the estimated vertical velocity. Having removed the environmental loadings directly from the position time series, we noticed the evident change in the power spectrum for frequencies between 4 and 80 cpy. Therefore, we modelled the seasonal signal in environmental models using the ISSA approach and subtracted it from GPS vertical time series to leave the noise character of the time series intact. We estimated the velocity dilution of precision (DP) as a ratio between classical Weighted Least Squares and ISSA approach. For a total number of 298 out of the 376 stations analysed, the DP was lower than 1. This indicates that when the ISSA-derived curve was removed from the GPS data, the error of velocity becomes lower than it was before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agnew, D. C., & Larson, K. M. (2007). Finding the repeat times of the GPS constellation. GPS Solutions, 11(1), 71–76. doi:10.1007/s10291-006-0038-4.

    Article  Google Scholar 

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. doi:10.1109/TAC.1974.1100705.

    Article  Google Scholar 

  • Allen, M. R., & Robertson, A. W. (1996). Distinguishing modulated oscillations from coloured noise in multivariate datasets. Climate Dynamics, 12, 772–786. doi:10.1007/s003820050142.

    Article  Google Scholar 

  • Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modelling nonlinear station motions. Journal of Geophysical Research: Solid Earth. doi:10.1002/2016JB013098.

    Google Scholar 

  • Amiri-Simkooei, A. R. (2013). On the nature of GPS draconitic year periodic pattern in multivariate position time series. Journal of Geophysical Research: Solid Earth, 118(5), 2500–2511. doi:10.1002/jgrb.50199.

    Google Scholar 

  • Blewitt, G., & Lavallée, D. (2002). Effect of annual signals on geodetic velocity. Journal of Geophysical Research, 107, ETG 9-1–ETG 9-11. doi:10.1029/2001JB000570.

    Article  Google Scholar 

  • Blewitt, G., Lavallée, D., Clarke, P., & Nurutdinov, K. (2001). A new global mode of Earth deformation: seasonal cycle detected. Science, 294, 2342–2345. doi:10.1126/science.1065328.

    Article  Google Scholar 

  • Bogusz, J., & Figurski, M. (2014). Annual signals observed in regional GPS networks. Acta Geodynamica et Geomaterialia, 11(2), 125–131. doi:10.13168/AGG.2014.0003.

    Google Scholar 

  • Bogusz, J., Gruszczynska, M., Klos, A., & Gruszczynski, M. (2015). Non-parametric estimation of seasonal variations in GPS-derived time series. Springer IAG Symposium Series, 146. Springer Berlin Heidelberg, doi:10.1007/1345_2015_191.

  • Bogusz, J., & Klos, A. (2016). On the significance of periodic signals in noise analysis of GPS station coordinates time series. GPS Solutions. doi:10.1007/s10291-015-0478-9.

    Google Scholar 

  • Bogusz, J., Klos, A., Grzempowski, P., & Kontny, B. (2014). Modelling velocity field in regular grid on the area of Poland on the basis of the velocities of European permanent stations. Pure and Applied Geophysics, 171(6), 809–833. doi:10.1007/s00024-013-0645-2.

    Article  Google Scholar 

  • Bos, M. S., Bastos, L., & Fernandes, R. M. S. (2010). The influence of seasonal signals on the estimation of the tectonic motion in short continuous GPS time-series. Journal of Geodynamics, 49, 205–209. doi:10.1016/j.jog.2009.10.005.

    Article  Google Scholar 

  • Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., & Bastos, L. (2008). Fast error analysis of continuous GPS observations. Journal of Geodesy, 82, 157–166. doi:10.1007/s00190-007-0165-x.

    Article  Google Scholar 

  • Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., & Bastos, L. (2013). Fast error analysis of continuous GNSS observations with missing data. Journal of Geodesy, 87(4), 351–360. doi:10.1007/s00190-012-0605-0.

    Article  Google Scholar 

  • Broomhead, D. S., & King, G. P. (1986). Extracting qualitative dynamics from experimental data. Physica, 20(2–3), 217–236. doi:10.1016/0167-2789(86)90031-X.

    Google Scholar 

  • Chen, Q., van Dam, T., Sneeuw, N., Collilieux, X., Weigelt, M., & Rebischungc, P. (2013). Singular spectrum analysis for modelling seasonal signals from GPS time series. Journal of Geodynamics, 72, 25–35. doi:10.1016/j.jog.2013.05.005.

    Article  Google Scholar 

  • Collilieux, X., Altamimi, Z., Coulot, D., Ray, J., & Sillard, P. (2007). Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. Journal of Geophysical Research, 112, B12403. doi:10.1029/2007JB004933.

    Article  Google Scholar 

  • Collilieux, X., van Dam, T., Ray, J., Coulot, D., Métivier, L., & Altamimi, Z. (2012). Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. Journal of Geodesy, 86, 1–14. doi:10.1007/s00190-011-0487-6.

    Article  Google Scholar 

  • Dach, R., Boehm, J., Lutz, S., Steigenberger, P., & Beutler, G. (2011). Evaluation of the impact of atmospheric pressure loading modelling on GNSS data analysis. Journal of Geodesy, 85(2), 75–91. doi:10.1007/s00190-010-0417-z.

    Article  Google Scholar 

  • Davis, J. L., Wernicke, B. P., & Tamisiea, M. E. (2012). On seasonal signals in geodetic time series. Journal of Geophysical Research, 117(B1), B01403. doi:10.1029/2011JB008690.

    Article  Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597. doi:10.1002/qj.828.

    Article  Google Scholar 

  • Dill, R., & Dobslaw, H. (2013). Numerical simulations of global-scale high-resolution hydrological crustal deformations. Journal of Geophysical Research: Solid Earth, 118, 5008–5017. doi:10.1002/jgrb.50353.

    Google Scholar 

  • Dong, D., Fang, P., Bock, Y., Cheng, M. K., & Miyazaki, S. (2002). Anatomy of apparent seasonal variations from GPS-derived site position time series. Journal of Geophysical Research, 107(B4), 2075. doi:10.1029/2001JB000573.

    Article  Google Scholar 

  • Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297–356. doi:10.1016/0031-9201(81)90046-7.

    Article  Google Scholar 

  • Farrell, W. E. (1972). Deformation of the earth by surface loads. Reviews of Geophysics, 10(761–797), 1972.

    Google Scholar 

  • Fratepietro, F., Baker, T. F., Williams, S. D. P., & Van Camp, M. (2006). Ocean loading deformations caused by storm surges on the northwest European shelf. Geophysical Research Letters, 33, L06317. doi:10.1029/2005GL025475.

    Article  Google Scholar 

  • Freymueller, J.T. (2009). Seasonal position variations and regional Reference frame realization. In H. Drewes (Ed.), Geodetic reference frames, International Association of Geodesy Symposia 134 (pp. 191–196). Springer Berlin Heidelberg, doi:10.1007/978-3-642-00860-3_30.

  • Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., et al. (2002). Advanced spectral methods for climatic time series. Reviews of Geophysics, 40, 1-1–1-41. doi:10.1029/2000RG000092.

    Article  Google Scholar 

  • Gruszczynska, M., Klos, A., Gruszczynski, M., & Bogusz, J. (2016). Investigation of time-changeable seasonal components in the GPS height time series: a case study for Central Europe. Acta Geodynamica et Geomaterialia, 13(3), 281–289. doi:10.13168/AGG.2016.0010.

    Article  Google Scholar 

  • Jiang, W., Li, Z., van Dam, T., & Ding, W. (2013). Comparative analysis of different environmental loading methods and their impacts on the GPS height time series. Journal of Geodesy, 87, 687–703. doi:10.1007/s00190-013-0642-3.

    Article  Google Scholar 

  • Kalenda, P., & Neumann, L. (2014). The Tilt of the Elevator Shaft of Bunker Skutina. Transactions of the VSB: Technical University of Ostrava., 60(1), 55–61. doi:10.22223/tr.2014-1/1978.

    Google Scholar 

  • Kenyeres, A., & Bruyninx, C. (2009). Noise and Periodic Terms in the EPN Time Series. In H. Drewes (Ed.), Geodetic reference frame: International Association of Geodesy Symposia 134 (pp. 143–148). Springer Berlin Heidelberg, doi:10.1007/978-3-642-00860-3_22.

  • Klos, A., Bogusz, J., Figurski, M., & Gruszczynski, M. (2016). Error analysis for European IGS stations. Studia Geophysica et Geodaetica, 60, 17–34. doi:10.1007/s11200-015-0828-7.

    Article  Google Scholar 

  • Klos, A., Hunegnaw, A., Teferle, F. N., Abraha, K. E., Ahmed, F., & Bogusz, J. (2017). Noise characteristics in zenith total delay from homogeneously reprocessed GPS time series. Atmospheric Measurement Techniques Discussion. doi:10.5194/amt-2016-385. (in review).

    Google Scholar 

  • Kontny, B., & Bogusz, J. (2012). Models of vertical movements of the Earth crust surface in the area of Poland derived from leveling and GNSS data. Acta Geodynamica et Geomaterialia, 9(3), 331–337.

    Google Scholar 

  • Krásná, H., Malkin, Z., & Böhm, J. (2015). Non-linear VLBI station motions and their impact on the celestial reference frame and Earth orientation parameters. Journal of Geodesy, 89, 1019–1033. doi:10.1007/s00190-015-0830-4.

    Article  Google Scholar 

  • Kumar, A., Walia, V., Arore, B. R., Yanh, T. F., Lin, S.-J., Fu, Ch-Ch., et al. (2015). Identifications and removal of diurnal and semidiurnal variations in radon time series data of Hsinhua monitoring station in SW Taiwan using singular spectrum analysis. Natural Hazards, 79(1), 317–330. doi:10.1007/s11069-015-1844-1.

    Article  Google Scholar 

  • Lee, T. K. M., Lim, J. G., Sanei, S., & Gan, S. S. W. (2015). Advances on singular spectrum analysis of rehabilitative assessment data. Journal of Medical Imaging and Health Informatics, 5(2), 350–358. doi:10.1166/jmihi.2015.1399.

    Article  Google Scholar 

  • Mao, A., Harrison, C. H. G. A., & Dixon, T. H. (1999). Noise in GPS coordinate time series. Journal of Geophysical Research, 104(B2), 2797–2816. doi:10.1029/1998JB900033.

    Article  Google Scholar 

  • Menemenlis, D., Campin, J., Heimbach, P., Hill, C., Lee, T., Nguyen, A., et al. (2008). ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, 31, 13–21.

    Google Scholar 

  • Neumann, L. (2007). Static pendulum with contactless 2D sensor measurements opens the question of gravity dynamic and gravity noise on earth’s surface. Physics Essays, 20(4), 535. doi:10.4006/1.3254506.

    Google Scholar 

  • Penna, N. T., King, M. A., & Stewart, M. P. (2007). GPS height time series: Short-period origins of spurious long-period signals. Journal of Geophysical Research, 112(B2), B02402. doi:10.1029/2005JB004047.

    Article  Google Scholar 

  • Penna, N. T., & Stewart, M. P. (2003). Aliased tidal signatures in continuous GPS height time series. Geophysical Research Letters, 30(23), 2184. doi:10.1029/2003GL018828.

    Article  Google Scholar 

  • Petrov, L., & Boy, J.-P. (2004). Study of the atmospheric pressure loading signal in VLBI observations. Journal of Geophysical Research, 109, B03405. doi:10.1029/2003JB002500.

    Article  Google Scholar 

  • Ray, J., Altamimi, Z., Collilieux, X., & van Dam, T. (2008). Anomalous harmonics in the spectra of GPS position estimates. GPS Solutions, 12(1), 55–64. doi:10.1007/s10291-007-0067-7.

    Article  Google Scholar 

  • Rebischung, P., Altamimi, Z., Ray, J., & Garayt, B. (2016). The IGS contribution to ITRF2014. Journal of Geodesy, 90(7), 611–630. doi:10.1007/s00190-016-0897-6.

    Article  Google Scholar 

  • Reichle, R. H., Koster, R. D., De Lannoy, G. J. M., Forman, B. A., Liu, Q., Mahanama, S. P. P., et al. (2011). Assessment and enhancement of MERRA land surface hydrology estimates. Journal of Climate, 24, 6322–6338. doi:10.1175/JCLI-D-10-05033.1.

    Article  Google Scholar 

  • Rodionov, S., & Overland, J. E. (2005). Application of a sequential regime shift detection method to the Bering Sea ecosystem. ICES Journal of Marine Science, 62, 328–332. doi:10.1016/j.icesjms.2005.01.013.

    Article  Google Scholar 

  • Santamaria-Gomez, A., & Memin, A. (2015). Geodetic secular velocity errors due to interannual surface loading deformation. Geophysical Journal International, 202, 763–767. doi:10.1093/gji/ggv190.

    Article  Google Scholar 

  • Schoellhamer, D. H. (2001). Singular spectrum analysis for time series with missing data. Geophysical Research Letters, 28, 3187–3190. doi:10.1029/2000GL012698.

    Article  Google Scholar 

  • Shen, Y., Peng, F., & Li, B. (2015). Improved singular spectrum analysis for time series with missing data. Nonlinear Processes in Geophysics, 22, 371–376. doi:10.5194/npg-22-371-2015.

    Article  Google Scholar 

  • Teferle, F. N., Bingley, R. M., Dodson, A. H., Penna, N. T., & Baker, T. F. (2002). Using GPS to separate crustal movements and sea level changes at tide gauges in the UK. In H. Drewes, A. H. Dodson, L. P. S. Fortes, L. Sanchez, & P. Sandoval (Eds.), Vertical reference systems (pp. 264–269). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Tregoning, P., & van Dam, T. (2005). Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations. Journal of Geophysical Research, 110, B03408. doi:10.1029/2004JB003334.

    Article  Google Scholar 

  • Tregoning, P., & Watson, C. (2009). Atmospheric effects and spurious signals in GPS analyses. Journal of Geophysical Research, 114, B09403. doi:10.1029/2009JB006344.

    Google Scholar 

  • van Dam, T., Collilieux, X., Wuite, J., Altamimi, Z., & Ray, J. (2012). Nontidal ocean loading: amplitudes and potential effects in GPS height time series. Journal of Geodesy, 86, 1043–1057. doi:10.1007/s00190-012-0564-5.

    Article  Google Scholar 

  • van Dam, T., & Wahr, J. M. (1987). Displacements of the Earth’s surface due to atmospheric loading: effects on gravity and baseline measurements. Journal of Geophysical Research: Solid Earth, 92(B2), 1281–1286. doi:10.1029/JB092iB02p01281.

    Article  Google Scholar 

  • van Dam, T., Wahr, J., Chao, Y., & Leuliette, E. (1997). Predictions of crustal deformations and of geoid and sea-level variability caused by oceanic and atmospheric loading. Geophysical Journal International, 129, 507–517. doi:10.1111/j.1365-246X.1997.tb04490.x.

    Article  Google Scholar 

  • van Dam, T., Wahr, J., & Lavallee, D. (2007). A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe. Journal of Geophysical Research, 112, B03404. doi:10.1029/2006JB004335.

    Google Scholar 

  • van Dam, T., Wahr, J., Milly, P. C. D., Shmakin, A. B., Blewitt, G., Lavallée, D., et al. (2001). Crustal displacements due to continental water loading. Geophysical Research Letters, 28(4), 651–654. doi:10.1029/2000GL012120.

    Article  Google Scholar 

  • Vautard, R., & Ghil, M. (1989). Singular Spectrum Analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena, 35, 395–424. doi:10.1016/0167-2789(89)90077-8.

    Article  Google Scholar 

  • Vautard, R., Yiou, P., & Ghil, M. (1992). Singular spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58, 95–126. doi:10.1016/0167-2789(92)90103-T.

    Article  Google Scholar 

  • Welch, P. D. (1967). The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio Electroacoustics, 15, 70–73. doi:10.1109/TAU.1967.1161901.

    Article  Google Scholar 

  • Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). generic mapping tools: improved version released. Eos, Transactions, American Geophysical Union, 94(45), 409–410. doi:10.1002/2013EO450001.

    Article  Google Scholar 

  • Williams, S. D. P., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R. M., Prawirodirdjo, L., et al. (2004). Error analysis of continuous GPS position time series. Journal of Geophysical Research, 109, B03412. doi:10.1029/2003JB002741.

    Google Scholar 

  • Williams, S. D. P., & Penna, N. T. (2011). Non-tidal ocean loading effects on geodetic GPS heights. Geophysical Research Letters, 38, L09314. doi:10.1029/2011GL046940.

    Article  Google Scholar 

  • Wu, C. L., & Chau, K. W. (2011). Rainfall–runoff modelling using artificial neural network coupled with singular spectrum analysis. Journal of Hydrology, 399(3–4), 394–409. doi:10.1016/j.jhydrol.2011.01.017.

    Article  Google Scholar 

  • Xu, C., & Yue, D. (2015). Monte Carlo SSA to detect time variable seasonal oscillations from GPS-derived site position time series. Tectonophysics, 665, 118–126. doi:10.1016/j.tecto.2015.09.029.

    Article  Google Scholar 

  • Yan, H., Chen, W., Zhu, Y., Zhang, W., & Zhong, M. (2009). Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes. Geophysical Research Letters, 36, L13301. doi:10.1029/2009GL038152.

    Article  Google Scholar 

  • Zerbini, S., Matonti, F., Raicich, F., Richter, B., & van Dam, T. (2004). Observing and assessing nontidal ocean loading using ocean, continuous GPS and gravity data in the Adriatic area. Geophysical Research Letters, 31, L23609. doi:10.1029/2004GL021185.

    Article  Google Scholar 

  • Zerbini, S., Raicich, F., Errico, M., & Cappello, G. (2013). An EOF and SVD analysis of interannual variability of GPS coordinates, environmental parameters and space gravity data. Journal of Geodynamics, 67, 111–124. doi:10.1016/j.jog.2012.04.006.

    Article  Google Scholar 

  • Zhang, J., Hassani, H., Xie, H., & Zhang, X. (2014). Estimating multi-country prosperity index: A two-dimensional singular spectrum analysis approach. Journal of Systems Science and Complexity, 27(1), 56–74. doi:10.1007/s11424-014-3314-3.

    Article  Google Scholar 

Download references

Acknowledgements

Anna Klos, Marta Gruszczynska and Janusz Bogusz are financed by the Polish National Science Centre, Grant No. UMO-2014/15/B/ST10/03850. Machiel Simon Bos is financially supported by Portuguese funds through FCT in the scope of the Project IDL-FCT-UID/GEO/50019/2013 and Grant Number SFRH/BPD/89923/2012. Jean-Paul Boy is partly funded by CNES (Centre National d’Etudes Spatiales), through its TOSCA program. Loading time series used here are available at EOST/IPGS loading service (http://loading.u-strasbg.fr). Maps and charts were plotted in the Generic Mapping Tool (Wessel et al. 2013). IGS time series were accessed from ftp://igs-rf.ensg.eu/pub/repro2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Gruszczynska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klos, A., Gruszczynska, M., Bos, M.S. et al. Estimates of Vertical Velocity Errors for IGS ITRF2014 Stations by Applying the Improved Singular Spectrum Analysis Method and Environmental Loading Models. Pure Appl. Geophys. 175, 1823–1840 (2018). https://doi.org/10.1007/s00024-017-1494-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1494-1

Keywords

Navigation