Skip to main content

Advertisement

Log in

Consistent estimation of geodetic parameters from SLR satellite constellation measurements

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In this paper, we consistently estimate geodetic parameters such as weekly 3-D station coordinates, Earth orientation parameters (EOP) including daily x/y-pole coordinates and the excess length of day \(\Delta \hbox {LOD}\), and selected weekly Earth’s gravitational field (Stokes) coefficients up to degree and order 6 from Satellite Laser Ranging measurements to up to 11 geodetic satellites. The SLR constellation consists of LAGEOS-1/2, Etalon-1/2, Stella, Starlette, Ajisai, Larets, LARES, BLITS and WESTPAC, and its observations cover a time span of 38 years ranging from February 16, 1979, to April 30, 2017. If multiple satellites with various altitudes and orbit inclinations are combined, correlations between estimated parameters are significantly reduced. This allows us (i) to investigate the ability of satellite constellations to reduce existing correlations and (ii) to estimate reliable parameters with higher precision compared to the standard 4-satellite constellation (LAGEOS-1/2, Etalon-1/2) which is currently used by the International Laser Ranging Service for the determination of the Terrestrial Reference Frame (TRF) and EOP products. In particular, the Stokes coefficients, EOP and TRF datum parameters (three translations, three rotations, one scale factor), which are highly correlated with satellite-specific orbit parameters, are improved. From our investigations, we found for an 11-satellite solution compared to the above-mentioned 4-satellite solution a decrease in the scatter of the TRF datum parameters of up to 37%, the transformation residuals are decreased by up to 22%, the scatter of the EOP is decreased by up to 22%, and their mean values are decreased by up to 84% w.r.t. the reference solutions. The largest improvement is obtained for the Stokes coefficients which significantly benefit from a combination of multiple satellites (inclinations and orbit altitudes). In total, single coefficients are improved by up to 93% and the overall improvement is up to 74%. Moreover, it could be clearly identified that Ajisai significantly disturbs the TRF solution due to an erroneous center-of-mass correction. We further quantify the impact of specific satellites on the determination of different geodetic parameters and finally evaluate the potential of the existing SLR-tracked spherical satellite constellation to support the goals of GGOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html.

  2. http://geodesy.jcet.umbc.edu/ILRS_AWG_MONITORING/.

References

  • Abbondanza C, Chin TM, Gross RS, Heflin MB, Parker J, Soja BS, van Dam T, Wu X (2017) JTRF2014, the JPL Kalman filter, and smoother realization of the International Terrestrial Reference System. J Geophys Res Solid Earth 122:8474–8510. https://doi.org/10.1002/2017JB014360

    Article  Google Scholar 

  • Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth 121:6109–6131. https://doi.org/10.1002/2016JB013098

    Article  Google Scholar 

  • Biancale R, Bode A (2006) Mean annual and seasonal atmospheric tide models based on 3-hourly and 6-hourly ECMWF surface pressure data. GeoForschungsZentrum (GFZ) Scientific Technical Report STR06/01. https://doi.org/10.2312/GFZ.b103-06011

  • Bloßfeld M (2015) The key role of Satellite Laser Ranging towards the integrated estimation of geometry, rotation and gravitational field of the Earth. Ph.D. thesis, Deutsche Geodätische Kommission (DGK) Reihe C, No. 745, Verlag der Bayerischen Akademie der Wissenschaften. ISBN: 978-3-7696-5157-7

  • Bloßfeld M, Gerstl M, Hugentobler U, Angermann D, Müller H (2014) Systematic effects in LOD from SLR observations. Adv Space Res 54:1049–1063. https://doi.org/10.1016/j.asr.2014.06.009

    Article  Google Scholar 

  • Bloßfeld M, Müller H, Gerstl M, Stefka V, Bouman J, Göttl F, Horwath M (2015) Second-degree Stokes coefficients from multi-satellite SLR. J Geod 89(9):857–871. https://doi.org/10.1007/s00190-015-0819-z

    Article  Google Scholar 

  • Bloßfeld M, Stefka V, Müller H, Gerstl M (2016) Satellite laser ranging—a tool to realize GGOS? In: Rizos C, Willis P (eds) IAG 150 years, IAG Symposia, vol 143, pp 540–547. https://doi.org/10.1007/1345_2015_202

  • Bowman BR, Tobiska WK, Marcos FA, Huang CY, Lin CS, Burke WJ (2008) A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. AIAA 2008-6438

  • Cheng M, Ries JC, Tapley BD (2011) Variations of the Earth’s figure axis from satellite laser ranging and GRACE. J Geophys Res 116:B01409. https://doi.org/10.1029/2010JB000850

    Google Scholar 

  • Desai SD (2002) Observing the pole tide with satellite altimetry. J Geophys Res 107(C11):7-1–7-13. https://doi.org/10.1029/2001JC001224

    Article  Google Scholar 

  • Flechtner F, Sneeuw N, Schuh W-D (eds) (2014) Observation of the System Earth from Space-CHAMP, GRACE, GOCE and future missions. GEOTECHNOLOGIEN Science Report No. 20, Advanced Technologies in Earth Sciences. Springer, Berlin Heidelberg, 230 pp, Hardcover. ISBN: 978-3-642-32134-4. https://doi.org/10.1007/978-3-642-32135-1

  • Floberghagen R (2001) The far side. Lunar gravimetry into the third millennium. Ph.D. thesis, Technische Universiteit Delft, 283 pp. ISBN: 9090146938

  • Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, Steiger C, Piñeiro J, da Costa A (2011) Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J Geod 85(11):749–758. https://doi.org/10.1007/s00190-011-0498-3

    Article  Google Scholar 

  • Folkner WF, Williams JG, Boggs DH (2008) Planetary ephemeris DE421 for Phoenix navigation. IOM 343R-08-002

  • Förste C, Bruinsma S, Shako R, Marty JC, Flechtner F, Abrikosov O, Dahle C, Lemoine JM, Neumayer KH, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6A new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophys Res Abstracts, 13, EGU2011-3242-2, EGU General Assembly

  • Gerstl M (1997) Parameterschätzung in DOGS-OC. In: DGFI Interner Bericht, MG/01/1996/DGFI, 2nd edn (in German)

  • Knocke PC, Ries JC, Tapley BD (1988) Earth radiation pressure effects on satellites. AIAA/AAS Astrodynamics Conference, AIAA 88-4292, Minneapolis, MN. https://doi.org/10.2514/6.1988-4292

  • Konopliv AS, Asmar SW, Carranza E, Sjogren WL, Yuan D-N (2001) Recent gravity models as a result of the Lunar Prospector Mission. Icarus 150(1):1–18. https://doi.org/10.1006/icar.2000.6573

    Article  Google Scholar 

  • Luceri V, Pavlis EC, Pace B, König D, Kuzmicz-Cieslak M, Bianco G (2015) Overview of the ILRS contribution to the development of ITRF2013. In: REFAG 2014, van Dam T (ed), International Association of Geodesy Symposia, 146. Springer. https://doi.org/10.1007/1345_2015_153

  • Mayer-Gürr T, Behzadpour S, Ellmer M, Kvas A, Klinger B, Zehentner N (2016) ITSG-Grace2016—monthly and daily gravity field solutions from GRACE. GFZ Data Services. https://doi.org/10.5880/icgem.2016.007

  • Mendes VB, Pavlis EC (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett 31:L14602. https://doi.org/10.1029/2004GL020308

    Article  Google Scholar 

  • Otsubo T, Appleby GM (2003) System-dependent center-of-mass correction for spherical geodetic satellites. J Geophys Res 108(B4):2201. https://doi.org/10.1029/2002JB002209

    Article  Google Scholar 

  • Otsubo T, Sherwood RA, Appleby GM, Neubert R (2015) Center-of-mass corrections for sub-cm-precision laser-ranging targets: Starlette, Stella and LARES. J Geod 89(4):303–312. https://doi.org/10.1007/s00190-014-0776-y

    Article  Google Scholar 

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. https://doi.org/10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Petit G, Luzum B (eds) IERS Conventions (2010), IERS Technical Note No. 36, Frankfurt am Main, Germany, Verlag des Bundesamts für Kartographie und Geodäsie

  • Plag H-P, Pearlman M (2009) Global geodetic observing system-meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin Heidelberg, New York, Plag H-P, Pearlman M (eds), 332 p. https://doi.org/10.1007/978-3-642-02687-4

  • Ray RD, Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann Geophys 21:1897–1910. https://doi.org/10.5194/angeo-21-1897-2003

    Article  Google Scholar 

  • Reigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30(2):129–134. https://doi.org/10.1016/S0273-1177(02)00276-4

    Article  Google Scholar 

  • Rudenko S, Dettmering D, Esselborn S, Schöne T, Förste C, Lemoine J-M, Ablain M, Alexandre D, Neumayer K-H (2014) Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends. Adv Space Res 54(1):92–118. https://doi.org/10.1016/j.asr.2014.03.010

    Article  Google Scholar 

  • Savcenko R, Bosch W (2012) EOT11A-Empirical Ocean Tide model from multi-mission satellite altimetry. Report No. 89, Deutsches Geodätisches Forschungsinstitut (DGFI), Munich, Germany

  • Seitz M, Bloßfeld M, Angermann D, Schmid R, Gerstl M, Seitz F (2016) The new DGFI-TUM realization of the ITRS: DTRF2014 (data). Deutsches Geodätisches Forschungsinstitut, Munich, Germany. https://doi.org/10.1594/PANGAEA.864046 (Open Access)

  • Sośnica K, Jäggi A, Thaller D, Beutler G, Dach R (2014) Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame. J Geod 88(8):789–804. https://doi.org/10.1007/s00190-014-0722-z

    Article  Google Scholar 

  • Sośnica K, Jäggi A, Meyer U, Thaller D, Beutler G, Arnold D, Dach R (2015) Time variable Earths gravity field from SLR satellites. J Geod 89(10):945–960. https://doi.org/10.1007/s00190-015-0825-1

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. https://doi.org/10.1029/2004GL019920

    Article  Google Scholar 

  • Zelensky NP, Lemoine FG, Chinn DS, Melachroinos S, Beckley BD, Wiser-Beall J, Bordyugov O (2014) Estimated SLR station position and network frame sensitivity to time-varying gravity. J Geod 88(6):517–537. https://doi.org/10.1007/s00190-014-0701-4

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was carried out within the project “Consistent dynamic satellite reference frames and terrestrial geodetic datum parameters” funded by the German Research Foundation (DFG) via the DFG Research Unit 1503 “Space-Time Reference Systems for Monitoring Global Change and for Precise Navigation in Space.” The authors want to thank the Journal of Geodesy Editor-in-Chief Prof. Jürgen Kusche, the guest editor to this special issue Dr. Robert Heinkelmann and the three anonymous reviewers for their fruitful discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathis Bloßfeld.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloßfeld, M., Rudenko, S., Kehm, A. et al. Consistent estimation of geodetic parameters from SLR satellite constellation measurements. J Geod 92, 1003–1021 (2018). https://doi.org/10.1007/s00190-018-1166-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-018-1166-7

Keywords

Navigation