Skip to main content
Log in

On the application of Monte Carlo singular spectrum analysis to GPS position time series

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Singular spectrum analysis (SSA) has recently been applied to various geodetic time series studies. As a data-adaptive method, SSA is capable of extracting signals with non-constant phase and amplitudes. Although SSA is a competent method in the presence of white noise, the contribution of colored noise, having semi-periodic behavior, degrades its performance. Parts of colored noise can be absorbed in the SSA eigenmodes, which specifies signals and hence resulting in spurious modulation or losing significant signals. Signals and colored noise are thus to be discriminated in the signal identification procedure. Monte Carlo SSA (MCSSA) in its original formulation, providing a significance test against the AR(1) noise null hypothesis, can be misinterpreted when other colored noise structures contribute to the series. We propose an algorithm for MCSSA that is not limited to the AR(1) noise hypothesis. It estimates the noise model parameters using LS-VCE and generates the surrogate data using the Cholesky decomposition. The algorithm is adapted to GPS position time series where the underlying noise is a combination of white noise and flicker noise. GPS position time series, postulated real situation, are first simulated to include annual and semiannual signals plus white and flicker noise. The results indicate that MCSSA can extract the annual and semiannual signals with 2.11 and 1.25 mm amplitudes (the global mean values) from 20-year-long time series, with 95% confidence level, if flicker noise is less than 17 and 13 \( {\text{mm/year}}^{1/4} \), respectively. The longer the time series or the stronger the signals are, the higher these thresholds will be. This conclusion is also verified when applying MCSSA to the up component of GPS position time series of 347 JPL stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allen MR, Smith LA (1996) Monte Carlo SSA: detecting irregular oscillations in the presence of colored noise. J Clim 9(12):3373–3404

    Article  Google Scholar 

  • Amiri-Simkooei A (2007) Least-squares variance component estimation: theory and GPS applications. Delft University of Technology, Delft

    Google Scholar 

  • Amiri-Simkooei AR (2009) Noise in multivariate GPS position time-series. J Geod 83(2):175–187. https://doi.org/10.1007/s00190-008-0251-8

    Article  Google Scholar 

  • Amiri-Simkooei AR, Tiberius CCJM, Teunissen PJG (2007) Assessment of noise in GPS coordinate time series: Methodology and results. J Geophys Res Solid Earth. https://doi.org/10.1029/2006jb004913

    Article  Google Scholar 

  • Amiri-Simkooei AR, Zangeneh-Nejad F, Asgari J (2013) Least-squares variance component estimation applied to GPS geometry-based observation model. J Surv Eng 139(4):176–187

    Article  Google Scholar 

  • Amiri-Simkooei AR, Mohammadloo TH, Argus DF (2017) Multivariate analysis of GPS position time series of JPL second reprocessing campaign. J Geodesy 91(6):685–704. https://doi.org/10.1007/s00190-016-0991-9

    Article  Google Scholar 

  • Amiri-Simkooei AR, Hosseini-Asl M, Asgari J, Zangeneh-Nejad F (2018) Offset detection in GPS position time series using multivariate analysis. GPS Solut 23(1):13. https://doi.org/10.1007/s10291-018-0805-z

    Article  Google Scholar 

  • Argus DF, Gordon RG, Heflin MB, Ma C, Eanes RJ, Willis P, Peltier WR, Owen SE (2010) The angular velocities of the plates and the velocity of Earth’s centre from space geodesy. Geophys J Int 180(3):913–960. https://doi.org/10.1111/j.1365-246X.2009.04463.x

    Article  Google Scholar 

  • Baarda W (1968) A testing procedure for use in geodetic networks. Technical report, vol. 2(5), Netherlands Geodetic Commission, Geodesy, New series, Delft

  • Bennett RA (2008) Instantaneous deformation from continuous GPS: contributions from quasi-periodic loads. Geophys J Int 174(3):1052–1064. https://doi.org/10.1111/j.1365-246X.2008.03846.x

    Article  Google Scholar 

  • Blewitt G, Lavallée D (2002) Effect of annual signals on geodetic velocity. J Geophys Res Solid Earth. 107(B7):ETG-9. https://doi.org/10.1029/2001jb000570

    Article  Google Scholar 

  • Bonforte A, Puglisi G (2006) Dynamics of the eastern flank of Mt. Etna volcano (Italy) investigated by a dense GPS network. J. Volcanol Geotherm Res 153(3):357–369. https://doi.org/10.1016/j.jvolgeores.2005.12.005

    Article  Google Scholar 

  • Bos MS, Fernandes RMS, Williams SDP, Bastos L (2008) Fast error analysis of continuous GPS observations. J Geodesy 82(3):157–166

    Article  Google Scholar 

  • Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Physica D 20(2–3):217–236

    Article  Google Scholar 

  • Cervelli PF, Fournier T, Freymueller J, Power JA (2006) Ground deformation associated with the precursory unrest and early phases of the January 2006 eruption of Augustine Volcano. Alaska. Geophys Res Lett. https://doi.org/10.1029/2006gl027219

    Article  Google Scholar 

  • Chen Q, van Dam T, Sneeuw N, Collilieux X, Weigelt M, Rebischung P (2013) Singular spectrum analysis for modeling seasonal signals from GPS time series. J Geodyn 72:25–35

    Article  Google Scholar 

  • Gentle JE (1998) Numerical Linear Algebra for Applications in Statistics. Springer, New York. https://doi.org/10.1007/978-1-4612-0623-1

    Book  Google Scholar 

  • Ghil M, Taricco C (1997) Advanced spectral analysis methods, past and present variability of the solar-terrestrial system: measurement, data analysis and theoretical models, pp 137–159

  • Ghil M, Allen M, Dettinger M, Ide K, Kondrashov D, Mann M, Robertson AW, Saunders A, Tian Y, Varadi F (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):1–11

    Article  Google Scholar 

  • Greco G, Kondrashov D, Kobayashi S, Ghil M, Branchesi M, Guidorzi C, Stratta G, Ciszak M, Marino F, Ortolan A (2016) Singular spectrum analysis for astronomical time series: constructing a parsimonious hypothesis test. In: Napolitano N, Longo G, Marconi M, Paolillo M, Iodice E (eds) The Universe of digital sky surveys. Astrophysics and space science proceedings, vol 42. Springer, Cham

    Google Scholar 

  • Groth A, Ghil M (2011) Multivariate singular spectrum analysis and the road to phase synchronization. Phys Rev E 84(3):036206

    Article  Google Scholar 

  • Gruszczynska M, Klos A, Gruszczynski M, Bogusz J (2016) Investigation of time-changeable seasonal components in the GPS height time series: a case study for Central Europe. Acta Geodyn Geomater 13(3):281–289

    Article  Google Scholar 

  • Gruszczynska M, Klos A, Rosat S, Bogusz J (2017) Deriving common seasonal signals in GPS position time series: by using multichannel singular spectrum analysis. Acta Geodyn Geomater. 14:273–284. https://doi.org/10.13168/agg.2017.0010

    Article  Google Scholar 

  • Hassani H (2007) Singular spectrum analysis: methodology and comparison. J Data Sci 5(2):239–257

    Google Scholar 

  • Johansson JM et al (2002) Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. J Geophys Res Solid Earth 107(B8):ETG 3-1–ETG 3-27. https://doi.org/10.1029/2001jb000400

    Article  Google Scholar 

  • Khazraei SM, Nafisi V, Amiri-Simkooei AR, Asgari J (2017) Combination of GPS and leveling observations and geoid models using least-squares variance component estimation. J Surv Eng 143(2):04016023

    Article  Google Scholar 

  • King MA et al (2010) Improved constraints on models of glacial isostatic adjustment: a review of the contribution of ground-based geodetic observations. Surv Geophys 31(5):465–507. https://doi.org/10.1007/s10712-010-9100-4

    Article  Google Scholar 

  • Klos A, Bos MS, Bogusz J (2017a) Detecting time-varying seasonal signal in GPS position time series with different noise levels. GPS Solutions 22(1):21. https://doi.org/10.1007/s10291-017-0686-6

    Article  Google Scholar 

  • Klos A, Gruszczynska M, Bos MS, Boy J-P, Bogusz J (2017b) Estimates of vertical velocity errors for IGS ITRF2014 stations by applying the improved singular spectrum analysis method and environmental loading models. Pure Appl Geophys. https://doi.org/10.1007/s00024-017-1494-1

    Article  Google Scholar 

  • Kondrashov D, Ghil M (2006) Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Process Geophys 13(2):151–159

    Article  Google Scholar 

  • Kreemer C, Blewitt G, Klein EC (2014) A geodetic plate motion and global strain rate model. Geochem Geophys Geosyst 15(10):3849–3889. https://doi.org/10.1002/2014GC005407

    Article  Google Scholar 

  • Lü W-C, Cheng S-G, Yang H-S, Liu D-P (2008) Application of GPS technology to build a mine-subsidence observation station. J China Univ Min Technol 18(3):377–380

    Article  Google Scholar 

  • Montillet JP, Williams SDP, Koulali A, McClusky SC (2015) Estimation of offsets in GPS time-series and application to the detection of earthquake deformation in the far-field. Geophys J Int 200(2):1207–1221. https://doi.org/10.1093/gji/ggu473

    Article  Google Scholar 

  • Nikolaidis R (2002) Observation of geodetic and seismic deformation with the Global Positioning System. University of California, San Diego

    Google Scholar 

  • Shen Y, Peng F, Li B (2015) Improved singular spectrum analysis for time series with missing data. Nonlinear Processes Geophys 22(4):371–376. https://doi.org/10.5194/npg-22-371-2015

    Article  Google Scholar 

  • Teunissen PJG (2000) Testing theory an introduction. Testing theory an introduction. Delft University Press, VSSD Publisher, Delft, p 156

    Google Scholar 

  • Teunissen PJG, Amiri-Simkooei AR (2008) Least-squares variance component estimation. J Geodesy 82(2):65–82. https://doi.org/10.1007/s00190-007-0157-x

    Article  Google Scholar 

  • Teunissen PJG, Simons DG, Tiberius CCJM (2005) Probability and observation theory, (Lecture notes AE2–E01). Faculty of Aerospace Engineering, Delft University of Technology, Delft

    Google Scholar 

  • Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenom 35(3):395–424

    Article  Google Scholar 

  • Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenom 58(1):95–126

    Article  Google Scholar 

  • Walwer D, Calais E, Ghil M (2016) Data-adaptive detection of transient deformation in geodetic networks. J Geophys Res Solid Earth 121(3):2129–2152. https://doi.org/10.1002/2015JB012424

    Article  Google Scholar 

  • Wang X, Cheng Y, Wu S, Zhang K (2016) An enhanced singular spectrum analysis method for constructing nonsecular model of GPS site movement. J Geophys Res Solid Earth 121(3):2193–2211. https://doi.org/10.1002/2015JB012573

    Article  Google Scholar 

  • Williams SDP (2006) Personal communication). Proudman Oceanographic Laboratory, National Oceanography Centre, Liverpool

    Google Scholar 

  • Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prawirodirdjo L, Miller M, Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res Solid Earth. https://doi.org/10.1029/2003jb002741

    Article  Google Scholar 

  • Xu C (2016) Reconstruction of gappy GPS coordinate time series using empirical orthogonal functions. J Geophys Res Solid Earth 121(12):9020–9033. https://doi.org/10.1002/2016JB013188

    Article  Google Scholar 

  • Xu C, Yue D (2015) Monte Carlo SSA to detect time-variable seasonal oscillations from GPS-derived site position time series. Tectonophysics 665:118–126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Amiri-Simkooei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazraei, S.M., Amiri-Simkooei, A.R. On the application of Monte Carlo singular spectrum analysis to GPS position time series. J Geod 93, 1401–1418 (2019). https://doi.org/10.1007/s00190-019-01253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-019-01253-x

Keywords

Navigation