Skip to main content
Log in

Biomimetic strategies for fabricating musculoskeletal tissue scaffolds: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The advancements in musculoskeletal tissue engineering have been substantial in recent decades. Fabrication of biomimetic microenvironment closely resembling the native tissues has been widely accepted as the golden rule for tissue engineering. This paper reviews recent progress in fabrication strategy of biomimetic scaffolds for musculoskeletal tissue engineering from three key aspects: bioinspired materials, biomimetic structures, and biofabrication techniques. The emerging hybrid biofabrication technologies that enable rapid manufacturing of 3D composite constructs with complex features will be a promising pathway toward highly efficient bench-to-bedside translation. Future biomimetic scaffolds should possess modulated functions in response to the dynamic physiological and mechanical environments. This is the prerequisite of future development of reliable, flexible, and cost-effective alternatives to achieve long-term regeneration and good clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable

References

  1. Wu F, Nerlich M, Docheva D (2017) Tendon injuries: basic science and new repair proposals. EFORT Open Rev 2(7):332–342

    Article  Google Scholar 

  2. Kujala UM et al (2003) Sports career-related musculoskeletal injuries. Sports Med 33(12):869–875

    Article  Google Scholar 

  3. Patel DR, Baker RJ (2006) Musculoskeletal injuries in sports. Prim Care 33(2):545–579

    Article  Google Scholar 

  4. Browne GJ, Barnett PL (2016) Common sports-related musculoskeletal injuries presenting to the emergency department. J Paediatr Child Health 52(2):231–236

    Article  Google Scholar 

  5. Patel AC et al (2007) Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem Mater 19(6):1231–1238

    Article  Google Scholar 

  6. Wang S et al (2007) Infections and human tissue transplants: review of FDA MedWatch reports 2001–2004. Cell Tissue Bank 8(3):211–219

    Article  Google Scholar 

  7. (2017) Regenerative Medicine Market Analysis By Product (Therapeutics {Primary Cell-based, Stem Cell-based, Immunotherapies, & Gene Therapies}, Tools, Banks, & Services), By Therapeutic Category, And Segment Forecasts, 2018 - 2025. Grand View Research.

  8. Subia B, Kundu J, Kundu S (2010) Biomaterial scaffold fabrication techniques for potential tissue engineering applications. Tissue Eng. https://doi.org/10.5772/8581

  9. Mandrycky C et al (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434

    Article  Google Scholar 

  10. Wingender B et al (2016) Biomimetic organization of collagen matrices to template bone-like microstructures. Matrix Biol 52:384–396

    Article  Google Scholar 

  11. Samelson EJ et al (2019) Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol 7(1):34–43

    Article  Google Scholar 

  12. Wright NC et al (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29(11):2520–2526

    Article  Google Scholar 

  13. Solomon DH et al (2014) The potential economic benefits of improved postfracture care: a cost-effectiveness analysis of a fracture liaison service in the US health-care system. J Bone Miner Res 29(7):1667–1674

    Article  Google Scholar 

  14. Fillingham Y, Jacobs J (2016) Bone grafts and their substitutes. Bone Jt J 98(1_Supple_A):6–9

    Article  Google Scholar 

  15. Cox SC et al (2015) 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C 47:237–247

    Article  Google Scholar 

  16. Xavier JR et al (2015) Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9(3):3109–3118

    Article  Google Scholar 

  17. Melke J et al (2016) Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 31:1–16

    Article  Google Scholar 

  18. Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96(3):183–195

    Article  Google Scholar 

  19. Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118(4):692–702

    Article  Google Scholar 

  20. Brozovich F et al (2016) Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacol Rev 68(2):476–532

    Article  Google Scholar 

  21. Powers SK et al (2016) Redox control of skeletal muscle atrophy. Free Radic Biol Med 98:208–217

    Article  Google Scholar 

  22. Schoenfeld BJ et al (2015) Effects of low-vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. J Strength Cond Res 29(10):2954–2963

    Article  Google Scholar 

  23. Ankala A et al (2015) A comprehensive genomic approach for neuromuscular diseases gives a high diagnostic yield. Ann Neurol 77(2):206–214

    Article  Google Scholar 

  24. Larkindale J et al (2014) Cost of illness for neuromuscular diseases in the United States. Muscle Nerve 49(3):431–438

    Article  Google Scholar 

  25. Kalyani RR, Corriere M, Ferrucci L (2014) Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol 2(10):819–829

    Article  Google Scholar 

  26. Weinberger F, Mannhardt I, Eschenhagen T (2017) Engineering cardiac muscle tissue: a maturating field of research. Circ Res 120(9):1487–1500

    Article  Google Scholar 

  27. Sakaguchi K, Shimizu T, Okano T (2015) Construction of three-dimensional vascularized cardiac tissue with cell sheet engineering. J Control Release 205:83–88

    Article  Google Scholar 

  28. Rao L et al (2018) Engineering human pluripotent stem cells into a functional skeletal muscle tissue. Nat Commun 9(1):126

    Article  Google Scholar 

  29. Ercolani E, Del Gaudio C, Bianco A (2015) Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med 9(8):861–888

    Article  Google Scholar 

  30. Hamann N et al (2014) Effect of different running modes on the morphological, biochemical, and mechanical properties of articular cartilage. Scand J Med Sci Sports 24(1):179–188

    Article  Google Scholar 

  31. Haleem AM, Chu CR (2010) Advances in tissue engineering techniques for articular cartilage repair. Oper Tech Orthop 20(2):76–89

    Article  Google Scholar 

  32. Collins A et al (2011) The impact of stochastic resonance electrical stimulation and knee sleeve on impulsive loading and muscle co-contraction during gait in knee osteoarthritis. Clin Biomech 26(8):853–858

    Article  Google Scholar 

  33. Bashaireh K et al (2015) Efficacy and safety of cross-linked hyaluronic acid single injection on osteoarthritis of the knee: a post-marketing phase IV study. Drug Des Devel Ther 9:2063

    Article  Google Scholar 

  34. Brooks KS (2014) Osteoarthritic knee braces on the market: a literature review. JPO: J Prosthet Orthot 26(1):2–30

    Google Scholar 

  35. Baker BE et al (1985) Review of meniscal injury and associated sports. Am J Sports Med 13(1):1–4

    Article  Google Scholar 

  36. Izadifar Z, Chen X, Kulyk W (2012) Strategic design and fabrication of engineered scaffolds for articular cartilage repair. J Funct Biomater 3(4):799–838

    Article  Google Scholar 

  37. Malheiro A et al Direct writing electrospinning of scaffolds with multi-dimensional fiber architecture for hierarchical tissue engineering.

  38. Xu T et al (2012) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5(1):015001

    Article  Google Scholar 

  39. Rees J, Wilson A, Wolman R (2006) Current concepts in the management of tendon disorders. Rheumatology 45(5):508–521

    Article  Google Scholar 

  40. Colvin AC et al (2012) National trends in rotator cuff repair. J Bone Joint Surg Am 94(3):227

    Article  Google Scholar 

  41. Zafar MS, Mahmood A, Maffulli N (2009) Basic science and clinical aspects of achilles tendinopathy. Sports Med Arthrosc Rev 17(3):190–197

    Article  Google Scholar 

  42. Font Tellado S et al (2017) Fabrication and characterization of biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Tissue Eng A 23(15-16):859–872

    Article  Google Scholar 

  43. De Jong OG et al (2014) Extracellular vesicles: potential roles in regenerative medicine. Front Immunol 5:608

    Google Scholar 

  44. Wang Z et al (2018) Functional regeneration of tendons using scaffolds with physical anisotropy engineered via microarchitectural manipulation. Sci Adv 4(10):eaat4537

    Article  Google Scholar 

  45. Jin G, He R, Sha B, Li W, Qing H, Teng R, Xu F (2018) Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. Mater Sci Eng C 92:995–1005

  46. Yang G et al (2016) Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering. Acta Biomater 35:68–76

    Article  Google Scholar 

  47. Jiang H et al (2004) Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules 5(2):326–333

    Article  Google Scholar 

  48. Peng H et al (2014) Emerging nanostructured materials for musculoskeletal tissue engineering. J Mater Chem B 2(38):6435–6461

    Article  Google Scholar 

  49. Fuoco C et al (2012) Injectable polyethylene glycol-fibrinogen hydrogel adjuvant improves survival and differentiation of transplanted mesoangioblasts in acute and chronic skeletal-muscle degeneration. Skelet Muscle 2(1):24

    Article  Google Scholar 

  50. Rezvani Z, Venugopal JR, Urbanska AM, Mills DK, Ramakrishna S, Mozafari M (2016) A bird's eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: current state‐of‐the‐art, emerging directions and future trends. Nanomedicine: Nanotechnology, Biology and Medicine 12(7):2181–2200

  51. Kao C-T et al (2015) Poly (dopamine) coating of 3D printed poly (lactic acid) scaffolds for bone tissue engineering. Mater Sci Eng C 56:165–173

    Article  Google Scholar 

  52. Toosi S et al (2016) PGA-incorporated collagen: toward a biodegradable composite scaffold for bone-tissue engineering. J Biomed Mater Res A 104(8):2020–2028

    Article  Google Scholar 

  53. Kim J-H, Lee JW, Yun W-S (2017) Fabrication and tissue engineering application of a 3D PPF/DEF scaffold using Blu-ray based 3D printing system. J Mech Sci Technol 31(5):2581–2587

    Article  Google Scholar 

  54. Kundu J et al (2015) An additive manufacturing-based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 9(11):1286–1297

    Article  Google Scholar 

  55. Sun X et al (2018) Collagen-based porous scaffolds containing PLGA microspheres for controlled kartogenin release in cartilage tissue engineering. Artif Cell Nanomed Biotechnol 46(8):1957–1966

    Google Scholar 

  56. Bury MI et al (2015) Bone marrow derived cells facilitate urinary bladder regeneration by attenuating tissue inflammatory responses. Cen Eur J Urol 68(1):115

    Google Scholar 

  57. Fu W et al (2014) Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering. Int J Nanomedicine 9:2335

    Article  Google Scholar 

  58. Place ES et al (2009) Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 38(4):1139–1151

    Article  Google Scholar 

  59. Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8(5):607–626

    Article  Google Scholar 

  60. Liu M et al (2017) Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5:17014

    Article  Google Scholar 

  61. Damaraju SM, Shen Y, Elele E, Khusid B, Eshghinejad A, Li J, ... Arinzeh TL (2017) Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials 149:51–62

  62. Naahidi S et al (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 35(5):530–544

    Article  Google Scholar 

  63. Ren K et al (2015) Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. Biomaterials 51:238–249

    Article  Google Scholar 

  64. Ansari S et al (2016) Muscle tissue engineering using gingival mesenchymal stem cells encapsulated in alginate hydrogels containing multiple growth factors. Ann Biomed Eng 44(6):1908–1920

    Article  Google Scholar 

  65. Chang G et al (2016) Formation and self-assembly of 3D nanofibrous networks based on oppositely charged jets. Mater Des 97:126–130

    Article  Google Scholar 

  66. Mehrali M et al (2017) Nanoreinforced hydrogels for tissue engineering: biomaterials that are compatible with load-bearing and electroactive tissues. Adv Mater 29(8):1603612

    Article  Google Scholar 

  67. Yan J et al (2016) Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Mater Sci Eng C 63:274–284

    Article  Google Scholar 

  68. Dong C, Lv Y (2016) Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers 8(2):42

    Article  Google Scholar 

  69. Venkatesan J et al (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281

    Article  Google Scholar 

  70. Li Y, Meng H, Liu Y, Lee BP (2015) Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. Sci World J. https://doi.org/10.1155/2015/685690

  71. Ahsan SM et al (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109

    Article  Google Scholar 

  72. Dhand C et al (2016) Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering. Biomaterials 104:323–338

    Article  Google Scholar 

  73. Rhee S et al (2016) 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng 2(10):1800–1805

    Article  Google Scholar 

  74. Tangsadthakun C, Kanokpanont S, Sanchavanakit N, Banaprasert T, Damrongsakkul S (2006) Properties of collagen/chitosan scaffolds for skin tissue engineering. (2017) Properties of collagen/chitosan scaffolds for skin tissue engineering. J Met Mater Miner 16(1):37–44

  75. Wang J et al (2017) Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering. Biomaterials 120:11–21

    Article  Google Scholar 

  76. Peters EB et al (2016) Poly (ethylene glycol) hydrogel scaffolds containing cell-adhesive and protease-sensitive peptides support microvessel formation by endothelial progenitor cells. Cell Mol Bioeng 9(1):38–54

    Article  Google Scholar 

  77. Shelke NB et al (2016) Neural tissue engineering: nanofiber-hydrogel based composite scaffolds. Polym Adv Technol 27(1):42–51

    Article  Google Scholar 

  78. Lin HA et al (2016) Lower crosslinking density enhances functional nucleus pulposus-like matrix elaboration by human mesenchymal stem cells in carboxymethylcellulose hydrogels. J Biomed Mater Res A 104(1):165–177

    Article  Google Scholar 

  79. Yu J et al (2016) Synthesis and characterization of MMP degradable and maleimide cross-linked PEG hydrogels for tissue engineering scaffolds. Polym Degrad Stab 133:312–320

    Article  Google Scholar 

  80. Koupaei N, Karkhaneh A, Daliri Joupari M (2015) Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds. J Biomed Mater Res A 103(12):3919–3926

    Article  Google Scholar 

  81. Radhakrishnan A, Jose GM, Kurup M (2015) PEG-penetrated chitosan–alginate co-polysaccharide-based partially and fully cross-linked hydrogels as ECM mimic for tissue engineering applications. Prog Biomater 4(2-4):101–112

    Article  Google Scholar 

  82. Noè C et al (2020) Light processable starch hydrogels. Polymers 12(6):1359

    Article  Google Scholar 

  83. Fan M et al (2017) Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering. Mater Sci Eng C 71:67–74

    Article  Google Scholar 

  84. Jiang Y et al (2020) Preparation of cellulose nanocrystal/oxidized dextran/gelatin (CNC/OD/GEL) hydrogels and fabrication of a CNC/OD/GEL scaffold by 3D printing. J Mater Sci 55(6):2618–2635

    Article  Google Scholar 

  85. Zhang H et al (2016) Thermal-responsive poly (N-isopropyl acrylamide)/sodium alginate hydrogels: preparation, swelling behaviors, and mechanical properties. Colloid Polym Sci 294(12):1959–1967

    Article  Google Scholar 

  86. Zhang Q et al (2019) Synthesis and performance characterization of poly (vinyl alcohol)-xanthan gum composite hydrogel. React Funct Polym 136:34–43

    Article  Google Scholar 

  87. Ounkaew A et al (2020) Synthesis of nanocomposite hydrogel based carboxymethyl starch/polyvinyl alcohol/nanosilver for biomedical materials. Carbohydr Polym 248:116767

    Article  Google Scholar 

  88. Maharjan B et al (2019) Synthesis and characterization of gold/silica hybrid nanoparticles incorporated gelatin methacrylate conductive hydrogels for H9C2 cardiac cell compatibility study. Compos Part B 177:107415

    Article  Google Scholar 

  89. Iviglia G et al (2016) Novel bioceramic-reinforced hydrogel for alveolar bone regeneration. Acta Biomater 44:97–109

    Article  Google Scholar 

  90. Ans M, Makhdoom MA, Hassan A Nano-mechanical properties of novel intermetallic coatings on 316L bioimplant material.

  91. Mukhtar S et al (2018) Development and characterization of hot dip aluminide coated stainless steel 316L. J Cent South Univ 25(11):2578–2588

    Article  Google Scholar 

  92. Nover AB et al (2015) Porous titanium bases for osteochondral tissue engineering. Acta Biomater 27:286–293

    Article  Google Scholar 

  93. Bansiddhi A et al (2008) Porous NiTi for bone implants: a review. Acta Biomater 4(4):773–782

    Article  Google Scholar 

  94. Saini M et al (2015) Implant biomaterials: a comprehensive review. World J Clin Cases: WJCC 3(1):52

    Article  Google Scholar 

  95. Tan H-L, Teow S-Y, Pushpamalar J (2019) Application of metal nanoparticle–hydrogel composites in tissue regeneration. Bioengineering 6(1):17

    Article  Google Scholar 

  96. Pompa L et al (2015) Surface characterization and cytotoxicity response of biodegradable magnesium alloys. Mater Sci Eng C 49:761–768

    Article  Google Scholar 

  97. Haude M et al (2017) Sustained safety and clinical performance of a drug-eluting absorbable metal scaffold up to 24 months: pooled outcomes of BIOSOLVE-II and BIOSOLVE-III. EuroIntervention 13(4):432–439

    Article  Google Scholar 

  98. Du X, Fu S, Zhu Y (2018) 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview. J Mater Chem B 6(27):4397–4412

    Article  Google Scholar 

  99. Denry I, Kuhn LT (2016) Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater 32(1):43–53

    Article  Google Scholar 

  100. Shirazi SFS et al (2015) A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater 16(3):033502

    Article  Google Scholar 

  101. Denry I et al (2018) Rapid vacuum sintering: a novel technique for fabricating fluorapatite ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 106(1):291–299

    Article  Google Scholar 

  102. Raffaella A, Roberto S, Antonio A (2016) Bio-mechanically active ceramic-polymeric hybrid scaffolds for tissue engineering. In: The International Conference on Biological Sciences and Technology. Atlantis Press, Paris

  103. Rumian L, Tiainen H, Posadowska U, Haugen HJ, Pamuła E (201x6) Ceramic scaffolds containing sodium alendronate loaded poly (lactide-co-glycolide) microparticles for bone tissue engineering. In: Front. Bioeng. Biotechnol. Conference Abstract: 10th World Biomaterials Congress

  104. Seol YJ et al (2015) Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration. J Biomed Mater Res A 103(4):1404–1413

    Article  Google Scholar 

  105. Chen Y et al (2017) Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 75:169–174

    Article  Google Scholar 

  106. Kim J-H et al (2016) Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering. Int J Biol Macromol 82:160–167

    Article  Google Scholar 

  107. Zhao L et al (2019) Bionic design and 3D printing of porous titanium alloy scaffolds for bone tissue repair. Compos Part B 162:154–161

    Article  Google Scholar 

  108. Derakhshandeh SMR et al (2017) Improved electrochemical performance of nitrocarburised stainless steel by hydrogenated amorphous carbon thin films for bone tissue engineering. IET Nanobiotechnol 11(6):656–660

    Article  Google Scholar 

  109. Heo DN et al (2014) Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. J Mater Chem B 2(11):1584–1593

    Article  Google Scholar 

  110. Ribeiro M et al (2017) Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration. Nanomedicine 13(1):231–239

    Article  Google Scholar 

  111. Jiang J et al (2016) Antibacterial nanohydroxyapatite/polyurethane composite scaffolds with silver phosphate particles for bone regeneration. J Biomater Sci Polym Ed 27(16):1584–1598

    Article  Google Scholar 

  112. Carey LE et al (2005) Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 26(24):5002–5014

    Article  Google Scholar 

  113. Lin D et al (2016) Fabrication and clinical application of easy-to-operate pre-cured CPC/rhBMP-2 micro-scaffolds for bone regeneration. Am J Transl Res 8(3):1379

    Google Scholar 

  114. Hardy JG et al (2016) Biomineralization of engineered spider silk protein-based composite materials for bone tissue engineering. Materials 9(7):560

    Article  Google Scholar 

  115. Turnbull G et al (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 3(3):278–314

    Article  Google Scholar 

  116. Wu Y et al (2017) Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. ACS Nano 11(6):5646–5659

    Article  Google Scholar 

  117. Xu TO et al (2018) Self-neutralizing PLGA/magnesium composites as novel biomaterials for tissue engineering. Biomed Mater 13(3):035013

    Article  Google Scholar 

  118. Naumenko E, Fakhrullin R (2019) Halloysite nanoclay/biopolymers composite materials in tissue engineering. Biotechnol J 14(12):1900055

    Article  Google Scholar 

  119. Maynard AD (2011) Don’t define nanomaterials. Nature 475(7354):31

    Article  Google Scholar 

  120. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. https://doi.org/10.1155/2011/290602

  121. Woo BH et al (2001) Preparation, characterization and in vivo evaluation of 120-day poly (D, L-lactide) leuprolide microspheres. J Control Release 75(3):307–315

    Article  Google Scholar 

  122. Du C et al (1999) Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res 44(4):407–415

    Article  Google Scholar 

  123. Bigi A et al (2002) Bonelike apatite growth on hydroxyapatite–gelatin sponges from simulated body fluid. J Biomed Mater Res 59(4):709–715

    Article  Google Scholar 

  124. Currey JD, Shahar R (2013) Cavities in the compact bone in tetrapods and fish and their effect on mechanical properties. J Struct Biol 183(2):107–122

    Article  Google Scholar 

  125. Carreño-Morelli E, Rodríguez-Arbaizar M, Amherd A, Bidaux JE (2014) Porous titanium processed by powder injection moulding of titanium hydride and space holders. Taylor & Francis, Abingdon, pp 93–96

  126. Carreño-Morelli E, Alexandra AH, Mikel RA, Zufferey D, Várez A, Bidaux JE (2013) Porous titanium by powder injection moulding of titanium hydride and PMMA space holders. Eur Cell Mater 26:16

  127. Dehghan-Manshadi A et al (2018) Porous titanium scaffolds fabricated by metal injection moulding for biomedical applications. Materials 11(9):1573

    Article  Google Scholar 

  128. Wu S et al (2007) Pore formation mechanism and characterization of porous NiTi shape memory alloys synthesized by capsule-free hot isostatic pressing. Acta Mater 55(10):3437–3451

    Article  Google Scholar 

  129. Taherkhani S, Moztarzadeh F (2016) Fabrication of a poly (ɛ-caprolactone)/starch nanocomposite scaffold with a solvent-casting/salt-leaching technique for bone tissue engineering applications. J Appl Polym Sci. https://doi.org/10.1002/app.43523

  130. Edgar L et al (2016) Heterogeneity of scaffold biomaterials in tissue engineering. Materials 9(5):332

    Article  Google Scholar 

  131. Manavitehrani I et al (2019) Formation of porous biodegradable scaffolds based on poly (propylene carbonate) using gas foaming technology. Mater Sci Eng C 96:824–830

    Article  Google Scholar 

  132. Costantini M, Barbetta A (2018) Gas foaming technologies for 3D scaffold engineering, in Functional 3D tissue engineering scaffolds. Woodhead Publishing, Cambridge, pp 127–149

  133. Poursamar SA et al (2016) The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold. Mater Sci Eng C 63:1–9

    Article  Google Scholar 

  134. Wu X et al (2010) Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater 6(3):1167–1177

    Article  Google Scholar 

  135. Deville S, Saiz E, Tomsia AP (2006) Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27(32):5480–5489

    Article  Google Scholar 

  136. Hunger PM, Donius AE, Wegst UG (2013) Structure–property-processing correlations in freeze-cast composite scaffolds. Acta Biomater 9(5):6338–6348

    Article  Google Scholar 

  137. Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28(1):271–298

    Article  Google Scholar 

  138. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524

    Article  Google Scholar 

  139. Yook S-W et al (2012) Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores. Acta Biomater 8(6):2401–2410

    Article  Google Scholar 

  140. Wu S et al (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep 80:1–36

    Article  Google Scholar 

  141. Santamaría VA et al (2012) Influence of the macro and micro-porous structure on the mechanical behavior of poly (l-lactic acid) scaffolds. J Non-Cryst Solids 358(23):3141–3149

    Article  Google Scholar 

  142. Chen Y et al (2011) Preparation and characterization of a novel porous titanium scaffold with 3D hierarchical porous structures. J Mater Sci Mater Med 22(4):839–844

    Article  Google Scholar 

  143. Chen Y-W et al (2018) Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting. Mater Sci Eng C 91:679–687

    Article  Google Scholar 

  144. Sefcik LS, Petrie Aronin CE, Botchwey EA (2008) Engineering vascularized tissues using natural and synthetic small molecules. Organogenesis 4(4):215–227

    Article  Google Scholar 

  145. Mottaghitalab F et al (2015) Silk fibroin nanoparticle as a novel drug delivery system. J Control Release 206:161–176

    Article  Google Scholar 

  146. Pierri AE et al (2015) A photoCORM nanocarrier for CO release using NIR light. Chem Commun 51(11):2072–2075

    Article  Google Scholar 

  147. Zhang QY et al (2015) Gelatin–siloxane nanoparticles to deliver nitric oxide for vascular cell regulation: synthesis, cytocompatibility, and cellular responses. J Biomed Mater Res A 103(3):929–938

    Article  Google Scholar 

  148. Shi C et al (2015) REDV peptide conjugated nanoparticles/pZNF580 complexes for actively targeting human vascular endothelial cells. ACS Appl Mater Interfaces 7(36):20389–20399

    Article  Google Scholar 

  149. Iyer SR et al (2017) Superparamagnetic iron oxide nanoparticles in musculoskeletal biology. Tissue Eng B Rev 23(4):373–385

    Article  Google Scholar 

  150. Malcolm DW et al (2017) Diblock copolymer hydrophobicity facilitates efficient gene silencing and cytocompatible nanoparticle-mediated siRNA delivery to musculoskeletal cell types. Biomacromolecules 18(11):3753–3765

    Article  Google Scholar 

  151. Ghadakzadeh S et al (2016) Small players ruling the hard game: siRNA in bone regeneration. J Bone Miner Res 31(3):475–487

    Article  Google Scholar 

  152. Li X et al (2016) Kartogenin-incorporated thermogel supports stem cells for significant cartilage regeneration. ACS Appl Mater Interfaces 8(8):5148–5159

    Article  Google Scholar 

  153. Cai G et al (2019) Recent advances in kartogenin for cartilage regeneration. J Drug Target 27(1):28–32

    Article  Google Scholar 

  154. Kwon JY et al (2018) Kartogenin inhibits pain behavior, chondrocyte inflammation, and attenuates osteoarthritis progression in mice through induction of IL-10. Sci Rep 8(1):13832

    Article  Google Scholar 

  155. Im GI (2018) Application of kartogenin for musculoskeletal regeneration. J Biomed Mater Res A 106(4):1141–1148

    Article  Google Scholar 

  156. Shi D et al (2016) Photo-cross-linked scaffold with kartogenin-encapsulated nanoparticles for cartilage regeneration. ACS Nano 10(1):1292–1299

    Article  Google Scholar 

  157. Heo DN et al (2017) Enhanced bone tissue regeneration using a 3D printed microstructure incorporated with a hybrid nano hydrogel. Nanoscale 9(16):5055–5062

    Article  Google Scholar 

  158. Zhou Y et al (2019) Electrospinning 3D nanofiber structure of polycaprolactone incorporated with silver nanoparticles. JOM 71(3):956–962

    Article  Google Scholar 

  159. Maharubin S et al (2019) Polyvinylchloride coated with silver nanoparticles and zinc oxide nanowires for antimicrobial applications. Mater Lett 249:108–111

    Article  Google Scholar 

  160. Maharubin S, Zhou Y, Tan GZ (2019) Integration of silver nanoparticles and microcurrent for water filtration. Sep Purif Technol 212:57–64

    Article  Google Scholar 

  161. Wang Q, Wang Q, Teng W (2016) Injectable, degradable, electroactive nanocomposite hydrogels containing conductive polymer nanoparticles for biomedical applications. Int J Nanomedicine 11:131

    Article  Google Scholar 

  162. Sooriyaarachchi D et al (2019) Hybrid fabrication of biomimetic meniscus scaffold by 3D printing and parallel electrospinning. Procedia Manuf 34:528–534

    Article  Google Scholar 

  163. Fujita S, Shimizu H, Suye SI (2012) Control of differentiation of human mesenchymal stem cells by altering the geometry of nanofibers. J Nanotechnol. https://doi.org/10.1155/2012/429890

  164. Christopherson GT, Song H, Mao H-Q (2009) The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30(4):556–564

    Article  Google Scholar 

  165. Kai D et al (2013) Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells. Biotechnol J 8(1):59–72

    Article  Google Scholar 

  166. Li M et al (2005) Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26(30):5999–6008

    Article  Google Scholar 

  167. Sisson K et al (2010) Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. J Biomed Mater Res A 94(4):1312–1320

    Google Scholar 

  168. Zhou Y, Tan GZ (2020) Core–sheath wet electrospinning of nanoporous polycaprolactone microtubes to mimic fenestrated capillaries. Macromol Mater Eng 305(7):2000180

  169. Zhou Y et al (2019) The effect of nanoclays on nanofiber density gradient in 3D scaffolds fabricated by divergence electrospinning. Procedia Manuf 34:110–117

    Article  Google Scholar 

  170. Zhou Y et al (2019) The effects of collector geometry on the internal structure of the 3D nanofiber scaffold fabricated by divergent electrospinning. Int J Adv Manuf Technol 100(9-12):3045–3054

    Article  Google Scholar 

  171. Tan GZ, Zhou Y (2019) Electrospinning of biomimetic fibrous scaffolds for tissue engineering: a review. Int J Polym Mater Polym Biomater 69(15):947–960

  172. Nowlin J et al (2018) Engineering the hard–soft tissue interface with random-to-aligned nanofiber scaffolds. Nanobiomedicine 5:1–9

    Article  Google Scholar 

  173. Zhou Y, Tan GZ (2017) Fabrication of nanofiber mats with microstructure gradient by cone electrospinning. Nanomater Nanotechnol 7:1–8

    Article  Google Scholar 

  174. Tan GZ, Zhou Y (2018) Tunable 3D nanofiber architecture of polycaprolactone by divergence electrospinning for potential tissue engineering applications. Nano Lett 10(4):73

    Article  Google Scholar 

  175. Yao Q et al (2017) Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 115:115–127

    Article  Google Scholar 

  176. Ghosal K et al (2017) Structural and surface compatibility study of modified electrospun poly (ε-caprolactone)(PCL) composites for skin tissue engineering. AAPS PharmSciTech 18(1):72–81

    Article  Google Scholar 

  177. Ren K et al (2017) Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater Sci Eng C 78:324–332

    Article  Google Scholar 

  178. Zhao S et al (2014) Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly (lactide-co-glycolide) fibrous membranes. Int J Nanomedicine 9:2373

    Article  Google Scholar 

  179. Sooriyaarachchi D et al (2019) Hybrid additive microfabrication scaffold incorporated with highly aligned nanofibers for musculoskeletal tissues. Tissue Eng Regen Med 16(1):29–38

    Article  Google Scholar 

  180. Zaman MAU, Sooriyaarachchi D, Zhou YG, Tan GZ, Du DP (2020) Modeling the density gradient of 3D nanofiber scaffolds fabricated by divergence electrospinning. Adv Manuf. https://doi.org/10.1007/s40436-020-00307-0

  181. Yoon I-K et al (2014) Carbon nanotube-gelatin-hydroxyapatite nanohybrids with multilayer core–shell structure for mimicking natural bone. Carbon 77:379–389

    Article  Google Scholar 

  182. Chahine NO et al (2014) Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization. Tissue Eng A 20(17-18):2305–2315

    Article  Google Scholar 

  183. Ramón-Azcón J et al (2013) Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Adv Mater 25(29):4028–4034

    Article  Google Scholar 

  184. Shin SR et al (2011) Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano 6(1):362–372

    Article  Google Scholar 

  185. Kolambkar YM et al (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32(1):65–74

    Article  Google Scholar 

  186. Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222

    Article  Google Scholar 

  187. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35(1-2):278–301

    Article  Google Scholar 

  188. Bessa PC et al (2010) Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs. J Control Release 142(3):312–318

    Article  MathSciNet  Google Scholar 

  189. Ma Z et al (2010) Thermally responsive injectable hydrogel incorporating methacrylate-polylactide for hydrolytic lability. Biomacromolecules 11(7):1873–1881

    Article  Google Scholar 

  190. Jha AK, Jackson WM, Healy KE (2014) Controlling osteogenic stem cell differentiation via soft bioinspired hydrogels. PLoS One 9(6):e98640

    Article  Google Scholar 

  191. Yu R, Zhang Y, Barboiu M, Maumus M, Noël D, Jorgensen C, Li S (2020) Biobased pH-responsive and self-healing hydrogels prepared from O-carboxymethyl chitosan and a 3-dimensional dynamer as cartilage engineering scaffold. Carbohydr Polym 244:116471

  192. Chen H, Fan M (2008) Novel thermally sensitive pH-dependent chitosan/carboxymethyl cellulose hydrogels. J Bioact Compat Polym 23(1):38–48

    Article  Google Scholar 

  193. Atila D, Keskin D, Tezcaner A (2016) Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering. Mater Sci Eng C 69:1103–1115

    Article  Google Scholar 

  194. Offeddu G et al (2017) Cartilage-like electrostatic stiffening of responsive cryogel scaffolds. Sci Rep 7(1):1–10

    Article  Google Scholar 

  195. Farr AC, Hogan KJ, Mikos AG (2020) Nanomaterial additives for fabrication of stimuli-responsive skeletal muscle tissue engineering constructs. Adv Healthc Mater 9(23):2000730

  196. Qazi TH, Rai R, Boccaccini AR (2014) Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review. Biomaterials 35(33):9068–9086

    Article  Google Scholar 

  197. Dong R, Ma PX, Guo B (2020) Conductive biomaterials for muscle tissue engineering. Biomaterials 229:119584

    Article  Google Scholar 

  198. Distler T, Boccaccini AR (2020) 3D printing of electrically conductive hydrogels for tissue engineering and biosensors–A review. Acta Biomater 101:1–13

    Article  Google Scholar 

  199. Sabnis A et al (2009) Cytocompatibility studies of an in situ photopolymerized thermoresponsive hydrogel nanoparticle system using human aortic smooth muscle cells. J Biomed Mater Res A 91(1):52–59

    Article  Google Scholar 

  200. Kim W, Jang CH, Kim GH (2019) A myoblast-laden collagen bioink with fully aligned Au nanowires for muscle-tissue regeneration. Nano Lett 19(12):8612–8620

    Article  Google Scholar 

  201. Kostarelos K (2008) The long and short of carbon nanotube toxicity. Nat Biotechnol 26(7):774–776

    Article  Google Scholar 

  202. Kayat J et al (2011) Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine 7(1):40–49

    Article  Google Scholar 

  203. Zhang Q et al (2017) Advanced review of graphene-based nanomaterials in drug delivery systems: synthesis, modification, toxicity and application. Mater Sci Eng C 77:1363–1375

    Article  Google Scholar 

  204. Li B et al (2014) Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection. Int J Nanomedicine 9:4697

    Article  Google Scholar 

  205. Park J et al (2019) Micropatterned conductive hydrogels as multifunctional muscle-mimicking biomaterials: graphene-incorporated hydrogels directly patterned with femtosecond laser ablation. Acta Biomater 97:141–153

    Article  Google Scholar 

  206. Sato M et al (2013) Enhancement of contractile force generation of artificial skeletal muscle tissues by mild and transient heat treatment. Curr Pharm Biotechnol 14(13):1083–1087

    Article  Google Scholar 

  207. Yen HJ, Hsu Sh, Tsai CL (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5(13):1553–1561

    Article  Google Scholar 

  208. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  Google Scholar 

  209. Yu C, Jiang J (2020) A perspective on using machine learning in 3D bioprinting. Int J Bioprinting 6:95

    Article  Google Scholar 

  210. Gao G et al (2015) Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett 37(11):2349–2355

    Article  Google Scholar 

  211. Kim JH et al (2018) 3D bioprinted human skeletal muscle constructs for muscle function restoration. Sci Rep 8(1):1–15

    Google Scholar 

  212. Barui S et al (2019) 3D inkjet printing of biomaterials with strength reliability and cytocompatibility: quantitative process strategy for Ti-6Al-4V. Biomaterials 213:119212

    Article  Google Scholar 

  213. Wang Z et al (2016) An ultrafast hydrogel photocrosslinking method for direct laser bioprinting. RSC Adv 6(25):21099–21104

    Article  Google Scholar 

  214. Koch L et al (2018) Laser bioprinting of human induced pluripotent stem cells—the effect of printing and biomaterials on cell survival, pluripotency, and differentiation. Biofabrication 10(3):035005

    Article  Google Scholar 

  215. Yan WC, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JY, Robinson KS Wang CH (2018) 3D bioprinting of skin tissue: from pre-processing to final product evaluation. Adv Drug Deliv Rev 132:270–295

  216. Hardin JO et al (2015) Microfluidic printheads for multimaterial 3D printing of viscoelastic inks. Adv Mater 27(21):3279–3284

    Article  Google Scholar 

  217. Colosi C et al (2016) Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater 28(4):677–684

    Article  Google Scholar 

  218. Wang Z, Tian Z, Jin X, Holzman JF, Menard F, Kim K (2017) Visible light-based stereolithography bioprinting of cell-adhesive gelatin hydrogels. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, New York, pp 1599–1602

  219. Wang S et al (2018) Patterning porosity in hydrogels by arresting phase separation. ACS Appl Mater Interfaces 10(40):34604–34610

    Article  Google Scholar 

  220. Bracaglia LG et al (2017) 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater 56:3–13

    Article  Google Scholar 

  221. Gao B et al (2016) 4D bioprinting for biomedical applications. Trends Biotechnol 34(9):746–756

    Article  Google Scholar 

  222. Yang WG et al (2014) Advanced shape memory technology to reshape product design, manufacturing and recycling. Polymers 6(8):2287–2308

    Article  Google Scholar 

  223. Khoo ZX et al (2015) 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys Prototyp 10(3):103–122

    Article  Google Scholar 

  224. Rusen L et al (2014) Temperature responsive functional polymeric thin films obtained by matrix assisted pulsed laser evaporation for cells attachment–detachment study. Appl Surf Sci 302:134–140

    Article  Google Scholar 

  225. Cui Y et al (2014) Mechanically strong and stretchable PEG-based supramolecular hydrogel with water-responsive shape-memory property. J Mater Chem B 2(20):2978–2982

    Article  Google Scholar 

  226. Aliramaji S, Zamanian A, Mozafari M (2017) Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Mater Sci Eng C 70:736–744

    Article  Google Scholar 

  227. Kolesky DB et al (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130

    Article  Google Scholar 

  228. Blakely AM et al (2015) Bio-pick, place, and perfuse: a new instrument for three-dimensional tissue engineering. Tissue Eng Part C Methods 21(7):737–746

    Article  Google Scholar 

  229. Cui H et al (2016) Biologically inspired smart release system based on 3D bioprinted perfused scaffold for vascularized tissue regeneration. Adv Sci 3(8):1600058

    Article  Google Scholar 

  230. Larush L et al (2017) 3D printing of responsive hydrogels for drug-delivery systems. J 3D Print Med 1(4):219–229

    Article  Google Scholar 

  231. Lewis MC et al (2005) Heterogeneous proliferation within engineered cartilaginous tissue: the role of oxygen tension. Biotechnol Bioeng 91(5):607–615

    Article  Google Scholar 

  232. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng B Rev 19(6):485–502

    Article  Google Scholar 

  233. O’Brien FJ et al (2005) The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26(4):433–441

    Article  Google Scholar 

  234. Novitskaya E et al (2011) Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomater 7(8):3170–3177

    Article  Google Scholar 

  235. Schuurman W et al (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3(2):021001

    Article  Google Scholar 

  236. Shanjani Y et al (2015) A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication 7(4):045008

    Article  Google Scholar 

  237. Miri AK et al (2018) Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv Mater 30(27):1800242

    Article  Google Scholar 

  238. Paul K et al (2019) 3D bioprinted endometrial stem cells on melt electrospun poly ε-caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice. Acta Biomater 97:162–176

    Article  Google Scholar 

  239. Chansoria P et al (2019) Ultrasound-assisted biofabrication and bioprinting of preferentially aligned three-dimensional cellular constructs. Biofabrication 11(3):035015

    Article  Google Scholar 

  240. Martin JJ, Fiore BE, Erb RM (2015) Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat Commun 6(1):1–7

    Article  Google Scholar 

  241. Yang Y et al (2017) Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing. Adv Mater 29(11):1605750

    Article  Google Scholar 

  242. Chansoria P, Shirwaiker R (2020) 3D bioprinting of anisotropic engineered tissue constructs with ultrasonically induced cell patterning. Addit Manuf 32:101042

    Google Scholar 

  243. Chansoria P, Shirwaiker R (2019) Characterizing the process physics of ultrasound-assisted bioprinting. Sci Rep 9(1):1–17

    Article  Google Scholar 

  244. Yoon Y et al (2019) 3D bioprinted complex constructs reinforced by hybrid multilayers of electrospun nanofiber sheets. Biofabrication 11(2):025015

    Article  Google Scholar 

  245. Liu YY et al (2016) Dual drug spatiotemporal release from functional gradient scaffolds prepared using 3 D bioprinting and electrospinning. Polym Eng Sci 56(2):170–177

    Article  Google Scholar 

  246. Kokkinis D, Schaffner M, Studart AR (2015) Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun 6(1):1–10

    Article  Google Scholar 

  247. Betsch M et al (2018) Incorporating 4D into bioprinting: Real-time magnetically directed collagen fiber alignment for generating complex multilayered tissues. Adv Healthc Mater 7(21):1800894

    Article  Google Scholar 

  248. Kim YS et al (2019) An overview of the tissue engineering market in the United States from 2011 to 2018. Tissue Eng A 25(1-2):1–8

    Article  Google Scholar 

  249. Prokopakis E et al (2019) Clinical applications for tissue engineering in rhinology. Turk Arch Otolaryngol 57(1):39

    Article  Google Scholar 

  250. Fulco I et al (2014) Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet 384(9940):337–346

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zhou drafted Sections 1 and 2. Sooriyaarachchi drafted Sections 3 and 4. Tan drafted Sections 5, 6, and 7. Liu and Tan critically revised the article.

Corresponding author

Correspondence to George Z. Tan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Not applicable

Consent to participate

Not applicable

Consent to publish

All authors have agreed for authorship, read, and approved the manuscript, and given consent for submission and subsequent publication of the manuscript. The authors guarantee that the contribution to the work has not been previously published elsewhere.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Sooriyaarachchi, D., Liu, D. et al. Biomimetic strategies for fabricating musculoskeletal tissue scaffolds: a review. Int J Adv Manuf Technol 112, 1211–1229 (2021). https://doi.org/10.1007/s00170-020-06538-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06538-6

Keywords

Navigation