Skip to main content
Log in

Marker assisted separation of resistance genes Rph22 and Rym16 Hb from an associated yield penalty in a barley: Hordeum bulbosum introgression line

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The resistance genes Rph22 and Rym16 Hb transferred into barley from Hordeum bulbosum have been separated from a large yield penalty locus that was present in the original introgression line ‘182Q20’.

Abstract

The Hordeum bulbosum introgression line ‘182Q20’ possesses resistance to barley leaf rust (Rph22) and Barley mild mosaic virus (Rym16 Hb) located on chromosome 2HL. Unfortunately, this line also carries a considerable yield penalty compared with its barley genetic background ‘Golden Promise’. Quantitative trait locus (QTL) mapping of the components of yield (total yield, thousand grain weight, hectolitre weight, percentage screenings and screened yield) was performed using 75 recombinant lines derived from the original ‘182Q20’ introgression line. A QTL for the yield penalty was located in the proximal region of the introgressed segment. Marker assisted selection targeting intraspecific recombination events between overlapping H. bulbosum introgression segments was used to develop the lines ‘372E’ and ‘372H’ which feature genetically small introgressions around Rph22. Further yield trials validated the separation of both Rph22 and Rym16 Hb from the proximal yield penalty. These results, combined with molecular markers closely linked to Rph22 and Rym16 Hb, make these resistance genes more attractive for barley breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1997) Mapping QTL controlling yield and yield components in a spring barley (Hordeum vulgare L.) cross using marker regression. Mol Breed 3:29–38

    Article  CAS  Google Scholar 

  • Brown JKM (2002) Yield penalties of disease resistance in crops. Curr Opin Plant Biol 5:339–344

    Article  CAS  PubMed  Google Scholar 

  • Brown JKM, Hovmøller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541

    Article  CAS  PubMed  Google Scholar 

  • Case AJ, Naruoka Y, Chen X, Garland-Campbell KA, Zemetra RS, Carter AH (2014) Mapping stripe rust resistance in a brundage × coda winter wheat recombinant inbred line population. PLoS One 9:e91758

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen A, Brûlé-Babel A, Baumann U, Collins N (2009) Structure–function analysis of the barley genome: the gene-rich region of chromosome 2HL. Funct Integr Genomics 9:67–79

    Article  CAS  PubMed  Google Scholar 

  • Clifford BC (1985) Barley leaf rust. In: Roelfs AP, Bushnell WR (eds) The cereal rusts volume II: diseases, distribution and control. Academic Press, New York

    Google Scholar 

  • Coventry SJ, Barr AR, Eglinton JK, McDonald GK (2003) The determinants and genome locations influencing grain weight and size in barley (Hordeum vulgare L.). Aust J Agric Res 54:1103–1115

    Article  CAS  Google Scholar 

  • CycSoftware (2009) CycDesigN 4.0 A package for the computer generation of experimental designs, 4th edn. CycSoftware Ltd, Hamilton

    Google Scholar 

  • Derevnina L, Singh D, Park RF (2013) Identification and characterization of seedling and adult plant resistance to Puccinia hordei in Chinese barley germplasm. Plant Breed 132:571–579

    Article  CAS  Google Scholar 

  • Dilbirligi M, Erayman M, Gill KS (2005) Analysis of recombination and gene distribution in the 2L1.0 region of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Genomics 86:47–54

    Article  CAS  PubMed  Google Scholar 

  • Dyck PL (1987) The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome 29:467–469

    Article  Google Scholar 

  • Dyck PL, Samborski DJ, Anderson RG (1966) Inheritance of adult-plant leaf rust resistance derived from the common wheat varieties exchange and frontana. Can J Genet Cytol 8:665–671

    Article  Google Scholar 

  • Fetch T Jr, Johnston P, Pickering R (2009) Chromosomal location and inheritance of stem rust resistance transferred from Hordeum bulbosum into cultivated barley (H. vulgare). Phytopathology 99:339–343

    Article  CAS  PubMed  Google Scholar 

  • Flor H (1956) The complementary genic systems in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to Wheat Stripe Rust. Science 323:1357–1360

    Article  CAS  PubMed  Google Scholar 

  • Habekuß A, Kühne T, Huth W, Rabenstein F, Ehrig F, Krämer I, Ordon F (2008) Identification of Barley mild mosaic virus isolates in Germany breaking rym5 resistance. J Phytopathol 156:36–41

    Google Scholar 

  • Hariri D, Meyer M, Prud’homme H (2003) Characterization of a new Barley mild mosaic virus pathotype in France. Eur J Plant Pathol 109:921–928

    Article  CAS  Google Scholar 

  • Herrera-Foessel S, Singh R, Lillemo M, Huerta-Espino J, Bhavani S, Singh S, Lan C, Calvo-Salazar V, Lagudah E (2014) Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theor Appl Genet 127:781–789

    Article  CAS  PubMed  Google Scholar 

  • Hickey L, Lawson W, Platz G, Dieters M, Arief V, Germán S, Fletcher S, Park R, Singh D, Pereyra S, Franckowiak J (2011) Mapping Rph20: a gene conferring adult plant resistance to Puccinia hordei in barley. Theor Appl Genet 123:55–68

    Article  CAS  PubMed  Google Scholar 

  • Hill SA, Evans EJ (1980) Barley yellow mosaic virus. Plant Pathol 29:197–199

    Article  Google Scholar 

  • Hori K, Sato K, Nankaku N, Takeda K (2005) QTL analysis in recombinant chromosome substitution lines and doubled haploid lines derived from a cross between Hordeum vulgare ssp. vulgare and Hordeum vulgare ssp. spontaneum. Mol Breed 16:295–311

    Article  CAS  Google Scholar 

  • Hulbert S, Pumphrey M (2014) A time for more booms and fewer busts? unraveling cereal–rust interactions. Mol Plant Microbe Interact 27:207–214

    Article  CAS  PubMed  Google Scholar 

  • Huth W (1989) Ein weiterer Stamm des Barley yellow mosaic virus aufgefunden. Nachrichtenbl Deut flanzenschutzd 41:6–7

    Google Scholar 

  • Huth W, Lesemann DE (1978) Eine für die Bundesrepublik Deutschland neue Virose an Wintergerste. Nachrichtenbl Dtsch Pflanzenschutzdienstes 30:184–185

    Google Scholar 

  • Johnson R (1984) A critical analysis of durable resistance. Annu Rev Phytopathol 22:309–330

    Article  Google Scholar 

  • Johnston P, Timmerman-Vaughan G, Farnden K, Pickering R (2009) Marker development and characterisation of Hordeum bulbosum introgression lines: a resource for barley improvement. Theor Appl Genet 118:1429–1437

    Article  PubMed  Google Scholar 

  • Johnston PA, Niks RE, Meiyalaghan V, Blanchet E, Pickering R (2013) Rph22: mapping of a novel leaf rust resistance gene introgressed from the non host Hordeum bulbosum L. into cultivated barley (Hordeum vulgare L.). Theor Appl Genet 126:1613–1625

    Article  PubMed  Google Scholar 

  • Jørgensen IH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–152

    Article  Google Scholar 

  • Kai H, Takata K, Tsukazaki M, Furusho M, Baba T (2012) Molecular mapping of Rym17, a dominant and Rym18 a recessive Barley yellow mosaic virus (BaYMV) resistance genes derived from Hordeum vulgare L. Theor Appl Genet 124:577–583

    Article  CAS  PubMed  Google Scholar 

  • Kanyuka K, McGrann G, Alhudaib K, Hariri D, Adams MJ (2004) Biological and sequence analysis of a novel European isolate of Barley mild mosaic virus that overcomes the barley Rym5 resistance gene. Arch Virol 149:1469–1480

    Article  CAS  PubMed  Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876

    Article  CAS  PubMed  Google Scholar 

  • Katis N, Tzavella-Klonari K, Adams MJ (1997) Occurrence of barley yellow mosaic and barley mild mosaic bymo viruses in Greece. Eur J Plant Pathol 103:281–284

    Article  Google Scholar 

  • Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi SH, Yoshida S, Soutome S (1987) Breeding for resistance to yellow mosaic disease in malting barley. Proc 5th Int Barley Genet Symp Okayama Jpn Barley Genet V:667–672

    Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    PubMed Central  PubMed  Google Scholar 

  • Lapierre H (1980) Nouvelles maladies à virus sur céréales d’hiver. Le Producteur Agricola Francais 270:11

    Google Scholar 

  • Marcel TC, Aghnoum R, Durand J, Varshney RK, Niks RE (2007) Dissection of the barley 2L1.0 region carrying the ‘Laevigatum’ quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and sub NIL. Mol Plant Microbe Interact 20:1604–1615

    Article  CAS  PubMed  Google Scholar 

  • Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and near-isogenic lines. New Phytol 177:743–755

    Article  PubMed  Google Scholar 

  • Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D’Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer KFX, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76:494–505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McFadden ES (1930) A successful transfer of emmer characters to Vulgare wheat. Agron J 22:1020–1034

    Article  Google Scholar 

  • Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen G, Sameri M, Tagiri A, Honda I, Watanabe Y, Kanamori H, Wicker T, Stein N, Nagamura Y, Matsumoto T, Komatsuda T (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci 107:490–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niks RE (1986) Failure of haustorial development as a factor in slow growth and development of Puccinia hordei in partially resistant barley seedlings. Physiol Mol Plant Pathol 28:309–322

    Article  Google Scholar 

  • Ordon F, Ahlemeyer J, Werner K, Köhler W, Friedt W (2005) Molecular assessment of genetic diversity in winter barley and its use in breeding. Euphytica 146:21–28

    Article  CAS  Google Scholar 

  • Park RF, McIntosh RA (1994) Adult plant resistances to Puccinia recondita f. sp. tritici in wheat. N Z J Crop Hortic Sci 22:151–158

    Article  Google Scholar 

  • Parlevliet J (1975) Partial resistance of barley to leaf rust, Puccinia hordei. I. Effect of cultivar and development stage on latent period. Euphytica 24:21–27

    Article  Google Scholar 

  • Parlevliet J (1976) Partial resistance of barley to leaf rust, Puccinia hordei. III. The inheritance of the host plant effect on latent period in four cultivars. Euphytica 25:241–248

    Article  Google Scholar 

  • Parlevliet J (1978) Further evidence of polygenic inheritance of partial resistance in barley to leaf rust, Puccinia hordei. Euphytica 27:369–379

    Article  Google Scholar 

  • Parlevliet J (2002) Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica 124:147–156

    Article  CAS  Google Scholar 

  • Payne R, Welham S, Harding S (2012) A guide to REML in GenStat, 15th edn. VSN International, Oxford, p 94

    Google Scholar 

  • Pickering R, Hill A, Michel M, Timmerman-Vaughan G (1995) The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L.) chromosome 2 (2I). Theor Appl Genet 91:1288–1292

    Article  CAS  PubMed  Google Scholar 

  • Pickering R, Steffenson B, Hill A, Borovkova I (1998) Association of leaf rust and powdery mildew resistance in a recombinant derived from a Hordeum vulgare × Hordeum bulbosum hybrid. Plant Breed 117:83–84

    Article  Google Scholar 

  • Pickering R, Johnston P, Timmerman-Vaughan G, Cromey M, Forbes E, Steffenson B, Fetch T Jr, Effertz R, Zhang L, Murray B, Proeseler G, Habekuß A, Kopahnke D, Schubert I (2000) Hordeum bulbosum—a new source of disease and pest resistance genes for use in barley breeding programmes. Barley Genet Newsl 30:6–9

    Google Scholar 

  • Pickering R, Johnston P, Ruge B (2004a) Importance of the secondary genepool in barley genetics and breeding I. Cytogenetics and molecular analysis. Czech J Genet Plant Breed 40:73–78

    Google Scholar 

  • Pickering R, Niks RE, Johnston PA, Butler RC (2004b) Importance of the secondary genepool in barley genetics and breeding. II. Disease resistance, agronomic performance and quality. Czech J Genet Plant Breed 40:79–85

    Google Scholar 

  • Pickering R, Ruge-Wehling B, Johnston P, Schweizer G, Ackermann P, Wehling P (2006) The transfer of a gene conferring resistance to scald (Rhynchosporium secalis) from Hordeum bulbosum into H. vulgare chromosome 4HS. Plant Breed 125:576–579

    Article  CAS  Google Scholar 

  • Qi X, Niks R, Stam P, Lindhout P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor Appl Genet 96:1205–1215

    Article  CAS  Google Scholar 

  • Qi X, Fufa F, Sijtsma D, Niks R, Lindhout P, Stam P (2000) The evidence for abundance of QTLs for partial resistance to Puccinia hordei on the barley genome. Mol Breed 6:1–9

    Article  CAS  Google Scholar 

  • Ruan Y, Jin D (1983) On Barley yellow mosaic virus (BaYMV). Acta Phytopathol Sin 13:49–55

    Google Scholar 

  • Rubies-Autonell C, Toderi G, Marenghi A, Vallega V (1995) Effects of soil tillage and crop rotation on BaYMV and BaMMV mixed infection. Agronomie 15:511–512

    Article  Google Scholar 

  • Ruge B, Linz A, Pickering R, Proeseler G, Greif P, Wehling P (2003) Mapping of Rym14 Hb, a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV in barley. Theor Appl Genet 107:965–971

    Article  CAS  PubMed  Google Scholar 

  • Ruge B, Linz A, Pickering R, Proeseler G, Greif P, Wehling P (2004) Mapping of Rym14 Hb, a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV. Theor Appl Genet 107:965–971

    Article  Google Scholar 

  • Ruge-Wehling B, Linz A, Habehuß A, Wehling P (2006) Mapping of Rym16 Hb, the second soil-borne virus-resistance gene introgressed from Hordeum bulbosum. Theor Appl Genet 113:867–873

    Article  CAS  PubMed  Google Scholar 

  • Scholz M, Ruge-Wehling B, Habekuß A, Schrader O, Pendinen G, Fischer K, Wehling P (2009) Ryd4Hb: a novel resistance gene introgressed from Hordeum bulbosum into barley and conferring complete and dominant resistance to the barley yellow dwarf virus. Theor Appl Genet 119:837–849

    Article  CAS  PubMed  Google Scholar 

  • Sharma-Poudyal D, Chen XM, Wan AM, Zhan GM, Kang ZS, Cao SQ, Jin SL, Morgounov A, Akin B, Mert Z, Shah SJA, Bux H, Ashraf M, Sharma RC, Madariaga R, Puri KD, Wellings C, Xi KQ, Wanyera R, Manninger K, Ganzález MI, Koyda M, Sanin S, Patzek LJ (2012) Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Dis 97:379–386

    Article  Google Scholar 

  • Shtaya M, Sillero J, Flath K, Pickering R, Rubiales D (2007) The resistance to leaf rust and powdery mildew of recombinant lines of barley (Hordeum vulgare L.) derived from H. vulgare × H. bulbosum crosses. Plant Breed 126:259–267

    Article  CAS  Google Scholar 

  • Singh RP, Huerta-Espino J (1997) Effect of leaf rust resistance gene Lr34 on grain yield and agronomic traits of spring wheat. Crop Sci 37:390–395

    Article  Google Scholar 

  • Singh A, Knox RE, DePauw RM, Singh AK, Cuthbert RD, Campbell HL, Singh D, Bhavani S, Fetch T, Clarke F (2013a) Identification and mapping in spring wheat of genetic factors controlling stem rust resistance and the study of their epistatic interactions across multiple environments. Theor Appl Genet 126:1951–1964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh D, Macaigne N, Park RF (2013b) Rph20: adult plant resistance gene to barley leaf rust can be detected at early growth stages. Eur J Plant Pathol 137:719–725

    Article  CAS  Google Scholar 

  • Toubia-Rahme H, Johnston P, Pickering R, Steffenson B (2003) Inheritance and chromosomal location of Septoria passerinii resistance introgressed from Hordeum bulbosum into Hordeum vulgare. Plant Breed 122:405–409

    Article  Google Scholar 

  • Verbyla AP, Cullis BR, Kenward MG, Welham SJ (1999) The analysis of designed experiments and longitudinal data by using smoothing splines. J Roy Stat Soc Ser C Appl Stat 48:269–311

    Article  Google Scholar 

  • von Korff M, Wang H, Leon J, Pillen K (2006) AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 112:1221–1231

    Article  Google Scholar 

  • Walther U, Rapke H, Proeseler G, Szigat G (2000) Hordeum bulbosum—a new source of disease resistance—transfer of resistance to leaf rust and mosaic viruses from H. bulbosum into winter barley. Plant Breed 119:215–218

    Article  Google Scholar 

  • Wang L, Wang Y, Wang Z, Marcel T, Niks R, Qi X (2010) The phenotypic expression of QTLs for partial resistance to barley leaf rust during plant development. Theor Appl Genet 121:857–864

    Article  PubMed  Google Scholar 

  • Xu J, Kasha KJ (1992) Transfer of a dominant gene for powdery mildew resistance and DNA from Hordeum bulbosum into cultivated barley (H. vulgare). Theor Appl Genet 84:771–777

    CAS  PubMed  Google Scholar 

  • Ziems LA, Hickey LT, Hunt CH, Mace ES, Platz GJ, Franckowiak JD, Jordan DR (2014) Association mapping of resistance to Puccinia hordei in Australian barley breeding germplasm. Theor Appl Genet 127:1199–1212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the efforts of Andy Hay, Russell Harrison-Kirk and their team for sowing, managing and harvesting the field trials, Dr. Soonie Chng for glasshouse leaf rust screening of line ‘372E’ and Donna Gibson for formatting of Fig. 1. Also thanks go to Dr Samantha Baldwin, Andy Hay and Dr. Bill Griffin for critical reading of this manuscript. Funding for this research was initially provided by the New Zealand Foundation for Research, Science and Technology contract number C06X0810 and more recently supported by Plant and Food Research Core funding.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Johnston.

Additional information

Communicated by T. Komatsuda.

R. Pickering: retired, formerly of The New Zealand Institute for Plant and Food Research Limited.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnston, P.A., Meiyalaghan, V., Forbes, M.E. et al. Marker assisted separation of resistance genes Rph22 and Rym16 Hb from an associated yield penalty in a barley: Hordeum bulbosum introgression line. Theor Appl Genet 128, 1137–1149 (2015). https://doi.org/10.1007/s00122-015-2495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2495-z

Keywords

Navigation