Skip to main content
Log in

Rph22: mapping of a novel leaf rust resistance gene introgressed from the non-host Hordeum bulbosum L. into cultivated barley (Hordeum vulgare L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A resistance gene (Rph22) to barley leaf rust caused by Puccinia hordei was introgressed from the non-host species Hordeum bulbosum into cultivated barley. The H. bulbosum introgression in line ‘182Q20’ was located to chromosome 2HL using genomic in situ hybridisation (GISH). Using molecular markers it was shown to cover approximately 20 % of the genetic length of the chromosome. The introgression confers a very high level of resistance to P. hordei at the seedling stage that is not based on a hypersensitive reaction. The presence of the resistance gene increased the latency period of the leaf rust fungus and strongly reduced the infection frequency relative to the genetic background cultivar ‘Golden Promise’. An F2 population of 550 individuals was developed and used to create a genetic map of the introgressed region and to determine the map position of the underlying resistance gene(s). The resistance locus, designated Rph22, was located to the distal portion of the introgression, co-segregating with markers H35_26334 and H35_45139. Flanking markers will be used to reduce the linkage drag, including gene(s) responsible for a yield penalty, around the resistance locus and to transfer the gene into elite barley germplasm. This genetic location is also known to harbour a QTL (Rphq2) for non-hypersensitive leaf rust resistance in the barley cultivar ‘Vada’. Comparison of the ‘Vada’ and H. bulbosum resistances at this locus may lead to a better understanding of the possible association between host and non-host resistance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IL:

Introgression line (H. bulbosum chromatin in a barley genetic background)

QTL:

Quantitative trait locus

NBS-LRR:

A class of resistance gene NBS (nuclear binding site) LRR (leucine-rich repeat)

References

  • Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anikster Y (1989) Host specificity versus plurivority in barley leaf rusts and their microcyclic relatives. Mycol Res 93:175–181

    Article  Google Scholar 

  • Baum M, Lagudah ES, Appels R (1992) Wide crosses in cereals. Annu Rev Plant Physiol Plant Mol Biol 43:117–143

    Article  Google Scholar 

  • Blattner FR (2004) Phylogenetic analysis of Hordeum (Poaceae) as inferred by nuclear rDNA ITS sequences. Mol Phylogenet Evol 33:289–299

    Article  PubMed  CAS  Google Scholar 

  • Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  PubMed  Google Scholar 

  • Canady M, Ji Y, Chetelat R (2006) Homeologous recombination in Solanum lycopersicoides introgression lines of cultivated tomato. Genetics 174:1775–1788

    Article  PubMed  CAS  Google Scholar 

  • Chao S, Somers D (2012) Wheat and barley DNA extraction in 96-well plates; WheatMAS. http://maswheat.ucdavis.edu/protocols/general_protocols/DNA_extraction_003.htm. Accessed 10th July 2012

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  PubMed  CAS  Google Scholar 

  • Clifford BC (1985) Barley leaf rust. In: Roelfs AP, Bushnell WR (eds) The cereal rusts volume II: diseases, distribution and control. Academic Press, New York

    Google Scholar 

  • Close T, Bhat P, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J, Wanamaker S, Bozdag S, Roose M, Moscou M, Chao S, Varshney R, Szucs P, Sato K, Hayes P, Matthews D, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton R, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed  Google Scholar 

  • Drummond A, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) Geneious. version 5.4; Available from http://www.geneious.com/

  • Fu XL, Lu YG, Liu XD, Li JQ (2008) Progress on transferring elite genes from non-aa genome wild rice into oryza sativa through interspecific hybridization. Rice Sci 15:79–87

    Article  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Griffey CA, Das MK, Baldwin RE, Waldenmaier CM (1994) Yield losses in winter barley resulting from a new race of Puccinia hordei in North America. Plant Dis 78:256–260

    Article  Google Scholar 

  • Heath M (1985) Implications of non-host resistance for understanding host-parasite interactions. In: Groth J, Bushnell W (eds) Genetic basis of biochemical mechanisms of plant disease. APS Press, St. Paul, pp 25–42

    Google Scholar 

  • Johnston P (2007) Molecular characterisation of chromatin introgressed from Hordeum bulbosum L. into Hordeum vulgare L. PhD thesis. PhD Thesis, Department of Biochemistry. University of Otago, Dunedin, New Zealand. p 340

  • Johnston P, Timmerman-Vaughan G, Farnden K, Pickering R (2009) Marker development and characterisation of Hordeum bulbosum introgression lines: a resource for barley improvement. Theor Appl Genet 118:1429–1437

    Article  PubMed  Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876

    Article  PubMed  CAS  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Manly K, Cudmore R, Meer J (2001) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Marcel T, Varshney R, Barbieri M, Jafary H, de Kock M, Graner A, Niks R (2007a) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500

    Article  PubMed  CAS  Google Scholar 

  • Marcel TC, Aghnoum R, Durand J, Varshney RK, Niks RE (2007b) Dissection of the barley 2L1.0 region carrying the ‘Laevigatum’ quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and subNIL. Mol Plant Microbe Interact 20:1604–1615

    Article  PubMed  CAS  Google Scholar 

  • Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and near-isogenic lines. New Phytol 177:743–755

    Article  PubMed  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Doležel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell Online 23:1249–1263

    Article  CAS  Google Scholar 

  • Niks RE (1986) Failure of haustorial development as a factor in slow growth and development of Puccinia hordei in partially resistant barley seedlings. Physiol Mol Plant Pathol 28:309–322

    Article  Google Scholar 

  • Niks RE (1987) Nonhost plant species as donors for resistance to pathogens with narrow host range. I. Deter-mina-tion of nonhost status. Euphytica 36:841–852

    Article  Google Scholar 

  • Niks RE, Marcel TC (2009) Nonhost and basal resistance: how to explain specificity? New Phytol 182:817–828

    Article  PubMed  Google Scholar 

  • Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    Article  PubMed  Google Scholar 

  • Parlevliet J (1975) Partial resistance of barley to leaf rust, Puccinia hordei. I. Effect of cultivar and development stage on latent period. Euphytica 24:21–27

    Article  Google Scholar 

  • Parlevliet J (1976) Partial resistance of barley to leaf rust, Puccinia hordei. III. The inheritance of the host plant effect on latent period in four cultivars. Euphytica 25:241–248

    Article  Google Scholar 

  • Parlevliet J (1978) Further evidence of polygenic inheritance of partial resistance in barley to leaf rust, Puccinia hordei. Euphytica 27:369–379

    Article  Google Scholar 

  • Parlevliet J (2002) Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica 124:147–156

    Article  CAS  Google Scholar 

  • Parlevliet JE, Kuiper HJ (1985) Accumulating polygenes for partial resistance in barley to barley leaf rust, Puccinia hordei. I Selection for increased latent periods. Euphytica 34:7–13

    Article  Google Scholar 

  • Pickering R (1992) Monosomic and double monosomic substitutions of Hordeum bulbosum L. chromosomes into H. vulgare L. Theor Appl Genet 84:466–472

    Google Scholar 

  • Pickering R, Hill A, Michel M, Timmerman-Vaughan G (1995) The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L.) chromosome 2 (2I). Theor Appl Genet 91:1288–1292

    Article  CAS  Google Scholar 

  • Pickering R, Steffenson B, Hill A, Borovkova I (1998) Association of leaf rust and powdery mildew resistance in a recombinant derived from a Hordeum vulgare × Hordeum bulbosum hybrid. Plant Breed 117:83–84

    Article  Google Scholar 

  • Pickering R, Malyshev S, Kunzel G, Johnston P, Korzun V, Menke M, Schubert I (2000) Locating introgressions of Hordeum bulbosum chromatin within the H. vulgare genome. Theor Appl Genet 100:27–31

    Article  CAS  Google Scholar 

  • Pickering R, Niks RE, Johnston PA, Butler RC (2004) Importance of the secondary genepool in barley genetics and breeding. II. Disease resistance, agronomic performance and quality. Czech J Genet Plant Breed 40:79–85

    Google Scholar 

  • Pickering R, Johnston P, Meiyalaghan V, Ebdon S, Morgan E (2010) Hordeum vulgareH. bulbosum introgression lines. Barley Genet Newsl 40:1

    Google Scholar 

  • Qi X, Niks R, Stam P, Lindhout P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor Appl Genet 96:1205–1215

    Article  CAS  Google Scholar 

  • Qi X, Fufa F, Sijtsma D, Niks R, Lindhout P, Stam P (2000) The evidence for abundance of QTLs for partial resistance to Puccinia hordei on the barley genome. Mol Breed 6:1–9

    Article  CAS  Google Scholar 

  • Sato K, Nankaku N, Takeda K (2009) A high-density transcript linkage map of barley derived from a single population. Heredity 103:110–117

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Lefert P, Panstruga R (2011) A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci 16:117–125

    Article  PubMed  CAS  Google Scholar 

  • Schweizer P (2007) Nonhost resistance of plants to powdery mildew—new opportunities to unravel the mystery. Physiol Mol Plant Pathol 70:3–7

    Article  CAS  Google Scholar 

  • Shtaya M, Sillero J, Flath K, Pickering R, Rubiales D (2007) The resistance to leaf rust and powdery mildew of recombinant lines of barley (Hordeum vulgare L.) derived from H. vulgare · H. bulbosum crosses. Plant Breed 126:259–267

    Article  CAS  Google Scholar 

  • Szigat G, Pohler W (1982) Hordeum bulbosum × H. vulgare hybrids and their backcrosses with cultivated barley. Cereal Res Commun 10:73–78

    Google Scholar 

  • Turuspekov Y, Mano Y, Honda I, Kawada N, Watanabe Y, Komatsuda T (2004) Identification and mapping of cleistogamy genes in barley. Theor Appl Genet 109:480–487

    Article  PubMed  CAS  Google Scholar 

  • von Bothmer R, Jacobsen N, Baden C, Jorgensen R, Linde-Laursen I (1995) An ecogeographical study of the genus Hordeum, 2nd edn. International Plant Genetic Resources Institute (IPGRI), Rome

  • Voorrips R (2002) Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Kasha KJ (1992) Transfer of a dominant gene for powdery mildew resistance and DNA from Hordeum bulbosum into cultivated barley (H. vulgare). Theor Appl Genet 84:771–777

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs. Merle Forbes for crossing and maintaining all plant material. Also thanks to Dr. David Chagné, Dr. Soonie Chng and Dr. Sue Gardiner for critical reading of this manuscript. Funding for this work was provided by the New Zealand Foundation for Research Science and Technology contract number C06X0810.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Johnston.

Additional information

Communicated by A. Graner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, P.A., Niks, R.E., Meiyalaghan, V. et al. Rph22: mapping of a novel leaf rust resistance gene introgressed from the non-host Hordeum bulbosum L. into cultivated barley (Hordeum vulgare L.). Theor Appl Genet 126, 1613–1625 (2013). https://doi.org/10.1007/s00122-013-2078-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2078-9

Keywords

Navigation