Skip to main content

Advertisement

Log in

Development of 1,030 genomic SSR markers in switchgrass

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Switchgrass, Panicum virgatum L., a native to the tall grass prairies in North America, has been grown for soil conservation and herbage production in the USA and recently widely recognized as a promising dedicated cellulosic bioenergy crop. A large amount of codominant molecular markers including simple sequence repeats (SSRs) are required for the construction of linkage maps and implementation of molecular breeding strategies to develop superior switchgrass cultivars. The objectives of this study were (1) to identify SSR-containing clones and to design PCR primer pairs (PPs) in SSR-enriched genomic libraries, and (2) to validate and characterize the designed SSR PPs. Five genomic SSR enriched libraries were constructed using genomic DNA of ‘SL93 7 × 15’, a switchgrass genotype selected in an Oklahoma State University (OSU) southern lowland breeding population. A total of 3,046 clones from four libraries enriched in (CA/TG)n, (GA/TC)n, (CAG/CTG)n and (AAG/CTT)n SSR repeats were sequenced at the OSU Core Facility. From the sequences, we isolated 1,300 unique SSR-containing clones, from which we designed 1,398 PPs using SSR Locator V.1 software. Among the designed PPs, 1,030 (73.7%) amplified reproducible and strong bands with expected fragment size, and 802 detected polymorphic alleles, in SL93 7 × 15 and ‘NL94 16 × 13’, two parents of one mapping population. All of the four libraries contained a high rate of perfect SSR repeat types, ranging from 62.7 to 76.2%. Polymorphism of the effective SSR markers was also tested in two lowland and two upland switchgrass cultivars, encompassing ‘Alamo’ and ‘Kanlow’, and ‘Blackwell’ and ‘Dacotah’, respectively. The developed SSR markers should be useful in genetic and breeding research in switchgrass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alderson J, Sharp WC (1994) Grass varieties in the United States. USDA Soil Conservation Service, Agriculture Handbook No. 170, Washington, DC, pp 194–199

  • Barnett FL, Carver RF (1967) Meiosis and pollen stainability in switchgrass Panicum virgatum L. Crop Sci 7:301–304

    Article  Google Scholar 

  • Bouton J (2008) Improvement of switchgrass as a bioenergy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 309–345

    Chapter  Google Scholar 

  • Cai HW, Yuyama N, Tamaki H, Yoshizawa A (2003) Isolation and characterization of simple sequence repeat markers in the hexaploid forage grass timothy (Phleum pretense L.). Theor Appl Genet 107:1337–1349

    Article  CAS  PubMed  Google Scholar 

  • Cai HW, Inoue M, Yuyama N, Takahashi W, Hirata M, Sasaki T (2005) Isolation, characterization and mapping of simple sequence repeat markers in zoysiagrass (Zoysia spp.). Theor Appl Genet 112:158–166

    Article  CAS  PubMed  Google Scholar 

  • Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156:847–854

    CAS  PubMed  Google Scholar 

  • Casler MD, Vogel KP, Taliaferro CM, Wynia RL (2004) Latitudinal adaptation of switchgrass populations. Crop Sci 44:293–303

    Google Scholar 

  • Chabane K, Ablett GA, Cordeiro GM, Valkoun J, Henry RJ (2005) EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Res Crop Evol 52:903–909

    Article  CAS  Google Scholar 

  • Chakraborty R, Kimmel M, Strivers DN, Davison LJ, Deka R (1997) Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc Natl Acad Sci USA 94:1041–1046

    Article  CAS  PubMed  Google Scholar 

  • Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722

    Article  CAS  Google Scholar 

  • da Maia LC, Palmieri DA, de Souza VQ, Kopp MM, de Carvalho FI, Costa de Oliveira A (2008) SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genomics. doi:10.1155/2008/412696

    PubMed  Google Scholar 

  • Fukino N, Sakata Y, Kunihisa M, Matsumoto S (2007) Characterization of novel simple sequence repeat (SSR) markers for melon (Cucumis melo L.) and their use for genotype identification. J Hort Sci Biotechnol 82(2):330–334

    CAS  Google Scholar 

  • Gill GP, Wilcox PL, Whittaker DJ, Winz RA, Bickerstaff P, Echt CE, Kent J, Humphreys MO, Elborough KM, Gardner RC (2006) A framework linkage map of perennial ryegrass based on SSR markers. Genome 49:354–364

    Article  CAS  PubMed  Google Scholar 

  • Gould FW (1975) The grasses of Texas. Texas A & M University Press, College Station

    Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Hirata M, Cai HW, Inoue M, Yuyama N, Miura Y, Komatsu T, Takamizo T, Fujimori M (2006) Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113:270–279

    Article  CAS  PubMed  Google Scholar 

  • Hitchcock AS (1951) Manual of the grasses of the United States, 2nd edn (revised by Chase A). United States Department of Agriculture Miscellaneous Publication 200, USA, pp 1–1051

  • Hopkins AA, Taliaferro CM, Murphy CD, Christian D (1996) Chromosome number and nuclear DNA content of several switchgrass populations. Crop Sci 36:1192–1195

    Article  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  Google Scholar 

  • Jones ES, Dupal MP, Kolliker R, Drayton MC, Forster JW (2001) Development and characterization of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 102:405–415

    Article  CAS  Google Scholar 

  • Jones KC, Levine KF, Banks JD (2002) Characterization of 11 polymorphic tetranucleotide microsatellites for forensic applications in California elk (Cervus elaphus canadensis). Mol Ecol Notes 2:425–427

    Article  CAS  Google Scholar 

  • La Rota M, Kantety RV, Yu JK, Sorrells ME (2005) Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics 6:23

    Article  PubMed  Google Scholar 

  • Lu K, Kaeppler SM, Vogel KP, Arumuganathan K, Lee DJ (1998) Nuclear DNA content and chromosome numbers in switchgrass. Great Plains Res 8:269–280

    Google Scholar 

  • McLaughlin SB (1992) New switchgrass biofuels research program for the Southeast. Proceedings of the Annual Automatic Technology Development Contractor Coordinating Meeting, Dearborn, pp 111–115

  • McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535

    Article  Google Scholar 

  • Mir RR, Banerjee S, Das M, Gupta V, Tyagi AK, Sinha MK, Balyan HS, Gupta PK (2009) Development and characterization of large-scale simple sequence repeats in jute. Crop Sci 49:1687–1694

    Article  CAS  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  CAS  PubMed  Google Scholar 

  • Narasimhamoorthy B, Saha MC, Swaller T, Bouton JH (2008) Genetic diversity in switchgrass collections assessed by EST-SSR markers. Bioenergy Res 1:136–146

    Article  Google Scholar 

  • Nielsen EL (1944) Analysis of variation in Panicum virgatum. J Agric Res 69:327–353

    Google Scholar 

  • Nunome T, Negoro S, Kono I, Kanamori H, Miyatake K, Yamaguchi H, Ohyama A, Fukuoka H (2009) Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor Appl Genet 119:1143–1153

    Article  PubMed  Google Scholar 

  • Pinto LR, Oliveira KM, Marconi T, Garcia AAF, Ulian EC, De Souza AP (2006) Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breed 125:378–384

    Article  CAS  Google Scholar 

  • Porter C (1966) An analysis of variation between upland and lowland switchgrass, Panicum virgatum L. Ecology 47:980–992

    Article  Google Scholar 

  • Saha MC, Mian R, Zwonitzer JC, Chekhovskiy K, Hopkins AA (2005) An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.). Theor Appl Genet 110:323–336

    Article  CAS  PubMed  Google Scholar 

  • Saha MC, Cooper JD, Rouf Mian MA, Chekhovskiy K, May GD (2006) Tall fescue genomic SSR markers: development and transferability across multiple grass species. Theor Appl Genet 113:1449–1458

    Article  CAS  PubMed  Google Scholar 

  • Schug MD, Hutter CM, Wetterstrand KA, Gaudette MS, Mackay TFC, Aquadro CF (1998) The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster. Mol Biol Evol 5:1751–1760

    Google Scholar 

  • Stubbendieck J, Hatch SL, Butterfield CH (1982) North American range plants. University of Nebraska Press, Lincoln

    Google Scholar 

  • Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1130

    Article  CAS  PubMed  Google Scholar 

  • Taramino G, Tarchini R, Ferrario S, Lee M, Pe ME (1997) Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theor Appl Genet 95:66–72

    Article  CAS  Google Scholar 

  • Tatusova TA, Madden TL (1999) BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    Article  CAS  PubMed  Google Scholar 

  • Tobias CM, Twigg P, Hayden DM, Vogel KP, Mitchell RM, Lazo GR, Chow EK, Sarath G (2005) Analysis of expressed sequence tags and the identification of associated short tandem repeats in switchgrass. Theor Appl Genet 111:956–964

    Article  PubMed  Google Scholar 

  • Tobias CM, Hayden DM, Twigg P, Sarath G (2006) Genic microsatellite markers derived from EST sequences of switchgrass (Panicum virgatum L.). Mol Ecol Notes 6:185–187

    Article  CAS  Google Scholar 

  • Tobias CM, Sarath G, Twigg P, Lindquist E, Pangilinan J, Penning BW, Barry K, McCann MC, Carpita NC, Lazo GR (2008) Comparative genomics in switchgrass using 61, 585 high-quality expressed sequence tags. The Plant Genome 1:111–124

    Article  CAS  Google Scholar 

  • Tsukazaki H, Nunome T, Fukuoka H, Kanamori H, Kono I, Yamashita K, Wako T, Kojima A (2007) Isolation of 1, 796 SSR clones from SSR-enriched DNA libraries of bunching onion (Allium fistulosum). Euphytica 157:83–94

    Article  CAS  Google Scholar 

  • Vogel KP (2004) Switchgrass. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm-season (C4) grasses. ASA-CSSA-SSSA Monograph, Madison, pp 561–588

    Google Scholar 

  • Warnke SE, Barker RE, Jung G, Sim SC, Mian MAR, Saha MC, Brilman LA, Dupal MP, Forster JW (2004) Genetic linkage mapping of an annual x perennial ryegrass population. Theor Appl Genet 109:294–304

    Article  CAS  PubMed  Google Scholar 

  • Wu YQ, Huang Y (2008) QTL mapping of sorghum resistance to greenbugs by molecular markers. Theor Appl Genet 117:117–124

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully thank Sharon Williams, Pu Feng, and Gary Williams for maintenance of plant materials used in this study in greenhouse, Dr. Ming Su from Oklahoma State University for helping format the Electronic Supplementary Material, and Ms. Yan Song and Dr. Peter Hoyt of the OSU Microarray and Bioinformatics Core Facility for trimming the sequences. This work has been supported, in part, by the NSF EPSCoR award EPS 0814361. We are also grateful to the China Scholarship Council (No. [2006] 3142) and Quality Forage Products Promotion Program (2006-G38) funded by the Ministry of Agriculture of China for supporting a visiting research stay of Yunwen Wang at Oklahoma State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Q. Wu.

Additional information

Communicated by A. Schulman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 549 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y.W., Samuels, T.D. & Wu, Y.Q. Development of 1,030 genomic SSR markers in switchgrass. Theor Appl Genet 122, 677–686 (2011). https://doi.org/10.1007/s00122-010-1477-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1477-4

Keywords

Navigation