Skip to main content
Log in

An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Tall fescue (Festuca arundinacea Schreb.) is commonly grown as forage and turf grass in the temperate regions of the world. Here, we report the first genetic map of tall fescue constructed with PCR-based markers. A combination of amplified fragment length polymorphisms (AFLPs) and expressed sequence tag-simple sequence repeats (EST-SSRs) of both tall fescue and those conserved in grass species was used for map construction. Genomic SSRs developed from Festuca × Lolium hybrids were also mapped. Two parental maps were initially constructed using a two-way pseudo-testcross mapping strategy. The female (HD28-56) map included 558 loci placed in 22 linkage groups (LGs) and covered 2,013 cM of the genome. In the male (R43-64) map, 579 loci were grouped in 22 LGs with a total map length of 1,722 cM. The marker density in the two maps varied from 3.61 cM (female parent) to 2.97 (male parent) cM per marker. These differences in map length indicated a reduced level of recombination in the male parent. Markers that revealed polymorphism within both parents and showed 3:1 segregation ratios were used as bridging loci to integrate the two parental maps as a bi-parental consensus. The integrated map covers 1,841 cM on 17 LGs, with an average of 54 loci per LG, and has an average marker density of 2.0 cM per marker. Homoeologous relationships among linkage groups of six of the seven predicted homeologous groups were identified. Three small groups from the HD28-56 map and four from the R43-64 map are yet to be integrated. Homoeologues of four of those groups were detected. Except for a few gaps, markers are well distributed throughout the genome. Clustering of those markers showing significant segregation distortion (23% of total) was observed in four of the LGs of the integrated map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alm V, Fang C, Busso CS, Devos KM, Vollan K, Grieg Z, Rognli OA (2003) A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Theor Appl Genet 108:25–40

    Article  CAS  PubMed  Google Scholar 

  • Anderson JA, Ogihara Y, Sorrells ME, Tanksley SD (1992) Development of a chromosomal arm map for wheat based on RFLP markers. Theor Appl Genet 83:1035–1043

    CAS  Google Scholar 

  • Barrett B, Griffiths A, Schreiber M, Ellison N, Mercer C, Bouton J, Ong B, Forster J, Sawbridge T, Spangenberg G, Bryan G, Woodfield D (2004) A microsatellite map of white clover. Theor Appl Genet 109:596–608

    PubMed  Google Scholar 

  • Benham J, Jeung J-U, Jasieniuk M, Kanazin V, Blake T (1999) genographer: a graphical tool for automated AFLP and microsatellite analysis. J Agric Genomics 4:http://www.ncgr.or/research/jag/papers99/indexp399.html

  • Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F (1999) A high-density molecular map for ryegrass (Lolium perenne L.) using AFLP markers. Theor Appl Genet 99:445–452

    Article  CAS  Google Scholar 

  • Boivin K, Deu M, Rami J-F, Trouche G, Hamon P (1999) Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98:320–328

    Article  CAS  Google Scholar 

  • Brummer EC, Bouton JH, Kochert G (1993) Development of an RFLP map in diploid alfalfa. Theor Appl Genet 86:329–332

    CAS  Google Scholar 

  • Cardinal J, Lee M, Moore J (2003) Genetic mapping and analysis of quantitative trait loci affecting fiber and lignin content in maize. Theor Appl Genet 106:866–874

    CAS  PubMed  Google Scholar 

  • Cato SA, Gardner RC, Kent J, Richardson TE (2001) A rapid PCR based method for genetically mapping ESTs. Theor Appl Genet 102:296–306

    Article  CAS  Google Scholar 

  • Cho YG, Ishii T, Temnykh S, Chen X, Lopovich L, McCouch SR, Park WD, Ayres N, Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722

    Article  CAS  Google Scholar 

  • Edwards KJ, Barker JH, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several Microsatellite sequences in plants. Biotechniques 20:758–760

    CAS  PubMed  Google Scholar 

  • Eujayl I, Sorrells ME, Wolters P, Baum M, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    Article  CAS  PubMed  Google Scholar 

  • Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MAR (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422

    Article  CAS  PubMed  Google Scholar 

  • Gaitán-Solís E, Duque MC, Edwards KJ, Tohme J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris): isolation, characterization, and cross-species amplification in Phaseolus ssp. Crop Sci 42:2128–2136

    Google Scholar 

  • Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25

    Article  CAS  Google Scholar 

  • Hemmat M, Weeden NF, Manganaris AG, Lawson DM (1994) A molecular marker linkage map for apple. J Hered 85:4–11

    CAS  PubMed  Google Scholar 

  • Jones ES, Dupal MP, Dumsday LJ, Forster JW (2002a) An SSR-based linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584

    CAS  PubMed  Google Scholar 

  • Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW (2002b) An enhanced molecular marker-based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45:282–295

    Article  CAS  PubMed  Google Scholar 

  • Kantety RV, Rota ML, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510

    Article  CAS  PubMed  Google Scholar 

  • King J, Roberts L A, Kearseyc MJ, Thomas HM, Jones RN, Huang L, Armstead IP, Morgan WG, King IP (2002) A demonstration of a 1:1 correspondence between chiasma frequency and recombination using a Lolium perenne/Festuca pratensis substitution. Genetics 161:307–314

    CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Maliepaard C, Jansen J, van Ooijen JW (1997) Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for applications. Genet Res 70:237–250

    Article  Google Scholar 

  • Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van GM, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Messing J, Llaca V (1998) Importance of anchor genomes for any plant genome project. Proc Natl Acad Sci USA 95:2017–2020

    Article  CAS  PubMed  Google Scholar 

  • Mian MAR, Hopkins AA, Zwonitzer JC (2002) Determination of genetic diversity in tall fescue with AFLP markers. Crop Sci 42:944–950

    Google Scholar 

  • O’Brien SJ (1993) Genetic maps: locus maps of complex genomes. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: Implication for transferability of SSRs in plants. Mol Biol Evol 15:1275–1287

    CAS  PubMed  Google Scholar 

  • Ritter E, Gebhardt C, Salamini F (1990) Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 135:645–654

    Google Scholar 

  • Roa AC, Chavarriaga-Aguirre P, Duque MC, Maya MM, Bonierbale MW, Iglesias C, Tohme J (2000) Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. Am J Bot 87:1647–1655

    CAS  PubMed  Google Scholar 

  • Saha MC, Mian MAR, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791

    Article  PubMed  Google Scholar 

  • Scalfi M, Troggio M, Piovani P, Leonardi S, Magnaschi G, Vendramin GG, Menozzi P (2004) A RAPD, AFLP and SSR linkage map, and QTL analysis in European beech (Fagus sulvatica L.). Theor Appl Genet 108:433–441

    Article  CAS  PubMed  Google Scholar 

  • Sefc KM, Lopes MS, Lefort F, Botta R, Roubelakis-Angelakis KA, Ibáňez F, Pejić K, Wagner HW, Glössl J, Steinkellner H (2000) Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor Appl Genet 100:498–505

    Article  Google Scholar 

  • Sewell MM, Sherman BK, Neale DB (1998) A consensus map for loblolly pone (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151:321–330

    Google Scholar 

  • Simonsen Ø (1975) Cytogenetic investigations in diploid and autotetraploid population of Festuca pratensis Huds. Hereditas 79:73–108

    CAS  PubMed  Google Scholar 

  • Sleper DA (1985) Breeding tall fescue. J Plant Breed Rev 3:313–342

    Google Scholar 

  • Sleper DA, West CP (1996) Tall Fescue In: ASA, CSSA, SSSA (eds) Cool-season forage grasses. Agronomy Monograph no. 34. ASA, CSSA, SSSA, Madison, Wis., pp 471–473

    Google Scholar 

  • Squirrell J, Hollingsworth PM, Woodhead M, Russell J, Lowe AJ, Gibby M, Powell W (2003) How much effort is required to isolate nuclear microsatellites from plants? Mol Ecol 12:1339–1348

    Article  CAS  PubMed  Google Scholar 

  • Temnykh S, Park WD, Ayers N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100: 697–712

    Article  CAS  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    CAS  PubMed  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) joinmap 3.0: software for the calculation of genetic linkage maps. Plant Res Int, Wageningen

    Google Scholar 

  • Voorrips RE (2002) mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 93: 77–78

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP : a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ (1994) RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136:1421–1434

    CAS  PubMed  Google Scholar 

  • Warnke SE, Barker RE, Jung G, Sim S-C, Mian MAR, Saha MC, Brilman LA, Dupal MP, Forster JW (2004) Genetic linkage mapping of an annual × perennial ryegrass population. Theor Appl Genet 109:294–304

    Article  CAS  PubMed  Google Scholar 

  • Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single dose restriction fragments. Theor Appl Genet 83:294–300

    Article  Google Scholar 

  • Xu WW, Sleper DA, Hoisington DA (1991) A survey of restriction fragment length polymorphisms in tall fescue and its relatives. Genome 34:686–692

    CAS  Google Scholar 

  • Xu WW, Sleper DA, Chao S (1995) Genome mapping of tall fescue (Festuca arundinacea Schreb.) with RFLP markers. Theor Appl Genet 91:947–955

    Article  CAS  Google Scholar 

  • Yu J, Mangor J, Thompson L, Edwards KJ, Slabaugh MB, Knapp SJ (2002) Allelic diversity of simple sequence repeats among elite inbred lines of cultivated sunflower. Genome 45:652–660

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Dake TM, Singh S, Benscher D, Li W, Gill B, Sorrells ME (2004) Development and mapping of EST-derived simple sequence repeat (SSR) markers for hexaploid wheat. Genome Res (in press)

Download references

Acknowledgements

We thank Dr. Mark E. Sorrells for critically reviewing this manuscript. We also thank Drs. Marc Ghesquiere and Mark Sorrells for providing us with the Festuca×Lolium hybrid genomic SSR and conserved grass SSR primer sequences, respectively. We appreciate Jennifer Black and Luke Word for their technical support. This research work was funded by the Samuel Roberts Noble Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouf Mian.

Additional information

Communicated by P. Langridge

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, M.C., Mian, R., Zwonitzer, J.C. et al. An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.). Theor Appl Genet 110, 323–336 (2005). https://doi.org/10.1007/s00122-004-1843-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1843-1

Keywords

Navigation