Skip to main content
Log in

Molecular mapping of QTLs for resistance to the greenbug Schizaphis graminum (Rondani) in Sorghum bicolor (Moench)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Sorghum is a worldwide important cereal crop and widely cultivated for grain and forage production. Greenbug, Schizaphis graminum (Rondani) is one of the major insect pests of sorghum and can cause serious damage to sorghum plants, particularly in the US Great Plains. Identification of chromosomal regions responsible for greenbug resistance will facilitate both map-based cloning and marker-assisted breeding. Thus, a mapping experiment was conducted to dissect sorghum genetic resistance to greenbug biotype I into genomic regions. Two hundred and seventy-seven (277) F2 progeny and their F2:3 families from a cross between Westland A line (susceptible parent) and PI550610 (resistant parent) combined with 118 polymorphic simple sequence repeat (SSR) markers were used to map the greenbug resistance QTLs. Composite interval mapping (CIM) and multiple interval mapping (MIM) revealed two QTLs on sorghum chromosome nine (SBI-09) consistently conditioned the resistance of host plant to the greenbug. The two QTLs were designated as QSsgr-09-01 (major QTL) and QSsgr-09-02 (minor QTL), accounting for approximately 55–80%, and 1–6% of the phenotypic variation for the resistance to greenbug feeding, respectively. These resistance QTLs appeared to have additive and partially dominant effects. The markers Xtxp358, Xtxp289, Xtxp67 and Xtxp230 closely flanked the respective QTLs, and can be used in high-throughput marker-assisted selections (MAS) for breeding new resistant parents and producing commercial hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrama HA, Wilde GE, Reese JC, Campbell LR, Tuinstra MR (2002) Genetic mapping of QTLs associated with greenbug resistance and tolerance in Sorghum bicolor. Theor Appl Genet 104:1371–1378

    Google Scholar 

  • Andrews DJ, Bramel-Cox PJ, Wilde GE (1993) New sources of resistance to greenbug, biotype I, in sorghum. Crop Sci 33:198–199

    Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (2003) QTL cartographer version 1.17. North Carolina State University, Raleigh

    Google Scholar 

  • Bhattramakki D, Dong J, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li ZK, Lin YR, Liu SC, Luo LJ, Marler BS, Ming RG, Mitchell SE, Qiang D, Reischmann K, Schulze SR, Skinner DN, Wang YW, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for Sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    PubMed  CAS  Google Scholar 

  • Bowling R, Wilde G, Harvey T, Sloderbeck P, Bell KO, Morrison WP, Brooks HL (1994) Occurrence of greenbug (Homoptera: Aphididae) biotypes E and I in Kansas, Texas, Nebraska, Colorado, and Oklahoma. J Econ Entomol 87:1696–1700

    Google Scholar 

  • Brown SM, Hopkins MS, Mitchell SE, Senior ML, Wang TY, Duncan RR, Gonzalez-Candelas F, Kresovich S (1996) Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 93:190–198

    Article  CAS  Google Scholar 

  • Burd JD, Porter DR (2006) Assessment of noncultivated grasses as reservoirs of greenbug (Homoptera: Aphididae) biotypic diversity. J Econ Entomol 99:959–965

    PubMed  Google Scholar 

  • Dean RE, Dahlberg JA, Hopkins MS, Mitchell SE, Kresovich S (1999) Genetic redundancy and diversity among ‘Orange’ accessions in the US National Sorghum Collection as assessed with simple sequence repeat (SSR) markers. Crop Sci 39:1215–1221

    Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn. Longman Scientific & Technical/Wiley, New York, pp 1–12

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissues. Focus 12:13–15

    Google Scholar 

  • Harvey TL, Hackerott HL (1969) Recognition of a greenbug biotype injurious to sorghum. J Econ Entomol 62:776–779

    Google Scholar 

  • Harvey TL, Kofoid KD, Martin TJ, Sloderbeck PE (1991) A new greenbug virulent to E-biotype resistant sorghum. Crop Sci 31:1689–1691

    Google Scholar 

  • Harvey TL, Wilde GE, Kofoid KD (1997) Designation of a new greenbug, biotype K, injurious to resistant sorghum. Crop Sci 37:989–991

    Google Scholar 

  • Karper RE (1944) Registration of sorghum varieties, IV. Agron J 36:453

    Google Scholar 

  • Katsar CS, Paterson AH, Teetes GL, Peterson GC (2002) Molecular analysis of sorghum resistance to the greenbug (Homoptera: Aphididae). J Econ Entomol 95:448–457

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Klein RR, Klein PE, Chhabra AK, Dong J, Pammi S, Childs KL, Mullet JE, Rooney WL, Schertz KF (2001) Molecular mapping of the rf1 gene for pollen fertility restoration in sorghum. Theor Appl Genet 102:1206–1212

    Article  CAS  Google Scholar 

  • Klein RR, Klein PE, Mullet JE, Minx P, Rooney WL, Schertz KF (2005) Fertility restorer locus RF1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the collinear region of rice chromosome 12. Theor Appl Genet 111:994–1012

    Article  PubMed  CAS  Google Scholar 

  • Kofoid KD, Harvey TL, Sloderbeck PE (1991) A new greenbug, biotype I, damaging sorghum. Proceedings of the 46th Annual Corn and Sorghum Research Conference, American Seed Trade Association, Washington, DC

  • Kong L, Dong J, Hart GE (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple sequence repeats (SSRs). Theor Appl Genet 101:438–448

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Construction genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report. 3rd edn. Whitehead Institute for Biomedical Research, Cambridge, MA

  • Menz MA, Klein RR, Mullet JE, Obert JA, Unruth NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol Biol 48:483–499

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj N, Reese JC, Tuinstra MR, Smith CM, Amand PS, Kirkham MB, Kofoid KD, Campbell LR, Wilde GE (2005) Molecular mapping of sorghum genes expressing tolerance to damage by greenbug (Homoptera: Aphididae). J Econ Entomol 98:595–602

    PubMed  CAS  Google Scholar 

  • NPGS (2006) Germplasm resources information database. Published on the internet at http://www.ars-grin.gov/cgi-bin/npgs/html/acchtml.pl?1137189. Accessed 16 Mar 2006

  • Olonju Dixon AG, Bramel-Cox PJ, Harvey TL (1990) Complementarity of genes for resistance to greenbug [Schizaphis graminum (Rondani)], biotype E, in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 81:105–110

    Google Scholar 

  • Park SJ, Huang Y, Ayoubi P (2005) Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta 223:932–947

    Article  PubMed  CAS  Google Scholar 

  • Porter KB, Peterson GL, Vise O (1982) A new greenbug biotype. Crop Sci 22:847–850

    Google Scholar 

  • Rooney WL (2004) Sorghum improvement-integrating traditional and new technology to produce improved genotypes. Adv Agronomy 83:37–109

    Article  Google Scholar 

  • SAS Institute (2003) SAS Proprietary Software version 9.1. SAS Inst, Cary

    Google Scholar 

  • Schweissing FC, Wilde G (1978) Temperature influence on greenbug resistance of crops in the seedling stage. Environ Entomol 7:831–834

    Google Scholar 

  • Stark KJ, Burton RL (1977) Greenbugs: determining biotypes, culturing, and screening for plant resistance. Technical Bulletin No. 1556. USDA-ARS, Washington, DC

    Google Scholar 

  • Taramino G, Tarchini R, Ferrario S, Lee M, Pe ME (1997) Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theor Appl Genet 95:66–72

    Article  CAS  Google Scholar 

  • Teetes GL, Pendleton BB (2000) Insect pests of sorghum. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology, and production. Wiley, New York, pp 463–466

    Google Scholar 

  • Tuinstra MR, Wilde GE, Kriegshauser T (2001) Genetic analysis of biotype I greenbug resistance in sorghum. Euphytica 121:87–91

    Article  Google Scholar 

  • Wang SC, Basten CJ, Gaffney P, Zeng ZB (2005) Windows QTL Cartographer 2.5. North Carolina State University, Bioinformatics Research Center, Raleigh

    Google Scholar 

  • Weibel DE, Starks KJ, Wood EA, Morrison RD (1972) Sorghum cultivars and progenies rated for resistance to greenbugs. Crop Sci 12:334–336

    Google Scholar 

  • Wu YQ, Huang Y, Tauer CG, Porter DR (2006) Genetic diversity of sorghum accessions resistant to greenbugs as assessed with AFLP markers. Genome 49:143–149

    Article  PubMed  CAS  Google Scholar 

  • Zhu-salzman K, Salzman RA, Ahn JE, Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphids. Plant Physiol 134:420–431

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge Ms. Angela Phillips and Miss Lindsey Hollaway for their excellent technical assistance. Special thanks are due to Dr. S. C. Wang of Bioinformatics Research Center at North Carolina State University for his constructive suggestions in the use of Windows QTL cartographer, and to Dr. J. Burd for providing original greenbug cultures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghua Huang.

Additional information

Communicated by M. Bohn.

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of a product by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Huang, Y. Molecular mapping of QTLs for resistance to the greenbug Schizaphis graminum (Rondani) in Sorghum bicolor (Moench). Theor Appl Genet 117, 117–124 (2008). https://doi.org/10.1007/s00122-008-0757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0757-8

Keywords

Navigation