Skip to main content
Log in

MlAG12: a Triticum timopheevii-derived powdery mildew resistance gene in common wheat on chromosome 7AL

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Wheat powdery mildew is an economically important disease in cool and humid environments. Powdery mildew causes yield losses as high as 48% through a reduction in tiller survival, kernels per head, and kernel size. Race-specific host resistance is the most consistent, environmentally friendly and, economical method of control. The wheat (Triticum aestivum L.) germplasm line NC06BGTAG12 possesses genetic resistance to powdery mildew introgressed from the AAGG tetraploid genome Triticum timopheevii subsp. armeniacum. Phenotypic evaluation of F3 families derived from the cross NC06BGTAG12/‘Jagger’ and phenotypic evaluation of an F2 population from the cross NC06BGTAG12/‘Saluda’ indicated that resistance to the ‘Yuma’ isolate of powdery mildew was controlled by a single dominant gene in NC06BGTAG12. Bulk segregant analysis (BSA) revealed simple sequence repeat (SSR) markers specific for chromosome 7AL segregating with the resistance gene. The SSR markers Xwmc273 and Xwmc346 mapped 8.3 cM distal and 6.6 cM proximal, respectively, in NC06BGTAG12/Jagger. The multiallelic Pm1 locus maps to this region of chromosome 7AL. No susceptible phenotypes were observed in an evaluation of 967 F2 individuals in the cross NC06BGTAG12/‘Axminster’ (Pm1a) which indicated that the NC06BGTAG12 resistance gene was allelic or in close linkage with the Pm1 locus. A detached leaf test with ten differential powdery mildew isolates indicated the resistance in NC06BGTAG12 was different from all designated alleles at the Pm1 locus. Further linkage and allelism tests with five other temporarily designated genes in this very complex region will be required before giving a permanent designation to this gene. At this time the gene is given the temporary gene designation MlAG12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bonnett DG, Rebetzke GJ, Spielmeyer W (2005) Strategies for efficient implementation of molecular markers in wheat breeding. Mol Breed 15:75–85

    Article  CAS  Google Scholar 

  • Everts KL, Leath S (1992) Effect of early season powdery mildew on development, survival, and yield contribution of tillers of winter wheat. Phytopathology 82:1273–1278

    Article  Google Scholar 

  • Hanson WD (1959) Minimum family sizes for the planning of genetic experiments. Agron J 51:711–715

    Google Scholar 

  • Hardwick NV, Jenkins JEE, Collins B, Groves SJ (1994) Powdery mildew (Erysiphe graminis) on winter wheat: control with fungicides and the effects on yield. Crop Prot 13:93–98

    Article  CAS  Google Scholar 

  • Hsam SLK, Zeller FJ (2002) Breeding for powdery mildew resistance in common wheat (Triticum aestivum L.). In: Bélanger RR, Bushnell WR, Dick AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. American Phytopathological Society, St. Paul, pp 219–238

    Google Scholar 

  • Hsam SLK, Huang XQ, Ernst F, Hartl L, Zeller FJ (1998) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 5. Alleles at the Pm1 locus. Theor Appl Genet 96:1129–1134

    Article  CAS  Google Scholar 

  • Huang XQ, Röder MS (2004) Molecular mapping of powdery mildew resistance genes in wheat: a review. Euphytica 137:203–223

    Article  CAS  Google Scholar 

  • Ji X, Xie C, Ni Z, Yang T, Nevo E, Fahima T, Liu Z, Sun Q (2008) Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica 159:385–390

    Article  CAS  Google Scholar 

  • Jorgensen JH, Jensen CJ (1973) Gene Pm6 for resistance to powdery mildew. Euphytica 22:423

    Article  Google Scholar 

  • Keller M, Keller B, Schachermayr G, Winzeler M, Schmid JE, Stamp P, Messmer MM (1999) Quantitative trait loci for resistance against powdery mildew in a segregating wheat x spelt population. Theor Appl Genet 98:903–912

    Article  CAS  Google Scholar 

  • Leath S, Bowen KL (1989) Effects of powdery mildew, triadimenol seed treatment, and triadimefon foliar sprays on yield of winter wheat in North Carolina. Phytopathology 79:152–155

    Article  Google Scholar 

  • Lillemo M, Aslf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjornstad (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing linkage maps with MAPMAKER/Exp Version 3.0. A tutorial reference manual, 3rd edn. Whitehead Institute for Medical Research, Cambridge

    Google Scholar 

  • Liu Z, Sun Q, Ni Z, Nevo E, Yang T (2002) Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123:21–29

    Article  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y. Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, and Devos KM (2008) Catalogue of gene symbols for wheat. http://wheat.pw.usda.gov/GG2/Triticum/wgc/2008/. Cited 17 March 2009

  • Michelmore RW, Paran I, Kesseli VR (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Leath S (2006) Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 113:1497–1504

    Article  PubMed  CAS  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S (2007) Chromosomal location of Pm35. a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 114:1451–1456

    Article  PubMed  CAS  Google Scholar 

  • Murphy JP, Navarro RA, Marshall D, Cowger C, Cox TS, Kolmer JA, Leath S, Gaines CS (2007) Registration of NC06BGTAG12 and NC06BGTAG13 powdery mildew-resistant wheat germplasm. J Plant Regist 1:75

    Article  Google Scholar 

  • Niewoehner AS, Leath S (1998) Virulence of Blumeria graminis f. sp. tritici on winter wheat in the eastern United States. Plant Dis 82:64–68

    Article  Google Scholar 

  • Parks R, Carbone I, Murphy JP, Marshall D, Cowger C (2008) Virulence structure of the eastern US wheat powdery mildew population. Plant Dis 92:1047–1082

    Article  Google Scholar 

  • Perugini LD, Murphy JP, Marshall D, Brown-Guedira G (2008) Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet 116:417–425

    Article  PubMed  CAS  Google Scholar 

  • Peusha H, Enno T, Priilinn O (2000) Chromosomal location of powdery mildew resistance genes and cytogenetic analysis of meiosis in common wheat cultivar Meri. Hereditas 132:29–34

    Article  PubMed  CAS  Google Scholar 

  • Qiu YC, Zhou RH, Kong XY, Zhang SS, Jia JZ (2005) Microsatellite mapping of a Triticum urartu Tum. derived powdery mildew resistance gene transferred to common wheat (Triticum aestivum L.). Theor Appl Genet 111:1524–1531

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Schneider DM, Heun M, Fischbeck G (1991) Inheritance of the powdery mildew resistance gene Pm9 in realtion to Pm1 and Pm2 of wheat. Plant Breed 107:161–164

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Sears ER, Briggle (1969) Mapping the gene Pm1 for resistance to Erysiphe graminis f. sp. tritici on chromosome 7A of wheat. Crop Sci 9:96–97

    Google Scholar 

  • Sears RG, Moffatt JM, Martin TJ, Cox TS, Bequette RK, Curran SP, Chung OK, Heer WF, Long JH, Witt MD (1997) Registration of Jagger wheat. Crop Sci 37:1010

    Article  Google Scholar 

  • Shtienberg D (1992) Effects of foliar dieases on gas exchange processes: a comparative study. Phytopathology 82:760–765

    Article  Google Scholar 

  • Singrün CH, Hsam SLK, Hartl L, Zeller FJ, Mohler V (2003) Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.). Theor Appl Genet 106:1420–1424

    PubMed  Google Scholar 

  • Singrün CH, Hsam SLK, Zeller FJ, Wenzel G, Mohler V (2004) Localization of a novel recessive powdery mildew resistance gene from common wheat line RD30 in the terminal region of chromosome 7AL. Theor Appl Genet 109:210–214

    Article  PubMed  CAS  Google Scholar 

  • Snedecor GW, Cochran WG (1956) Statistical methods applied to experiments in agriculture and biology. The Iowa State College Press, Ames

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi LL, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of geneticphysical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Srnić G, Murphy JP, Lyerly JH, Leath S, Marshall DS (2005) Inheritance and chromosomal assignment of powdery mildew resistance genes in two winter wheat germplasm lines. Crop Sci 45:1578–1586

    Article  CAS  Google Scholar 

  • Starling TM, Roane CW, Camper HM (1986) Registration of ‘Saluda’ wheat. Crop Sci 26:200

    Google Scholar 

  • Stein N, Herren G, Keller B (2001) A new extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breed 120:354–356

    Article  CAS  Google Scholar 

  • Tucker DM, Griffey CA, Liu S, Brown-Guedira GL, Marshall DS, Saghai Maroof MA (2007) Confirmation of three quantitative trait loci conferring adult plant resistance to powdery mildew in two winter wheat populations. Euphytica 155:1–13

    Article  Google Scholar 

  • Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    Article  PubMed  CAS  Google Scholar 

  • Yao G, Zhang J, Yang L, Xu H, Jiang Y, Xiong L, Zhang C, Zhang Z, Ma Z, Sorrells M (2007) Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theor Appl Genet 114:351–358

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported, in part, by the North Carolina Small Grain Growers Association. We thank Dr. R. A. McIntosh for his excellent insights and suggestions during the final draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Paul Murphy.

Additional information

Communicated by B. Keller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maxwell, J.J., Lyerly, J.H., Cowger, C. et al. MlAG12: a Triticum timopheevii-derived powdery mildew resistance gene in common wheat on chromosome 7AL. Theor Appl Genet 119, 1489–1495 (2009). https://doi.org/10.1007/s00122-009-1150-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1150-y

Keywords

Navigation