Skip to main content
Log in

Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Powdery mildew is an important foliar disease in wheat, especially in areas with a cool or maritime climate. A dominant powdery mildew resistance gene transferred to the hexaploid germplasm line NC99BGTAG11 from T. timopheevii subsp. armeniacum was mapped distally on the long arm of chromosome 7A. Differential reactions were observed between the resistance gene in NC99BGTAG11 and the alleles of the Pm1 locus that is also located on chromosome arm 7AL. Observed segregation in F2:3 lines from the cross NC99BGTAG11 × Axminster (Pm1a) demonstrate that germplasm line NC99BGTAG11 carries a novel powdery mildew resistance gene, which is now designated as Pm37. This new gene is highly effective against all powdery mildew isolates tested so far. Analyses of the population with molecular markers indicate that Pm37 is located 16 cM proximal to the Pm1 complex. Simple sequence repeat (SSR) markers Xgwm332 and Xwmc790 were located 0.5 cM proximal and distal, respectively, to Pm37. In order to identify new markers in the region, wheat expressed sequence tags (ESTs) located in the distal 10% of 7AL that were orthologous to sequences from chromosome 6 of rice were targeted. The two new EST-derived STS markers were located distal to Pm37 and one marker was closely linked to the Pm1a region. These new markers can be used in marker-assisted selection schemes to develop wheat cultivars with pyramids of powdery mildew resistance genes, including combinations of Pm37 in coupling linkage with alleles of the Pm1 locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Briggle LW (1969) Near-isogenic lines of wheat with genes for resistance to Erysiphe graminis tritici. Crop Sci 9:70–72

    Article  Google Scholar 

  • Chen XM, Luo YH, Xia XC, Xia LQ, Chen X et al (2005) Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed 124:225–228

    Article  CAS  Google Scholar 

  • Clarkson JDS (2000) Virulence survey report for wheat powdery mildew in Europe, 1996–1998. http://www.crpmb.org/2000/1204clarkson

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Everts KL, Leath S, Finney PL (2001) Impact of powdery mildew on milling and baking quality of soft red winter wheat. Plant Dis 85(4):423–429

    Article  Google Scholar 

  • Flor HH (1955) Host–parasite interaction in flax rust – its genetics and other implications. Phytopathology 45:680–685

    Google Scholar 

  • Hossain KG, Kalavacharla V, Lazo GR, Hegstad J, Wentz MJ et al (2004) A chromosome bin map of 2148 expressed sequence tag loci of wheat homeologous group 7. Genetics 168:687–699

    Article  PubMed  CAS  Google Scholar 

  • Hsam SLK, Zeller FJ (2002) Breeding for powdery mildew resistance in common wheat (Triticum aestivum L.). In: Berlanger RR, Bushnell WR, Dik AJ, Carver DL (eds) The powdery mildews: a comprehensive treatise. Am. Phytopath. Soc., St. Paul, MN, pp 219–238

    Google Scholar 

  • Hsam SLK, Huang XQ, Earnst F, Hartl L, Zeller FJ (1998) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.) 5. Alleles at the Pm1 locus. Theor Appl Genet 96:1129–1134

    Article  CAS  Google Scholar 

  • Huang XQ, Röder MS (2004) Molecular mapping of powdery mildew resistance genes in wheat: a review. Euphytica 137:203–223

    Article  CAS  Google Scholar 

  • Jarve K, Peusha HO, Tsymbalova J, Tamm S, Devos KM, Enno TM (2000) Chromosomal location of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat. Genome 43:377–381

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen JH (1973) Gene Pm6 for resistance to powdery mildew in wheat. Euphytica 22:43

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • La Rota M, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between wheat and rice. Funct Integr Genomics 4:34–46

    Article  PubMed  CAS  Google Scholar 

  • Lazo GR, Chao S, Hummel DD, Edwards H, Crossman CC, Lui N et al (2004) Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.): EST generation, unigene analysis, probe selection, and bioinformatics for a 16,000-locus bin-delineated map. Genetics 168:585–593

    Article  PubMed  Google Scholar 

  • Leath S, Heun M (1990) Identification of powdery mildew resistance genes in cultivars of soft red winter wheat. Plant Dis 74:747–752

    Article  Google Scholar 

  • Leath S, Murphy JP (1985) Virulence genes of the wheat powdery mildew fungus, Erysiphe graminis f. sp. tritici, in North Carolina. Plant Dis 69:905

    Article  Google Scholar 

  • Ma ZQ, Sorrells ME, Tanksley SD (1994) RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat. Genome 37:871–875

    CAS  PubMed  Google Scholar 

  • Martins-Lopes P, Zhang H, Koebner R (2001) Detection of single nucleotide mutations in wheat using single strand conformation polymorphism gels. Plant Mol Biol Rep 19:159–162

    Article  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols for wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th int wheat genet symp, vol 4, pp 1–34

  • McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ (2004) Catalogue of gene symbols for wheat: 2004 (suppl) http://www.wheat.pw.usda.gov/GG2/pubs.shtml

  • McIntosh RA, Devos KM, Dubcovsky J, Morris CF, Appels R, Anderson OD (2005) Catalogue of gene symbols for wheat: 2005(suppl) http://www.wheat.pw.usda.gov/GG2/pubs.shtml

  • Murphy JP, Leath S, Huynh D, Navarro RA (2002) Registration of NC99BGTAG11 wheat germplasm resistant to powdery mildew. Crop Sci 42:1382

    Article  Google Scholar 

  • Neu C, Stein N, Keller B (2002) Genetic mapping of the Lr20 - Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45:737–744

    Article  PubMed  CAS  Google Scholar 

  • Qi L, Echalier B, Friebe B, Gill BS (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 3:39–55

    PubMed  CAS  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR, Butler GE et al (2004) A chromosome bin map of 16,000 EST loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wedehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A SSR map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, New Jersey, pp 365–386

    Google Scholar 

  • Schneider D, Heun M, Fischbeck G (1991) Inheritance of the powdery mildew resistance gene Pm9 in relation to Pm1 and Pm2 of wheat. Plant Breed 107:161–164

    Article  Google Scholar 

  • Sears ER (1966) Nullisomic–tetrasomic combinations in hexaploid wheat. Univ Mo Agric Exp Stn Bull 572:1–58

    Google Scholar 

  • Sears ER, Briggle LW (1969) Mapping the Pm1 gene for resistance to Erysiphe graminis f. sp. tritici on chromosome 7A of wheat. Crop Sci 9:96–97

    Article  Google Scholar 

  • Sears ER, Sears LMS (1979) The telocentric chromosomes of common wheat. In: Ramanujan S (ed) Proc 5th int wheat genet symp. Indian Society of Genetics and Plant Breeding, New Delhi, India, pp 23–28

  • Singrün C (2002) Untersuchungen zur Lokalisierung und Kartierung von Genen für Resistenz gegen Mehltau und Braunrost in Saatweizen (Triticum aestivum L.) und Dinkel ( Triticum spelta L.). Available via http://deposit.d-nb.de/cgi-bin/dokserv?idn=966108620&dok_var=d1&dok_ext=pdf&filename=966108620.pdf. Accessed 10 July 2007

  • Singrün CH, Hsam SL, Zeller FJ, Mohler V (2003) Powdery mildew resistance gene Pm22 is a member of the complex Pm1 locus in common wheat (Triticum aestivum L). Theor Appl Genet 106:1420–1424

    PubMed  Google Scholar 

  • Singrün CH, Hsam SL, Zeller FJ, Wenzel G, Mohler V (2004) Localization of a novel recessive powdery mildew resistance gene from common wheat line RD30 in the terminal region of chromosome 7AL. Theor Appl Genet 109:210–214

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Peter I, Edwards K (2004) A high-density SSR consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) SSR-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Srnić G, Murphy JP, Lyerly JH, Leath S, Marshall DS (2005) Inheritance and chromosomal assignment of powdery mildew resistance genes in two winter wheat germplasm lines. Crop Sci 45:1578–1586

    Article  CAS  Google Scholar 

  • Starling TM, Roane CW, Camper HM (1986) Registration of ‘Saluda’ wheat. Crop Sci 26:200

    Google Scholar 

  • van Ooijen JW (2006) JoinMap, software for the calculation of genetic linkage maps. Kyazma BV, Wageningen, The Netherlands, Version 4

  • Yao G, Zhang J, Yang L, Xu H, Jiang Y, Xiong L, Zhang C, Zhang Z, Ma Z, Sorrels ME (2007) Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theor Appl Genet 114:351–358

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Marc Cubeta for his valuable input into this project. We would also like to thank Jared Smith, Kim Howell and Lynda Witcher for their greenhouse and laboratory assistance. This research was supported by the USDA-ARS and the USDA-CSREES National Research Initiative CAP grant 2005-05130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Brown-Guedira.

Additional information

Communicated by J. Dubcovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perugini, L.D., Murphy, J.P., Marshall, D. et al. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet 116, 417–425 (2008). https://doi.org/10.1007/s00122-007-0679-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0679-x

Keywords

Navigation