Skip to main content

Black holes and the double copy

A preprint version of the article is available at arXiv.

Abstract

Recently, a perturbative duality between gauge and gravity theories (the double copy) has been discovered, that is believed to hold to all loop orders. In this paper, we examine the relationship between classical solutions of non-Abelian gauge theory and gravity. We propose a general class of gauge theory solutions that double copy to gravity, namely those involving stationary Kerr-Schild metrics. The Schwarzschild and Kerr black holes (plus their higher-dimensional equivalents) emerge as special cases. We also discuss plane wave solutions. Furthermore, a recently examined double copy between the self-dual sectors of Yang-Mills theory and gravity can be reinterpreted using a momentum-space generalisation of the Kerr-Schild framework.

References

  1. [1]

    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  2. [2]

    Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].

  3. [3]

    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  4. [4]

    N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal basis for gauge theory amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  5. [5]

    S. Stieberger, Open & closed vs. pure open string disk amplitudes, arXiv:0907.2211 [INSPIRE].

  6. [6]

    N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, Monodromy and Jacobi-like relations for color-ordered amplitudes, JHEP 06 (2010) 003 [arXiv:1003.2403] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  7. [7]

    B. Feng, R. Huang and Y. Jia, Gauge amplitude identities by on-shell recursion relation in S-matrix program, Phys. Lett. B 695 (2011) 350 [arXiv:1004.3417] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  8. [8]

    S.H. Henry Tye and Y. Zhang, Dual identities inside the gluon and the graviton scattering amplitudes, JHEP 06 (2010) 071 [Erratum ibid. 1104 (2011) 114] [arXiv:1003.1732] [INSPIRE].

  9. [9]

    C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  10. [10]

    F. Cachazo, Fundamental BCJ relation in N = 4 SYM from the connected formulation, arXiv:1206.5970 [INSPIRE].

  11. [11]

    N.E.J. Bjerrum-Bohr, P.H. Damgaard, R. Monteiro and D. O’Connell, Algebras for amplitudes, JHEP 06 (2012) 061 [arXiv:1203.0944] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  12. [12]

    H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  13. [13]

    Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B 530 (1998) 401 [hep-th/9802162] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    Z. Bern, J.S. Rozowsky and B. Yan, Two loop four gluon amplitudes in N = 4 super Yang-Mills, Phys. Lett. B 401 (1997) 273 [hep-ph/9702424] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    S. Oxburgh and C.D. White, BCJ duality and the double copy in the soft limit, JHEP 02 (2013) 127 [arXiv:1210.1110] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  17. [17]

    J.J. Carrasco and H. Johansson, Five-point amplitudes in N = 4 super-Yang-Mills theory and N = 8 supergravity, Phys. Rev. D 85 (2012) 025006 [arXiv:1106.4711] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    J.J.M. Carrasco, M. Chiodaroli, M. Gunaydin and R. Roiban, One-loop four-point amplitudes in pure and matter-coupled N ≥ 4 supergravity, JHEP 03 (2013) 056 [arXiv:1212.1146] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  19. [19]

    T. Bargheer, S. He and T. McLoughlin, New relations for three-dimensional supersymmetric scattering amplitudes, Phys. Rev. Lett. 108 (2012) 231601 [arXiv:1203.0562] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    R.H. Boels, R.S. Isermann, R. Monteiro and D. O’Connell, Colour-kinematics duality for one-loop rational amplitudes, JHEP 04 (2013) 107 [arXiv:1301.4165] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  21. [21]

    N.E.J. Bjerrum-Bohr, T. Dennen, R. Monteiro and D. O’Connell, Integrand oxidation and one-loop colour-dual numerators in N = 4 gauge theory, JHEP 07 (2013) 092 [arXiv:1303.2913] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  22. [22]

    Z. Bern, S. Davies, T. Dennen, Y.-t. Huang and J. Nohle, Color-kinematics duality for pure Yang-Mills and gravity at one and two loops, arXiv:1303.6605 [INSPIRE].

  23. [23]

    Z. Bern, S. Davies and T. Dennen, The ultraviolet structure of half-maximal supergravity with matter multiplets at two and three loops, Phys. Rev. D 88 (2013) 065007 [arXiv:1305.4876] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    J. Nohle, Color-kinematics duality in one-loop four-gluon amplitudes with matter, Phys. Rev. D 90 (2014) 025020 [arXiv:1309.7416] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    Z. Bern, S. Davies, T. Dennen, A.V. Smirnov and V.A. Smirnov, Ultraviolet properties of N = 4 supergravity at four loops, Phys. Rev. Lett. 111 (2013) 231302 [arXiv:1309.2498] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    S.G. Naculich, H. Nastase and H.J. Schnitzer, All-loop infrared-divergent behavior of most-subleading-color gauge-theory amplitudes, JHEP 04 (2013) 114 [arXiv:1301.2234] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  27. [27]

    Y.-J. Du, B. Feng and C.-H. Fu, Dual-color decompositions at one-loop level in Yang-Mills theory, JHEP 06 (2014) 157 [arXiv:1402.6805] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    Z. Bern, S. Davies and T. Dennen, Enhanced ultraviolet cancellations in \( \mathcal{N}=5 \) supergravity at four loops, Phys. Rev. D 90 (2014) 105011 [arXiv:1409.3089] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    R.H. Boels, B.A. Kniehl, O.V. Tarasov and G. Yang, Color-kinematic duality for form factors, JHEP 02 (2013) 063 [arXiv:1211.7028] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  30. [30]

    H. Johansson and A. Ochirov, Pure gravities via color-kinematics duality for fundamental matter, arXiv:1407.4772 [INSPIRE].

  31. [31]

    R. Saotome and R. Akhoury, Relationship between gravity and gauge scattering in the high energy limit, JHEP 01 (2013) 123 [arXiv:1210.8111] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    A. Sabio Vera, E. Serna Campillo and M.A. Vazquez-Mozo, Color-kinematics duality and the Regge limit of inelastic amplitudes, JHEP 04 (2013) 086 [arXiv:1212.5103] [INSPIRE].

    Article  Google Scholar 

  33. [33]

    H. Johansson, A. Sabio Vera, E. Serna Campillo and M.A. Vszquez-Mozo, Color-kinematics duality in multi-Regge kinematics and dimensional reduction, JHEP 10 (2013) 215 [arXiv:1307.3106] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    H. Johansson, A. Sabio Vera, E. Serna Campillo and M.A. Vazquez-Mozo, Color-kinematics duality and dimensional reduction for graviton emission in Regge limit, arXiv:1310.1680 [INSPIRE].

  35. [35]

    C.-H. Fu, Y.-J. Du and B. Feng, Note on symmetric BCJ numerator, JHEP 08 (2014) 098 [arXiv:1403.6262] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    L. Bianchi and M.S. Bianchi, Non-planarity through unitarity in ABJM, Phys. Rev. D 89 (2014) 125002 [arXiv:1311.6464] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    R. Monteiro and D. O’Connell, The kinematic algebras from the scattering equations, JHEP 03 (2014) 110 [arXiv:1311.1151] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  38. [38]

    M. Tolotti and S. Weinzierl, Construction of an effective Yang-Mills Lagrangian with manifest BCJ duality, JHEP 07 (2013) 111 [arXiv:1306.2975] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  39. [39]

    C.-H. Fu, Y.-J. Du and B. Feng, Note on construction of dual-trace factor in Yang-Mills theory, JHEP 10 (2013) 069 [arXiv:1305.2996] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  40. [40]

    Y.-J. Du, B. Feng and C.-H. Fu, The construction of dual-trace factor in Yang-Mills theory, JHEP 07 (2013) 057 [arXiv:1304.2978] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  41. [41]

    C.-H. Fu, Y.-J. Du and B. Feng, An algebraic approach to BCJ numerators, JHEP 03 (2013) 050 [arXiv:1212.6168] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  42. [42]

    A. Sivaramakrishnan, Color-kinematic duality in ABJM theory without amplitude relations, arXiv:1402.1821 [INSPIRE].

  43. [43]

    S.G. Naculich, Scattering equations and BCJ relations for gauge and gravitational amplitudes with massive scalar particles, JHEP 09 (2014) 029 [arXiv:1407.7836] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    S.G. Naculich, Scattering equations and virtuous kinematic numerators and dual-trace functions, JHEP 07 (2014) 143 [arXiv:1404.7141] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  45. [45]

    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Scattering amplitudes in N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity, arXiv:1408.0764 [INSPIRE].

  46. [46]

    J.J.M. Carrasco, R. Kallosh, R. Roiban and A.A. Tseytlin, On the U(1) duality anomaly and the S-matrix of N = 4 supergravity, JHEP 07 (2013) 029 [arXiv:1303.6219] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  47. [47]

    S. Litsey and J. Stankowicz, Kinematic numerators and a double-copy formula for N = 4 super-Yang-mills residues, Phys. Rev. D 90 (2014) 025013 [arXiv:1309.7681] [INSPIRE].

    ADS  Google Scholar 

  48. [48]

    W. Siegel, Fields, hep-th/9912205 [INSPIRE].

  49. [49]

    R. Monteiro and D. O’Connell, The kinematic algebra from the self-dual sector, JHEP 07 (2011) 007 [arXiv:1105.2565] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  50. [50]

    A. Parkes, A cubic action for selfdual Yang-Mills, Phys. Lett. B 286 (1992) 265 [hep-th/9203074] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  51. [51]

    D. Vaman and Y.-P. Yao, Color kinematic symmetric (BCJ) numerators in a light-like gauge, arXiv:1408.2818 [INSPIRE].

  52. [52]

    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills scattering amplitudes from scattering equations, arXiv:1409.8256 [INSPIRE].

  55. [55]

    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    Y. Geyer, A.E. Lipstein and L.J. Mason, Ambitwistor strings in 4-dimensions, Phys. Rev. Lett. 113 (2014) 081602 [arXiv:1404.6219] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    A. Anastasiou, L. Borsten, M.J. Duff, L.J. Hughes and S. Nagy, Yang-Mills origin of gravitational symmetries, arXiv:1408.4434 [INSPIRE].

  58. [58]

    C. Cheung, unpublished notes.

  59. [59]

    D. Neill and I.Z. Rothstein, Classical space-times from the S matrix, Nucl. Phys. B 877 (2013) 177 [arXiv:1304.7263] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  60. [60]

    C.R. Mafra and O. Schlotterer, Multiparticle SYM equations of motion and pure spinor BRST blocks, JHEP 07 (2014) 153 [arXiv:1404.4986] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    H. Stephani et al., Exact solutions of Einsteins field equations, Cambridge University Press, Cambridge U.K. (2009).

    Google Scholar 

  62. [62]

    H. Stephani and J. Stewart, General relativity. An introduction to the theory of the gravitational field, Cambridge University Press, Cambridge U.K. (1990).

    MATH  Google Scholar 

  63. [63]

    P. Sikivie and N. Weiss, Classical Yang-Mills theory in the presence of external sources, Phys. Rev. D 18 (1978) 3809 [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    F.R. Tangherlini, Schwarzschild field in n dimensions and the dimensionality of space problem, Nuovo Cim. 27 (1963) 636 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  65. [65]

    W. Israel, Source of the Kerr metric, Phys. Rev. D 2 (1970) 641 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  66. [66]

    H. Balasin and H. Nachbagauer, Distributional energy momentum tensor of the Kerr-Newman space-time family, Class. Quant. Grav. 11 (1994) 1453 [gr-qc/9312028] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  67. [67]

    R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].

    ADS  Article  MathSciNet  MATH  Google Scholar 

  68. [68]

    R. Emparan and H.S. Reall, Black holes in higher dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [INSPIRE].

    Google Scholar 

  69. [69]

    S.M. Barnett, Maxwellian theory of gravitational waves and their mechanical properties, New J. Phys. 16 (2014) 023027 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  70. [70]

    S.R. Coleman, Nonabelian plane waves, Phys. Lett. B 70 (1977) 59 [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    P.C. Aichelburg and R.U. Sexl, On the gravitational field of a massless particle, Gen. Rel. Grav. 2 (1971) 303 [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    N.E.J. Bjerrum-Bohr, J.F. Donoghue and P. Vanhove, On-shell techniques and universal results in quantum gravity, JHEP 02 (2014) 111 [arXiv:1309.0804] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  73. [73]

    Z. Bern, A. De Freitas and H.L. Wong, On the coupling of gravitons to matter, Phys. Rev. Lett. 84 (2000) 3531 [hep-th/9912033] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Monteiro.

Additional information

ArXiv ePrint: 1410.0239

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Monteiro, R., O’Connell, D. & White, C.D. Black holes and the double copy. J. High Energ. Phys. 2014, 56 (2014). https://doi.org/10.1007/JHEP12(2014)056

Download citation

Keywords

  • Scattering Amplitudes
  • Black Holes