Skip to main content
Log in

Substrate-induced morphology and its effect on the electrical properties and stability of polycrystalline Mn1.2Co1.5Ni0.3O4 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Mn1.2Co1.5Ni0.3O4 spinel polycrystalline negative temperature coefficient (NTC) thin films on amorphous (SiO2 and Al2O3) and crystalline (Si3N4 and AlN) substrates was prepared using the direct current sputtering technique. Electron microscopy studies reveal the morphology–substrate dependence of films grown at the optimum temperature of 200 °C, with grain size increasing in the order of Si3N4 < SiO2 < AlN < Al2O3. In conjunction with XPS, both the effects of film thickness conduction and the small polaron hopping conduction mechanism on electrical properties were studied. The film thickness (205, 235, 240, and 330 nm for films grown on SiO2, Al2O3, Si3N4, and AlN substrates, respectively) showed a direct correlation to the hopping frequency of carriers in octahedron sites and affected the materials’ constant, B, and temperature coefficient of resistance, α25. The resistivity, ρ, of films (88.7, 202, 116.7, 279 Ω cm on SiO2, Al2O3, Si3N4, AlN substrates, respectively) was found to conform to the change rule of the change of the Mn3+ and Mn4+ ion pairs. Resistance drift values (9.39%, 6.77%, 7.37%, and 5.73% for films on SiO2, Al2O3, Si3N4, and AlN substrates, respectively) were successfully determined and suggest that films deposited on AlN substrates are the most stable for its thickness. The results presented in this paper will help guide the development and commercialization of thin film-based thermistors and development of the NTC thermistors industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Ji, A.M. Chang, J.B. Xu, H.M. Zhang, J. Hou, B. Zhang, P.J. Zhao, Low-temperature (<300 °C) growth and characterization of single-[100]-oriented Mn-Co-Ni-O thin films. Mater. Lett. 107, 103–106 (2013)

    Article  CAS  Google Scholar 

  2. B.Y. Price, G. Hardal, Preparation and characterization of Ni-Co-Zn-Mn-O negative temperature coefficient thermistors with B2O3 addition. J. Mater. Sci. Mater. Electron. 30, 17432–17439 (2019)

    Article  Google Scholar 

  3. A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J. Am. Ceram. Soc. 92, 967–983 (2009)

    Article  CAS  Google Scholar 

  4. W. Zhou, Y.M. Yin, J. Wu, Y.Q. Gao, Z.M. Huang, Improvements in electrical properties, low frequency noise and detection performance of a Mn-based bilayer thin film infrared detector. Sens. Actuator A-Phys. 283, 196–203 (2018)

    Article  CAS  Google Scholar 

  5. B.W. Yang, M. He, K.H. Wen, D.P. Xiong, Y.F. Feng, S.W. Ta, Z. Yang, Comparison of morphology, electrical properties and sensitivity between bulk and thin-film Mn1.5Co1Ni0.5O4 thermistors. Ceram. Int. 46, 27134–27142 (2020)

    Article  CAS  Google Scholar 

  6. S. Baliga, A.L. Jain, W. Zachofsky, Sputter deposition and characterization of Ni-Mn-O and Ni-Co-Mn-O spinels on polymide and glass substrates. Appl. Phys. A-Mater. Sci. Process. 50, 473–477 (1990)

    Article  Google Scholar 

  7. K. Park, Improvement in electrical stability by addition of SiO2 in (Mn1.2Ni0.78Co0.87-xCu0.15Six)O4 negative temperature coefficient thermistors. Scr. Mater. 50, 551–554 (2004)

    Article  CAS  Google Scholar 

  8. D.A. Kukuruznyak, J.G. Moyer, F.S. Ohuchi, Improved aging characteristics of NTC thermistor thin films fabricated by a hybrid sol-gel-MOD process. J. Am. Ceram. Soc. 89, 189–192 (2006)

    Article  CAS  Google Scholar 

  9. D.F. Li, S.X. Zhao, K. Xiong, H.Q. Bao, C.W. Nan, Aging improvement in Cu-containing NTC ceramics prepared by co-precipitation method. J. Alloys Compd. 582, 283–288 (2014)

    Article  CAS  Google Scholar 

  10. Q. Shi, W. Ren, W.W. Kong, L. Wang, C. Ma, J.B. Xu, A.M. Chang, C.Q. Jiang, Oxidation mode on charge transfer mechanism in formation of Mn-Co-Ni-O spinel films by RF sputtering. J. Mater. Sci. Mater. Electron. 28, 13659–13664 (2017)

    Article  CAS  Google Scholar 

  11. W.W. Kong, W. Wei, B. Gao, A.M. Chang, A study on the electrical properties of Mn-Co-Ni-O thin films grown by radio frequency magnetron sputtering with different thicknesses. Appl. Surf. Sci. 423, 1012–1018 (2017)

    Article  CAS  Google Scholar 

  12. Q. Shi, W. Ren, W.W. Kong, B. Gao, L. Wang, C. Ma, A.M. Chang, L. Bian, High B value Mn-Co-Ni spinel films on alumina substrate by RF sputtering. J. Mater. Sci. Mater. Electron. 28, 9876–9881 (2017)

    Article  CAS  Google Scholar 

  13. W.W. Kong, J.H. Wang, J.C. Yao, A.M. Chang, Influence of oxygen atmosphere annealing on the thermal stability of Mn1.2Co1.5Ni0.3O4±δ ceramic films fabricated by RF magnetron sputtering. Ceram. Int. 44, 1455–1460 (2018)

    Article  CAS  Google Scholar 

  14. W.W. Kong, W. Wei, B. Gao, A.M. Chang, Mn1.56Co0.96Ni0.48O4±δ flexible thin films fabricated by pulsed laser deposition for NTC applications. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 206, 39–44 (2016)

    Article  CAS  Google Scholar 

  15. T. Larbi, L. Ben Said, A. Ben Daly, B. Ouni, A. Labidi, M. Amlouk, Ethanol sensing properties and photocatalytic degradation of methylene blue by Mn3O4, NiMn2O4 and alloys of Ni-manganates thin films. J. Alloys Compd. 686, 168–175 (2016)

    Article  CAS  Google Scholar 

  16. Y.H. Xie, W.W. Kong, G. Ji, B. Gao, J.C. Yao, A.M. Chang, Growth mode and properties of Mn-Co-Ni-O NTC thermistor thin films deposited on MgO (100) substrate by laser MBE. Mod. Phys. Lett. B 28, 1450235 (2014)

    Article  CAS  Google Scholar 

  17. D.J. Hagen, T.S. Tripathi, I. Terasaki, M. Karppinen, Microstructure and optical properties of ultra-thin NiO films grown by atomic layer deposition. Semicond. Sci. Technol. 33, 115015 (2018)

    Article  Google Scholar 

  18. Y.W. Ma, M. Guilloux-Viry, O. Pena, C. Moure, Y(Ni, Mn)O3 epitaxial thin films prepared by pulsed laser deposition. Phys. Status Solidi A. 201, 2385–2389 (2004)

    Article  CAS  Google Scholar 

  19. C.Y. Wu, W. Zhou, Y.M. Yin, W.L. Ma, L. Jiang, Z.M. Huang, J.H. Chu, Long wavelength infrared detection based on Mn-Co-Ni-O thin films with dielectric-metal-dielectric absorptive structures. Infrared Phys. Technol. 102, 102987 (2019)

    Article  CAS  Google Scholar 

  20. Y. Hou, Z.M. Huang, Y.Q. Gao, Y.J. Ge, J. Wu, J.H. Chu, Characterization of Mn1.56Co0.96Ni0.48O4 films for infrared detection. Appl. Phys. Lett. 92, 202115 (2008)

    Article  Google Scholar 

  21. Y. Kuromitsu, T. Nagase, H. Yoshida, K. Morinaga, Development of a surface-treatment method for AlN substrates to improve adhesion with thick-film conductors. J. Adhes. Sci. Technol. 12, 105–119 (1998)

    Article  CAS  Google Scholar 

  22. N. Kemik, S.V. Ushakov, M. Gu, N. Schichtel, C. Korte, N.D. Browning, Y. Takamura, A. Navrotsky, Yttria-stabilized zirconia crystallization in Al2O3/YSZ multilayers. J. Mater. Res. 6, 939–943 (2012)

    Article  Google Scholar 

  23. D.L. Smith, Thin-Film Deposition Principles and Practice (America Amazon) (McGraw Hill Professional, New York, 1995), pp. 221–237

    Google Scholar 

  24. B.J. Rani, R. Yuvakkumar, G. Ravi, S.I. Hong, D. Velauthapillai, R.K. Guduru, M. Thambidurai, C. Dang, W.A. Al-onazi, A.M. Al-Mohaimeed, Electrochemical water splitting exploration of MnCo2O4, NiCo2O4 cobaltites. New J. Chem. 41, 17679–17692 (2020)

    Article  Google Scholar 

  25. B. Mandal, P. Mitra, Grain growth correlated complex impedance spectroscopy, modulus spectroscopy and carrier hopping mechanism in MnCo2O4: influence of sintering temperature. Mater. Chem. Phys. 251, 123095 (2020)

    Article  CAS  Google Scholar 

  26. X.F. Zhou, Z.R. Jia, X.X. Zhang, B.B. Wang, X.H. Liu, B.H. Xu, L. Bi, G.L. Wu, Electromagnetic wave absorption performance of NiCo2X4 (X = O, S, Se, Te) spinel structures. Chem. Eng. J. 420, 129907 (2021)

    Article  CAS  Google Scholar 

  27. H.X. Zhang, Z.R. Jia, B.B. Wang, X.M. Wu, T. Sun, X.H. Liu, L. Bi, G.L. Wu, Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co-CoFe2O4@mesoporous hollow carbon spheres. Chem. Eng. J. 421, 129960 (2021)

    Article  CAS  Google Scholar 

  28. Y.H. Lin, S.P. Chiu, J.J. Lin, Thermal fluctuation-induced tunneling conduction through metal nanowire contacts. Nanotechnology 19, 365201 (2008)

    Article  Google Scholar 

  29. C.J. Ma, X.H. Chen, G.G. Lu, Y. Zhang, H. Gao, Preparation and characterization of Ni0.6CoxMn2.4−xO4 (0.2≤x≤14) NTC ceramics with low resistivity and high B value. J. Mater. Sci. Mater. Electron. 31, 15345–15354 (2020)

    Article  CAS  Google Scholar 

  30. J.A. Clayhold, B.M. Kerns, M.D. Schroer, D.W. Rench, G. Logvenov, A.T. Bollinger, I. Bozovic, Combinatorial measurements of Hall effect and resistivity in oxide films. Rev. Sci. Instrum. 79, 033908 (2008)

    Article  CAS  Google Scholar 

  31. D.A. Neamen, Semiconductor Physics and Devices, 4th edn. (McGraw-Hill Education, Beijing, 2017), pp. 180–182

    Google Scholar 

  32. Q. Wang, J. Zhang, W.W. Kong, Improvement of Mn1.56(Co1-xAlx)0.96Ni0.48O4 (0.1≤x≤0.4) film preparation and assessment of its structure and properties. J. Electron. Mater. 48, 2077–2084 (2019)

    Article  CAS  Google Scholar 

  33. T.T. Xuan, J.Z. Yan, J.H. Wang, W.W. Kong, A.M. Chang, Characterization of Al-doped Mn-Co-Ni-O NTC thermistor films prepared by the magnetron co-sputtering approach. J. Alloys Compd. 831, 154831 (2020)

    Article  CAS  Google Scholar 

  34. G. Ji, A.M. Chang, H.Y. Li, Y.H. Xie, H.M. Zhang, W.W. Kong, Epitaxial growth of Mn-Co-Ni-O thin films and thickness effects on the electrical properties. Mater. Lett. 130, 127–130 (2014)

    Article  CAS  Google Scholar 

  35. L. He, Z.Y. Ling, Y.T. Huang, Y.S. Liu, Effects of annealing temperature on microstructure and electrical properties of Mn-Co-Ni-O thin films. Mater. Lett. 65, 1632–1635 (2011)

    Article  CAS  Google Scholar 

  36. L. He, Z.Y. Ling, D.X. Ling, M.Y. Wu, G. Zhang, M.X. Liu, S.Q. Zhang, Role of film thickness on the microstructure and electrical properties of Mn-Co-Ni-O thin film thermistors. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 198, 20–24 (2015)

    Article  CAS  Google Scholar 

  37. W. Ren, N.N. Zhu, L. Li, H.J. Feng, Y.G. Wang, Y.H. Yang, Z.N. Yang, S.G. Shang, Improvement of ageing issue in Zn0.4Fe2.1Co2Mn1.5O8 thermistor films. J. Eur. Ceram. Soc. 39, 4189–4193 (2019)

    Article  CAS  Google Scholar 

  38. R.F. Li, Q.Y. Fu, X.H. Zou, Z.P. Zheng, W. Luo, L. Yan, Mn-Co-Ni-O thin films prepared by sputtering with alloy target. J. Adv. Ceram. 9, 64–71 (2020)

    Article  CAS  Google Scholar 

  39. D.T. Le, J.H. Cho, H. Ju, Annealing temperature dependent structural and electrical properties of (Mn, Ni, Co)3O4 thin films. Ceram. Int. 46, 25536–25545 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Talents Project of Tianshan Youth Plan (2019Q082); the Youth Innovation Promotion Association CAS (2021433); the Xinjiang Key Laboratory Foundation (2020D04043); the Natural Science Foundation of Xinjiang, China (Grant No. 2021D01E04); and the West Light Foundation of the CAS (Grant No. 2020-XBQNXZ-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenwen Kong or Bo Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Kong, W., He, D. et al. Substrate-induced morphology and its effect on the electrical properties and stability of polycrystalline Mn1.2Co1.5Ni0.3O4 thin films. J Mater Sci: Mater Electron 32, 22588–22598 (2021). https://doi.org/10.1007/s10854-021-06744-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06744-2

Navigation