Skip to main content

Advertisement

Log in

Preparation and characterization of Ni0.6CoxMn2.4−xO4 (0.2 ≤ x ≤ 1.4) NTC ceramics with low resistivity and high B value

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of Co content on the phase structure, micromorphology and electrical performance of Ni0.6CoxMn2.4−xO4 ceramics were studied using transmission electron microscope (TEM), X-ray powder diffractometer (XRD), scanning electron microscope (SEM), energy-dispersive spectrometer (EDS) and resistance/temperature measurements. TEM and high angle annular dark field (HAADF)-mapping results show that the calcined powders were nano-sized and the elements were uniformly distributed. For x < 0.98, the ceramics exhibited single cubic spinel structure. Our SEM–EDS results confirm that a rock-salt phase (Ni,Co)O is formed when 0.98 ≤ x ≤ 1.4. The lattice parameter of the spinel phase decreases with increasing Co content. The room-temperature resistivity of the ceramics decreases from 1100 to 219 Ω cm and then increased to 325 Ω cm as Co was added, while the B value decreased slightly from 3588 to 3030 K. The Ni0.6CoxMn2.4−xO4 ceramics are promising negative temperature coefficient materials for temperature monitoring in electric vehicles owing to their low resistivity and high B values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Hosono, T. Kudo, I. Honma, H. Matsuda, H. Zhou, Nano Lett. 9(3), 1045 (2009)

    CAS  Google Scholar 

  2. S.W. Oh, S.T. Myung, S.M. Oh, K.H. Oh, K. Amine, B. Scrosati, Y.K. Sun, Adv. Mater. 22(43), 4842–4845 (2010)

    CAS  Google Scholar 

  3. W. Tang, Y. Hou, F. Wang, L. Liu, Y. Wu, K. Zhu, Nano Lett. 13(5), 2036–2040 (2013)

    CAS  Google Scholar 

  4. J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H.J. Fan, Adv. Mater. 23(18), 2076–2081 (2011)

    CAS  Google Scholar 

  5. J.H. Kim, K.H. Lee, L.J. Overzet, G.S. Lee, Nano Lett. 11(7), 2611–2617 (2011)

    CAS  Google Scholar 

  6. D. Kong, J. Luo, Y. Wang, W. Ren, T. Yu, Y. Luo, Y. Yang, C. Cheng, Adv. Funct. Mater. 24(24), 3815–3826 (2014)

    CAS  Google Scholar 

  7. C.C. Chan, K.T. Chau, IEEE Trans. Ind. Electron. 44(1), 3–13 (1997)

    Google Scholar 

  8. H. Han, K.R. Park, Y.-R. Hong, K. Shim, S. Mhin, J. Alloys Compd. 732, 486–490 (2018)

    CAS  Google Scholar 

  9. A. Feteira, J. Am. Ceram. Soc. 92(5), 967–983 (2009)

    CAS  Google Scholar 

  10. H. Han, J.S. Lee, J.H. Ryu, K.M. Kim, J.L. Jones, J. Lim, S. Guillemet-Fritsch, H.C. Lee, S. Mhin, J. Phys. Chem. C 120(25), 13667–13674 (2016)

    CAS  Google Scholar 

  11. B. Gillot, M. Kharroubi, R. Metz, R. Legros, A. Rousset, Solid State Ionics 44(3–4), 275–280 (1991)

    CAS  Google Scholar 

  12. Z. Wang, C. Zhao, P. Yang, A.J.A. Winnubst, C. Chen, J. Eur. Ceram. Soc. 26(13), 2833–2837 (2006)

    CAS  Google Scholar 

  13. S.A. Kanade, V. Puri, Mater. Lett. 60(11), 1428–1431 (2006)

    CAS  Google Scholar 

  14. M. Vakiv, O. Shpotyuk, O. Mrooz, I. Hadzaman, J. Eur. Ceram. Soc. 21(10–11), 1783–1785 (2001)

    CAS  Google Scholar 

  15. K. Park, I.H. Han, J. Electroceram. 17, 1069–1073 (2006)

    CAS  Google Scholar 

  16. K. Park, S.J. Yun, Mater. Lett. 58(6), 933–937 (2004)

    CAS  Google Scholar 

  17. C.J. Ma, Y.F. Liu, Y.N. Lu, H. Gao, H. Qian, J.X. Ding, Mater. Sci. Eng. B 188, 66–71 (2014)

    CAS  Google Scholar 

  18. C.H. Zhao, B.Y. Wang, P.H. Yang, L. Winnubst, C.S. Chen, J. Eur. Ceram. Soc. 28(1), 35–40 (2008)

    CAS  Google Scholar 

  19. C. Ma, Y. Liu, Y. Lu, H. Qian, J. Alloys Compd. 650, 931–935 (2015)

    CAS  Google Scholar 

  20. Z. Wang, Z. Li, Y. Zhang, R. Zhang, P. Qin, C. Chen, L. Winnubst, Ceram. Int. 40(3), 4875–4878 (2014)

    CAS  Google Scholar 

  21. S.T. Kshirsagar, J. Phys. Soc. Jpn. 27(5), 1164–1170 (1969)

    CAS  Google Scholar 

  22. J.-F. Gao, D.-L. Fang, Z.-B. Wang, P.-H. Yang, C.-S. Chen, Sens. Actuators A 135(2), 472–475 (2007)

    CAS  Google Scholar 

  23. K. Park, Scr. Mater. 50(4), 551–554 (2004)

    CAS  Google Scholar 

  24. K. Park, J.K. Lee, Scr. Mater. 57(4), 329–332 (2007)

    CAS  Google Scholar 

  25. C. Ma, Y. Liu, Y. Lu, H. Gao, H. Qian, J. Ding, J. Mater. Sci. Mater. Electron. 24(12), 5183–5188 (2013)

    CAS  Google Scholar 

  26. R.N. Jadhav, S.N. Mathad, V. Puri, Ceram. Int. 38(6), 5181–5188 (2012)

    CAS  Google Scholar 

  27. N. Najmoddin, A. Beitollahi, H. Kavas, S. Majid Mohseni, H. Rezaie, J. Åkerman, M.S. Toprak, Ceram. Int. 40(2), 3619–3625 (2014)

    CAS  Google Scholar 

  28. T. Battault, R. Legros, A. Rousset, J. Eur. Ceram. Soc. 15(11), 1141–1147 (1995)

    CAS  Google Scholar 

  29. G.D.C. Csete de Györgyfalva, I.M. Reaney, J. Eur. Ceram. Soc. 21(10–11), 2145–2148 (2001)

    Google Scholar 

  30. C. Ma, H. Gao, J. Mater. Sci. Mater. Electron. 28(9), 6699–6703 (2017)

    CAS  Google Scholar 

  31. O. Bodak, L. Akselrud, P. Demchenmko, B. Kotur, O. Mrooz, I. Hadzaman, O. Shpotyuk, F. Aldinger, H. Seifert, S. Volkov, V. Pekhnyo, J. Alloys Compd. 347(1), 14–23 (2002)

    CAS  Google Scholar 

  32. H. Gao, C. Ma, B. Sun, J. Mater. Sci. Mater. Electron. 25(9), 3990–3995 (2014)

    CAS  Google Scholar 

  33. S. Guillemet-Fritsch, C. Chanel, J. Sarrias, S. Bayonne, A. Rousset, X. Alcobe, M.L.M. Sarrion, Solid State Ionics 128(1–4), 233–242 (2000)

    CAS  Google Scholar 

  34. C. Ma, Y. Liu, Y. Lu, J. Mater. Sci. Mater. Electron. 26(9), 7238–7243 (2015)

    CAS  Google Scholar 

  35. G. Wang, H. Zhang, X. Sun, Y. Liu, Z. Li, J. Mater. Sci. Mater. Electron. 28(1), 363–370 (2016)

    Google Scholar 

  36. Z. Yang, H. Zhang, Z. He, B. Li, Z. Li, J. Mater. Sci. Mater. Electron. 30(3), 3088–3097 (2019)

    CAS  Google Scholar 

  37. J. Wang, H. Zhang, X. Sun, Y. Liu, Z. Li, J. Mater. Sci. Mater. Electron. 27(11), 11902–11908 (2016)

    CAS  Google Scholar 

  38. W. Kong, W. Wei, B. Gao, A. Chang, Appl. Surf. Sci. 423, 1012–1018 (2017)

    CAS  Google Scholar 

  39. Q. Wang, W.W. Kong, J.C. Yao, A.M. Chang, Ceram. Int. 45(1), 378–383 (2019)

    CAS  Google Scholar 

  40. M.N. Muralidharan, P.R. Rohini, E.K. Sunny, K.R. Dayas, A. Seema, Ceram. Int. 38, 6481–6486 (2012)

    CAS  Google Scholar 

  41. C. Shang, Z.C. Xia, Z. Jin, L.R. Shi, J.W. Huang, B.R. Chen, M. Wei, L.X. Xiao, L. Liu, Y. Huang, J. Alloys Compd. 588, 53–58 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 19KJB430039), Joint Project of Industry-University-Research of Jiangsu Province (No. BY2019202), Talent Introduction Project of Yancheng Institute of Technology (XJ201735) and Joint Open Fund of Jiangsu Collaborative Innovation Center for Ecological Building Material and Environmental Protection Equipments and Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (JH201842).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengjian Ma or Hong Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Chen, X., Lu, G. et al. Preparation and characterization of Ni0.6CoxMn2.4−xO4 (0.2 ≤ x ≤ 1.4) NTC ceramics with low resistivity and high B value. J Mater Sci: Mater Electron 31, 15345–15351 (2020). https://doi.org/10.1007/s10854-020-04098-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04098-9

Navigation