Skip to main content
Log in

Preparation and characterization of Ni–Co–Zn–Mn–O negative temperature coefficient thermistors with B2O3 addition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of B2O3 addition on the electrical and microstructural properties of Ni0.5Co0.5ZnxMn2 − xO4 (where x = 0.15 and 0.3) negative temperature coefficient (NTC) thermistors was investigated. Ni0.5Co0.5Zn0.15Mn1.85O4 and Ni0.5Co0.5Zn0.3Mn1.7O4 samples were calcined at 900 °C and then sintered at 1100, 1200 and 1300 °C. Ni0.5Co0.5Zn0.15Mn1.85O4 + 0.1 mol B2O3 and Ni0.5Co0.5Zn0.3Mn1.7O4 + 0.1 mol B2O3 added samples were sintered at 900, 1000 and 1100 °C without applying calcination. The B2O3-doped samples sintered at 1100 °C without calcination gave rise to very similar crystal structure with un-doped sample. All samples sintered at 1100 °C consisted of a major cubic spinel phase, a minor tetragonal spinel and a minor NiO-rich phase. In addition, no peaks related to B2O3 or ZnO additions were observed. This result demonstrated that the B ions and Zn ions dissolved into the lattice. The bulk density and grain size of B2O3-doped samples without applying calcination were similar to calcined un-doped samples when all the samples were sintered at 1100 °C. It was also observed that the increase in Zn content had minimal effect on the bulk density and grain size of samples. The electrical resistivity and material constant for Ni0.5Co0.5Zn0.3Mn1.7O4 sample were 2475 Ω cm and 3660 K and for Ni0.5Co0.5Zn0.3Mn1.7O4 + 0.1 mol B2O3 sample were 1570 Ω cm and 3725 K when the samples were sintered at 1100 °C. NTC thermistor having lower electrical resistivity and higher material constant can be achieved with the addition of B2O3 without applying calcination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Feteira, J. Am. Ceram. Soc. 92, 967–983 (2009)

    Article  CAS  Google Scholar 

  2. C. Zhao, Y. Zhao, J. Mater. Sci. 23, 1788–1792 (2012)

    CAS  Google Scholar 

  3. J. Kulawik, D. Szwagierczak, B. Gröger, A. Skwarek, Micro. Int. 24(2), 14–18 (2007)

    CAS  Google Scholar 

  4. P. Regtien, Sensors for mechatronics (Elsevier, Netherlands, 2012)

    Google Scholar 

  5. C.C. Wang, S.A. Akbar, M.J. Madou, J. Electroceram. 2(4), 273–282 (1998)

    Article  CAS  Google Scholar 

  6. Q. Wang, W. Kong, J.C. Yao, A. Chang, Ceram. Int. 45, 378–383 (2019)

    Article  CAS  Google Scholar 

  7. C. Ma, Y. Liu, Y. Lu, J. Mater. Sci. 26, 7238–7243 (2015)

    CAS  Google Scholar 

  8. W. Kong, B. Gao, C. Jiang, A. Chang, J. Alloys Compd. 650, 305–310 (2015)

    Article  CAS  Google Scholar 

  9. K. Park, I.H. Han, J. Electroceram. 17, 1069–1073 (2006)

    Article  CAS  Google Scholar 

  10. K. Park, J.K. Lee, Scripta Mater. 57, 329–332 (2007)

    Article  CAS  Google Scholar 

  11. H. Han, K.R. Park, Y.R. Hong, K. Shim, S. Mhin, J. Alloys Compd. 732, 486–490 (2018)

    Article  CAS  Google Scholar 

  12. C. Peng, H. Zhang, A. Chang, F. Guan, B. Zhang, P. Zhao, J. Mater. Sci. 23, 851–857 (2012)

    CAS  Google Scholar 

  13. B. Yüksel Price, G. Hardal, J. Mater. Sci 27, 9226–9232 (2016)

    Google Scholar 

  14. R. Schmidt, A. Basu, A.W. Brinkman, Phys. Rev. B 72, 115101 (2005)

    Article  Google Scholar 

  15. Z. Yang, H. Zhang, Z. He, B. Li, Z. Li, J. Mater. Sci. 30, 3088–3097 (2019)

    CAS  Google Scholar 

  16. E.G. Larson, R.J. Arnott, D.G. Wickham, J. Phys. Chem. Solids 23, 1771–1781 (1962)

    Article  CAS  Google Scholar 

  17. R.N. Jadhav, V. Puri, J. Alloys Compd. 507, 151–156 (2010)

    Article  CAS  Google Scholar 

  18. J.-J. Qu, X.-Q. Li, F. Liu, C.-L. Yuan, X. Liu, H.-W. Ning, H.-L. Li, Mater. Sci 30, 4688–4695 (2019)

    CAS  Google Scholar 

  19. X. Liu, J. Wang, Z. Hu, J. Yao, A. Chang, Mater. Sci 28, 7243–7247 (2017)

    CAS  Google Scholar 

  20. H. Han, H. Lee, J. Lim, K.M. Kim, Y.R. Hong, J. Lee, J. Forrester, J.H. Ryu, S. Mhin, Ceram. Int. 43, 16070–16075 (2017)

    Article  CAS  Google Scholar 

  21. K. Xiong, S. Zhao, D. Li, H. Bao, C. Nan, J. Alloys Compd. 606, 273–277 (2014)

    Article  CAS  Google Scholar 

  22. D. Li, S. Zhao, K. Xiong, H. Bao, C. Nan, J. Alloys Compd. 582, 283–288 (2014)

    Article  CAS  Google Scholar 

  23. Q. Shi, W. Ren, W. Kong, B. Gao, L. Wang, C. Ma, A. Chang, L. Bian, J. Mater. Sci. 28, 9876–9881 (2017)

    CAS  Google Scholar 

  24. H. Gao, C. Ma, B. Sun, J. Mater. Sci. 25, 3990–3995 (2014)

    CAS  Google Scholar 

  25. M.N. Muralidharan, P.R. Rohini, E.K. Sunny, K.R. Dayas, A. Seema, Ceram. Int. 38, 6481–6486 (2012)

    Article  CAS  Google Scholar 

  26. C. Zhao, B. Wang, P. Yang, L. Winnubst, C. Chen, J. Eur. Ceram. Soc. 28, 35–40 (2008)

    Article  CAS  Google Scholar 

  27. X. Xie, M. Chen, T. Liu, H. Jiang, H. Zhang, A. Chang, J. Mater. Sci. 28, 190–196 (2017)

    CAS  Google Scholar 

  28. Kwon OH (2001) Encyclopedia of materials: science and technology- liquid phase sintering: ceramics. Mahajan S Elsevier Science, Amsterdam, p 4597–4601

    Chapter  Google Scholar 

  29. W. Kong, L. Chen, B. Gao, B. Zhang, P. Zhao, G. Ji, A. Chang, C. Jiang, Ceram. Inter. 40, 8405–8409 (2014)

    Article  CAS  Google Scholar 

  30. H. Naceur, A. Megriche, M. El-Maaoui, J Adv. Ceram. 3, 17–30 (2014)

    Article  CAS  Google Scholar 

  31. K. Terayama, M. Ikeda, Trans. Jpn. Inst. Met. 24, 754–758 (1983)

    Article  CAS  Google Scholar 

  32. J. Jung, J. Töpfer, J. Mürbe, A. Feltz, J. Eur. Ceram. Soc. 6, 351–359 (1990)

    Article  CAS  Google Scholar 

  33. F. Cheng, J. Wang, H. Zhang, A. Chang, W. Kong, B. Zhang, L. Chen, J. Mater. Sci. 26, 1374–1380 (2015)

    CAS  Google Scholar 

  34. D. Fang, C. Zheng, C. Chen, A.J.A. Winnubst, J. Electroceram. 22, 421–427 (2009)

    Article  CAS  Google Scholar 

  35. M. Guan, J. Yao, W. Kong, J. Wang, A. Chang, J. Mater. Sci. 29, 5082–5086 (2018)

    CAS  Google Scholar 

  36. C. Ma, H. Gao, J. Alloys Compd. 749, 853–858 (2018)

    Article  CAS  Google Scholar 

  37. C. Ma, Y. Liu, Y. Lu, H. Gao, H. Qian, J. Ding, Mater. Sci. Eng., B 188, 66–71 (2014)

    Article  CAS  Google Scholar 

  38. M. Hosseini, B. Yasaei, Ceram. Inter. 24, 543–545 (1998)

    Article  CAS  Google Scholar 

  39. H. Zeng, Y. Wu, J. Zhang, C. Kuang, M. Yue, S. Zhou, Prog. Nat. Sci. 23(1), 18–22 (2013)

    Article  Google Scholar 

  40. L. Chen, W. Kong, J. Yao, B. Gao, Q. Zhang, H. Bu, A. Chang, C. Jiang, J. Mater. Sci. 27, 1713–1718 (2016)

    CAS  Google Scholar 

  41. C. Ma, Y. Liu, Y. Lu, H. Gao, H. Qian, J. Ding, J. Mater. Sci. 24, 5183–5188 (2013)

    CAS  Google Scholar 

  42. J. Töpfer, A. Feltz, P. Dordor, J.P. Doumerc, Mater. Res. Bull. 29, 225–232 (1994)

    Article  Google Scholar 

  43. M.L.M. Sarrión, M. Morales, J. Am. Ceram. Soc. 78, 915–921 (1995)

    Article  Google Scholar 

  44. C. Metzmacher, R. Mikkenie, W.A. Groen, J. Eur. Ceram. Soc. 20, 997–1002 (2000)

    Article  CAS  Google Scholar 

  45. K. Park, J.K. Lee, S.-J. Kim, W.-S. Seo, W.-S. Cho, C.-W. Lee, S. Nahm, J. Alloys Compd. 467, 310–316 (2009)

    Article  CAS  Google Scholar 

  46. H. Zhang, A. Chang, C. Peng, Microelectr. Eng. 88, 2934–2940 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by TÜBİTAK (The Scientific and Technical Research Council of Turkey), Project Number 3001-114M860. We would like to thank TÜBİTAK for its financial support. This work was supported by Scientific Research Projects Coordination Unit of Istanbul University, Project number 52971. This publication uses data collected within the framework of the ongoing PhD study by Gokhan Hardal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berat Yüksel Price.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yüksel Price, B., Hardal, G. Preparation and characterization of Ni–Co–Zn–Mn–O negative temperature coefficient thermistors with B2O3 addition. J Mater Sci: Mater Electron 30, 17432–17439 (2019). https://doi.org/10.1007/s10854-019-02093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02093-3

Navigation