Skip to main content
Log in

Influence of post-deposition annealing on the chemical states of crystalline tantalum pentoxide films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate the effect of post-deposition annealing (for temperatures from 848 K to 1273 K) on the chemical properties of crystalline \(\hbox {Ta}_2\hbox {O}_5\) films grown on Si(100) substrates by radio frequency magnetron sputtering. The atomic arrangement, as determined by X-ray diffraction, is predominately hexagonal (\(\delta -\hbox {Ta}_2\hbox {O}_5\)) for the films exposed to heat treatments at 948 K and 1048 K; orthorhombic (\(\beta -\hbox {Ta}_2\hbox {O}_5\)) for samples annealed at 1148 K and 1273 K; and amorphous for samples annealed at temperatures below 948 K. X-ray photoelectron spectroscopy for Ta 4f and O 1s core levels were performed to evaluate the chemical properties of all films as a function of annealing temperature. Upon analysis, it is observed the Ta 4f spectrum characteristic of Ta in \(\hbox {Ta}^{5+}\) and the formation of Ta-oxide phases with oxidation states \(\hbox {Ta}^{1+}\), \(\hbox {Ta}^{2+}\), \(\hbox {Ta}^{3+}\), and \(\hbox {Ta}^{4+}\). The study reveals that the increase in annealing temperature increases the percentage of the state \(\hbox {Ta}^{5+}\) and the reduction of the others indicating that higher temperatures are more desirable to produce \(\hbox {Ta}_2\hbox {O}_5\), however, there seems to be an optimal annealing temperature that maximizes the O% to Ta% ratio. We found that at 1273 K the ratio slightly reduces suggesting oxygen depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Kaga, H. Shinriki, F. Murai, Y. Kawamoto, Y. Nakagone, F. Takeda, K. Itoh, DRAM manufacturing in the ’90s -Part 3: a case study. Semicond. Int. 6, 98–101 (1991)

    Google Scholar 

  2. K.W. Kwon, C.S. Kang, S.O. Park, H.K. Kang, S.T. Ann, Thermally robust Ta2O5 capacitor for the 256-Mbit DRAM. IEEE Trans. Electron. Devices. 43, 919–923 (1996)

    ADS  Google Scholar 

  3. C. Chaneliere, J.L. Autran, R.A.B. Devine, B. Baland, Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Mater. Sci. Eng. R-rep 22, 269–322 (1998)

    Google Scholar 

  4. C. Chaneliere, S. Four, J.L. Autran, R.A.B. Devine, N.P. Sandler, Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from a Ta(OC\(_2\)H\(_5\))\(_5\) precursor. Electrochem. J. Appl. Phys. 83, 4823–4829 (1998)

    ADS  Google Scholar 

  5. R.H. Dennard, F.H. Gaensslen, H. Yu, V.L. Rideout, E. Bassous, A.R. LeBlanc, Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circ. 9, 256–268 (1974)

    ADS  Google Scholar 

  6. S. Shibata, Dielectric constants of Ta2O5 thin films deposited by r.f. sputtering. Thin Solid Films 277, 1–4 (1996)

    ADS  Google Scholar 

  7. E. Atanassova, Thin RF sputtered and thermal Ta2O5 on Si for high density DRAM application. Microelectron. Reliab. 39, 1185–1217 (1999)

    Google Scholar 

  8. J.D.T. Kruschwitz, W.T. Pawlewicz, Optical and durability properties of infrared transmitting thin films. Appl. Opt. 36, 2157–2159 (1997)

    ADS  Google Scholar 

  9. C. Chaneliere, S. Foura, J.L. Autran, R.A.B. Devine, Comparison between the properties of amorphous and crystalline Ta2O5 thin films deposited on Si. Microelectron. Reliab. 39, 261–268 (1999)

    Google Scholar 

  10. S.P. Garg, N. Krishnamurthy, A. Awashi, M. Venkatraman, The O-Ta (Oxygen-Tantalum) system. J. Phase Equilib. 17, 63–77 (1996)

    Google Scholar 

  11. K.T. Jacob, C. Shekhar, Y. Waseda, An update on the thermodynamics of Ta2O5. J. Chem. Thermodyn. 41, 748–753 (2009)

    Google Scholar 

  12. E. Atanassova, T. Dimitrova, J. Koprinarova, AES and XPS study of thin RF-sputtered Ta2O5 layers. Appl. Surf. Sci. 84, 193–202 (1995)

    ADS  Google Scholar 

  13. H. Shinriki, M. Nakata, \(\text{ UV-O }_3\) and Dry-\(\text{ O }_2\): Two-step Annealed Chemical Vapor-Deposited Ta2O5 Films for Storage Dielectrics of 64-Mb DRAMs. IEEE Trans. Electron Devices ED. 38, 455–462 (1991)

    ADS  Google Scholar 

  14. S. Kamiyama, P.-Y. Lesaicherre, H. Suzuki, A. Sakai, I. Nishiyama, A. Ishitani, J. Electrochem. Soc. 140, 1617 (1993)

    Google Scholar 

  15. G.Q. Lo, D.L. Kwong, S. Lee, Appl. Phys. Lett. 62, 973 (1993)

    ADS  Google Scholar 

  16. Y. Kuo, Reactive Ion Etching of Sputtered Deposited Tantalum Oxide and its Etch Selectivity to Tantalum. J. Electrochem. Soc. 139, 579–583 (1992)

    Google Scholar 

  17. N. Donkov, A. Zykova, V. Safonov, R. Rogowska, J. Smolik, Tantalum pentoxide ceramic coatings deposition on ti4a16v substrates for biomedical applications. Probl. At. Sci. Technol. Plasma Phys. Ser. 17, 131–133 (2011)

    Google Scholar 

  18. T. Dimitrova, U,K. Arshak, E. Atanassova, Crystallization effects in oxygen annealed Ta2O5 thin films on Si. Thin Solid Films 38, 31–38 (2001)

    Google Scholar 

  19. S.-J.J. Wu, B. Houng, B.S. Huang, Effect of growth and annealing temperatures on crystallization of tantalum pentoxide thin film prepared by RF magnetron sputtering method. J. Alloys Compd. 475, 488–493 (2009)

    Google Scholar 

  20. D. Cristea, D. Constantin, A. Crisan, C.S. Abreu, J.R. Gomes, N.P. Barradas, E. Alves, C. Moura, F. Vaz, L. Cunha, Properties of tantalum oxynitride thin films produced by magnetron sputtering: the influence of processing parameters. Vacuum 98, 63–69 (2013)

    ADS  Google Scholar 

  21. I. Perez, J.L. Enríquez-Carrejo, V. Sosa, F. Gamboa, J.R. Farias-Mancillas, J.T. Elizalde-Galindo, Evidence for structural transition in crystalline tantalum pentoxide films grown by RF magnetron sputtering. J. Alloys. Comp. 712, 303–210 (2014)

    Google Scholar 

  22. E. Atanassova, D. Spassov, X-ray photoelectron spectroscopy of thermal thin Ta2O5 films on Si. Appl. Surf. Sci. 135, 71–82 (1998)

    ADS  Google Scholar 

  23. Takashi Tsuchiya, Hideto Imai, Shogo Miyoshi, Per-Anders Glans, Jinghua Guo, Shu Yamaguchi, X-ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with a large extent of oxygen nonstoichiometry. Phys. Chem. Chem. Phys. 13, 17013–17018 (2011)

    Google Scholar 

  24. S.-C. Wang, K.-Y. Liu, J.-L. Huang, Tantalum oxide film prepared by reactive magnetron sputtering deposition for all-solid-state electrochromic device. Thin Solid Films 520, 1454–1459 (2011)

    ADS  Google Scholar 

  25. S.V. Jagadeesh-Chandra, C.-J. Choi, S. Uthanna, G. Mohan-Rao, Structural and electrical properties of radio frequency magnetron sputtered tantalum oxide films: Influence of post-deposition annealing. Mater. Sci. Semicond. Process. 13, 245–251 (2010)

    Google Scholar 

  26. A. Herrera-Gomez, M. Bravo-Sanchez, O. Ceballos-Sanchez, M.O. Vazquez-Lepe, Practical Methods for Background Subtraction in Photoemission Spectra. Surf. Interface Anal. 46, 897–905 (2014)

    Google Scholar 

  27. A. Fukumoto, K. Miwa, Prediction of hexagonal Ta2O5 structure by first-principles calculations. Phys. Rev. B 55, 11155 (1997)

    ADS  Google Scholar 

  28. Y.-N. Wu, L. Li, H.-P. Cheng, First-principles studies of Ta2O5 polymorphs. Phys. Rev. B 83, 144105 (2011)

    ADS  Google Scholar 

  29. S. Pérez-Walton, C. Valencia-Balvín, A.C.M. Padilha, G.M. Dalpian, J.M. Osorio-Guillén, A search for the ground state structure and the phase stability of tantalum pentoxide. J. Phys. Condens. Matt. 28, 035801–11 (2016)

    ADS  Google Scholar 

  30. J.Y. Kim, B. Magyari-Köpe, K.-J. Lee, H.-S. Kim, S.-H. Lee, Y. Nishi, Electronic structure and stability of low symmetry Ta2O5 polymorphs. Phys. Status Solidi RRL 8, 560–565 (2014)

    Google Scholar 

  31. S.-H. Lee, J. Kim, S.-J. Kim, S. Kim, G.-S. Park, Hidden structural order in orthorhombic Ta2O5. Phys. Rev. Lett. 110, 235502–5 (2013)

    ADS  Google Scholar 

  32. J. Lee, W. Lu, E. Kioupakis, Electronic properties of tantalum pentoxide polymorphs from first-principles calculations. Appl. Phys. Lett. 105, 202108–5 (2014)

    ADS  Google Scholar 

  33. Z. Helali, M. Calatayud, C. Minot, Novel Delta-Ta2O5 Structure Obtained from DFT Calculations. J. Phys. Chem. C. 118, 13652–13658 (2014)

    Google Scholar 

  34. Y. Guo, J. Robertson, Comparison of oxygen vacancy defects in crystalline and amorphous Ta2O5. Microelectron. Eng. 147, 254–259 (2015)

    Google Scholar 

  35. J.-Y. Kim, B. Magyari-Köpe, Y. Nishi, J.-H. Ahn, First-principles study of carbon impurity effects in the pseudo-hexagonal Ta2O5. Curr. Appl. Phys. 16, 638–643 (2016)

    ADS  Google Scholar 

  36. Y. Yang, Y. Kawazoe, Prediction of a new ground-state crystal structure of Ta2O5. Phys. Rev. Mat. 2, 034602 (2018)

    Google Scholar 

  37. X.M. Wu, P.K. Wu, T.M. Lu, E.J. Rymaszewski, Reactive sputtering deposition of low temperature tantalum suboxide thin films. Appl. Phys. Lett. 62, 3264–3266 (1993)

    ADS  Google Scholar 

  38. K. Chen, G.R. Yang, M. Nielsen, T.M. Lu, E.J. Rymaszewski, X-ray photoelectron spectroscopy study of Al/Ta2O5 and Ta2O5/Al buried interfaces. Appl. Phys. Lett. 70, 399–401 (1997)

    ADS  Google Scholar 

  39. A. Muto, F. Yano, Y. Sugawara, S. Iijima, The study of ultrathin tantalum oxide films before and after annealing with X-ray photoelectron spectroscopy. Jpn. J. Appl. Phys. 33, 2699–2702 (1994)

    ADS  Google Scholar 

  40. R. Simpson, R.G. White, J.F. Watts, M.A. Baker, XPS investigation of monatomic and cluster argon ion sputtering of tantalum pentoxide. Appl. Surf. Sci. 405, 79–87 (2017)

    ADS  Google Scholar 

  41. H. Szymanowski, O. Zabeida, J.E. Klemberg-Sapieha, L. Martinu, Optical properties and microstructure of plasma deposited Ta2O5 and Nb\(_2\)O\(_5\) films. J. Vac. Sci. Technol. A 23, 241–247 (2005)

    ADS  Google Scholar 

  42. E. Atanassova, M. Kalitzova, G. Zollo, A. Paskaleva, A. Peeva, M. Georgieva, G. Vitalib, High temperature-induced crystallization in tantalum pentoxide layers and its influence on the electrical properties. Thin Solid Films 426, 191–199 (2003)

    ADS  Google Scholar 

  43. O. Kerrec, D. Devilliers, H. Groult, P. Marcus, Study of dry and electrogenerated Ta2O5 and Ta/Ta2O5/Pt structures by XPS. Mat. Sci. Eng B55, 134–142 (1998)

    Google Scholar 

  44. M.V. Ivanov, T.V. Perevalov, V.S. Aliev, V.A. Gritsenko, V.V. Kaichev, Electronic structure of Ta2O5 with oxygen vacancy: ab initio calculations and comparison with experiment. J. Appl. Phys. 110, 024115 (2011)

  45. M.V. Ivanov, T.V. Perevalov, VSh Aliev, V.A. Gritsenko, V.V. Kaichev, Ab initio simulation of the electronic structure of Ta2O5 with oxygen vacancy and comparison with experiment. J. Exp. Theo. Phys. 112, 1035–1041 (2011)

    ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Wilian Cauich and Daniel Aguilar for their technical support during the XPS and XRD sessions. Dr. Israel Perez is indebted to Dr. Alberto Herrera for helpful discussions and technical support in the XPS analysis. We also thank the anonymous reviewer and one of the editors of this journal for their comments that greatly improved the quality of this work. The authors gratefully acknowledge the support from the National Council of Science and Technology (CONACYT) Mexico and the program Cátedras CONACYT through Project 3035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Perez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez, I., Sosa, V., Gamboa, F. et al. Influence of post-deposition annealing on the chemical states of crystalline tantalum pentoxide films. Appl. Phys. A 124, 792 (2018). https://doi.org/10.1007/s00339-018-2198-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2198-9

Navigation