Skip to main content
Log in

MODIFICATION OF THE STRUCTURAL-PHASE STATE AND ELECTRICAL PROPERTIES OF COPPER-CONTAINING FULLERITE FILMS DURING THERMAL ANNEALING IN VACUUM

  • SELF-ASSEMBLED STRUCTURES AND NANOASSEMBLIES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract—Scanning electron and atomic force microscopy, X-ray diffraction, X-ray spectral microanalysis, and diffraction of reflected electrons were used to study changes in the structure, elemental, and phase composition of fullerite–copper films with an atomic metal fraction of 0.5, 1, 2 and 4%, deposited on oxidized single-crystal silicon substrates and subjected to thermal exposure in vacuum at different temperatures (470, 520, 570 and 620 K). It was found that thermal annealing at T = 520 K (t = 1 h) leads to the formation of a nanocrystalline structure with an average structural elements size of 33, 42, 50, and 65 nm for fullerite–copper films with an atomic fraction of metal of 0.5, 1, 2, and 4% respectively. An increase in temperature and annealing time leads to an increase in the size of structural elements and the formation of a new of CuxC60 phase, which belongs to the monoclinic space group P2/m. Electric force microscopy and the four-probe method were used to study changes in the local electrical properties and electrical resistivity of copper-containing fullerite films during vacuum annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. P. M. Allem, K. C. Khemani, A. Koch, et al., Science (Washington, DC, U. S.) 253, 301 (1991). https://doi.org/10.1126/science.253.5017.301

    Article  Google Scholar 

  2. H. E. Okur and K. Prassides, J. Phys. Chem. Solids 131, 44 (2019). https://doi.org/10.1016/j.jPcs.2019.03.017

    Article  CAS  Google Scholar 

  3. R. A. Lunin, Y. A. Velikodny, B. M. Bulychev, and V. A. Kulbachinskii, Polyhedron 102, 664 (2015). https://doi.org/10.1016/j.Poly.2015.10.044

    Article  CAS  Google Scholar 

  4. C. L. Liu, Q. H. Gong, Y. X. Chen, et al., Chin. Phys. Lett. 18, 1078 (2001). https://doi.org/10.1088/0256-307X/18/8/326

    Article  Google Scholar 

  5. M. M. Mestechkin and G. E. Whyman, J. Struct. Chem. 38, 941 (1997). https://doi.org/10.1007/BF02763814

    Article  CAS  Google Scholar 

  6. E. A. Katz, D. Faiman, S. Shtutina, et al., Phys. B (Amsterdam, Neth.) 304, 348 (2001). https://doi.org/10.1016/S0921-4526(01)00544-0

  7. Xiang Li, Y. J. Tang, H. W. Zhao, et al., Appl. Phys. Lett. 77, 984 (2000). https://doi.org/10.1063/1.1287910

    Article  CAS  Google Scholar 

  8. B. M. Bulychev, R. A. Lunin, A. V. Krechetov, et al., J. Phys. Chem. Solids 65, 337 (2004). https://doi.org/10.1016/j.jPcs.2003.10.064

    Article  CAS  Google Scholar 

  9. B. P. Popov, Semiconductors 39, 455 (2005).

    Article  CAS  Google Scholar 

  10. A. Tamai, W. Auwärter, C. Cepek, et al., Surf. Sci. 566, 633 (2004). https://doi.org/10.1016/j.susc.2004.06.127

    Article  CAS  Google Scholar 

  11. R. PoPescu, D. Macovei, A. Devenyi, et al., Eur. Phys. J. B, No. 13, 737 (2000). https://doi.org/10.1007/s100510050093

  12. P. Janda, K. Kojucharow, and L. Dunsch, Surf. Sci. 597, 26 (2005). https://doi.org/10.1016/j.susc.2004.06.217

    Article  CAS  Google Scholar 

  13. A. K. Gatin, M. V. Grishin, N. V. Dokhlikova, S. A. Ozerin, S. Yu. Sarvadii, and B. R. Shub, Nanotechnol. Russ. 13, 453 (2018). https://doi.org/10.1134/S1995078018050063

    Article  CAS  Google Scholar 

  14. T. I. Shabatina, O. I. Vernaya, A. V. Nuzhdina, N. D. Zvukova, V. P. Shabatin, A. M. Semenov, V. I. Lozinskii, and M. Ya. Mel’nikov, Nanotechnol. Russ. 13, 182 (2018). https://doi.org/10.1134/S1995078018020106

    Article  CAS  Google Scholar 

  15. V. K. Leont’ev, I. P. Pogorel’skii, G. A. Frolov, Ya. N. Karasenkov, A. A. Gusev, N. V. Latuta, L. L. Borozdkin, and D. S. Stefantsova, Nanotechnol. Russ. 13, 195 (2018). https://doi.org/10.1134/S1995078018020040

    Article  Google Scholar 

  16. V. F. Masterov, A. V. Prikhod’ko, O. I. Kon’kov, M. V. Shakhrai, A. A. Shaklanov, Tech. Phys. Lett. 25, 326 (1999). https://doi.org/10.1134/1.1262468

    Article  CAS  Google Scholar 

  17. O. I. Kon’kov, Semiconductors 36, 1204 (2002). https://doi.org/10.1134/1.1521216

    Article  CAS  Google Scholar 

  18. E. M. Shpilevskii, L. V. Baran, and G. P. Okatova, Perspekt. Mater., No. 3, 56 (2003).

  19. L. V. Baran, E. M. Shpilevskii, and V. A. Ukhov, Vakuum. Tekh. Tekhnol. 14 (1), 47 (2004).

    Google Scholar 

  20. E. M. Shpilevskii and L. V. Baran, “Structural and phase changes in copper - fullerene films during ion implantation and thermal annealing,” Preprint No. 5 (Lykov Inst. Thermal Mass Exchange Natl. Acad. Sci. Belarus’, Minsk, 2004).

    Google Scholar 

  21. L. V. Baran and S. V. Gusakova, Poverkhnost’, No. 12, 49 (2006).

  22. L. V. Baran, Nanostrukt. Materialoved., No. 1, 50 (2011).

  23. V. N. Ivanova, J. Struct. Chem. 41, 135 (2000). https://doi.org/10.1007/BF02684739

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to S.V. Zlotsky for the XRD patterns of the studied films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Baran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baran, L.V. MODIFICATION OF THE STRUCTURAL-PHASE STATE AND ELECTRICAL PROPERTIES OF COPPER-CONTAINING FULLERITE FILMS DURING THERMAL ANNEALING IN VACUUM. Nanotechnol Russia 14, 325–333 (2019). https://doi.org/10.1134/S1995078019040037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019040037

Navigation