Skip to main content
Log in

Sulfur-doped carbon quantum dots and derived 3D carbon nanoflowers are effective visible to near infrared fluorescent probes for hydrogen peroxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Near-infrared photoluminescence is intrinsic only to a minority of carbonaceous nanomaterials. Longwave fluorescence is, however, well suited for bio-sensing and bio-imaging owing to the low autofluorescence and low absorbance by biomatter. The authors describe here sulfur doped carbon quantum dots (S-CQDs) and their derivatives (referred to as 3D carbon nanoflowers; S-CNFs). Their average diameters are 2 and 28.5 nm, respectively. They display two emission peaks, one being purple and peaking at 407 nm, the other in the near-infrared and peaking at 780 nm. Quantum yields are 4% for S-CQDs and 6.4% for S-CNFs. The nanoparticles are shown to be viable fluorescent probes for hydrogen peroxide which acts as a quencher. The 3D structure of the S-CNFs and near-infrared detection result in a better linear relationship and lower detection limits. The detection limits for H2O2 are 1.1 μM for S-CQDs, and 0.6 μM for S-CNFs. The results presented here contribute to an improved understanding on how the nanostructure and selection of wavelengths affect the sensitivity and detection limits of such probes.

“Button-up” - synthesized sulfur-doped carbon quantum dots and carbon nanoflowers display two emission peaks, one being purple, the other in the near-infrared. The nanoparticles are shown to be viable fluorescent probes for hydrogen peroxide which acts as a quencher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rhee SG (2006) H2O2, a necessary evil for cell signaling. Science 312:1882–1883

    Article  Google Scholar 

  2. Chen S, Yuan R, Chai Y, Hu F (2013a) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32

    Article  CAS  Google Scholar 

  3. Jin H, Heller DA, Kalbacova M, Kim JH, Zhang J, Boghossian AA, Maheshri N, Strano MS (2010) Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nat Nanotechnol 5:302–309

    Article  CAS  Google Scholar 

  4. Muhr V, Buchner M, Hirsch T, Jovanović D, Dolić S, Dramićanin M, Wolfbeis O (2017) Europium-doped GdVO4 nanocrystals as a luminescent probe for hydrogen peroxide and for enzymatic sensing of glucose. Sensors Actuators B Chem 241:349–356

    Article  CAS  Google Scholar 

  5. Wang N, Sun J, Chen L, Fan H, Ai S (2015) A Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim Acta 182:1733–1738

    Article  CAS  Google Scholar 

  6. Sodzel D, Khranovskyy V, Beni V, Turner A, Viter R, Eriksson M, Holtz P, Janot J, Bechelany M, Balme S, Smyntyna V, Kolesneva E, Dubovskaya L, Volotovski I, Ubelis A, Yakimova R (2015) Continuous sensing of hydrogen peroxide and glucose via quenching of the UV and visible luminescence of ZnO nanoparticles. Microchim Acta 182:1819–1826

    Article  CAS  Google Scholar 

  7. Xiang Z, Wang Y, Ju P, Zhang D (2016) Optical determination of hydrogen peroxide by exploiting the peroxidase-like activity of AgVO3 nanobelts. Microchim Acta 183:457–463

    Article  CAS  Google Scholar 

  8. Masanta G, Heo CH, Lim CS, Bae SK, Cho BR, Kim HM (2012) A mitochondria-localized two-photon fluorescent probe for ratiometric imaging of hydrogen peroxide in live tissue. Chem Commun 48:3518–3520

    Article  CAS  Google Scholar 

  9. Zhu B, Jiang H, Guo B, Shao C, Wu H, Du B, Wei Q (2013) A highly selective ratiometric fluorescent probe for hydrogen peroxide displaying a large emission shift. Sensors Actuators B Chem 186:681–686

    Article  CAS  Google Scholar 

  10. Wen T, Qu F, Li NB, Luo HQ (2012) Polyethyleneimine-capped silver nanoclusters as a fluorescence probe for sensitive detection of hydrogen peroxide and glucose. Anal Chim Acta 749:56–62

    Article  CAS  Google Scholar 

  11. Song Z, Kwok R, Ding D, Nie H, Lam J, Liu B, Tang B (2016) An AIE-active fluorescence turn-on bioprobe mediated by hydrogen-bonding interaction for highly sensitive detection of hydrogen peroxide and glucose. Chem Commun 52:10076–10079

    Article  CAS  Google Scholar 

  12. Sadhukhan M, Bhowmik T, Kundu M, Barman S (2014) Facile synthesis of carbon quantum dots and thin graphene sheets for non-enzymatic sensing of hydrogen peroxide. RSC Adv 4:4998–5005

    Article  CAS  Google Scholar 

  13. Karton-Lifshin N, Segal E, Omer L, Portnoy M, Satchi-Fainaro R, Shabat D (2011) A unique paradigm for a turn-on near-infrared cyanine-based probe: noninvasive intravital optical imaging of hydrogen peroxide. J Am Chem Soc 133:10960–10965

    Article  CAS  Google Scholar 

  14. Yuan L, Lin W, Zhao S, Gao W, Chen B, He L, Zhu S (2012) A unique approach to development of near-infrared fluorescent sensors for in vivo imaging. J Am Chem Soc 134:13510–13523

    Article  CAS  Google Scholar 

  15. Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2:605–615

    Article  CAS  Google Scholar 

  16. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42:2824–2860

    Article  CAS  Google Scholar 

  17. Chen B, Li F, Li S, Weng W, Guo H, Guo T, Zhang X, Chen Y, Huang T, Hong X, You S, Lin Y, Zeng K, Chen S (2013b) Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging. Nano 5:1967–1971

    CAS  Google Scholar 

  18. Shulaker MM, Hills G, Patil N, Wei H, Chen HY, Wong HSP, Mitra S (2013) Carbon nanotube computer. Nature 501:526–530

    Article  CAS  Google Scholar 

  19. Xiong F, Liao AD, Estrada D, Pop E (2011) Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332:568–570

    Article  CAS  Google Scholar 

  20. Li S, Zheng J, Chen D, Wu Y, Zhang W, Zheng F, Cao J, Ma H, Liu Y (2013) Yolk-shell hybrid nanoparticles with magnetic and pH-sensitive properties for controlled anticancer drug delivery. Nano 5:11718–11724

    CAS  Google Scholar 

  21. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330

    Article  CAS  Google Scholar 

  22. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291–1294

    Article  CAS  Google Scholar 

  23. Chen D, Zhu G, Lin J, Liu J, Huang S (2015) Renewable reduced graphene oxide-based oil-absorbent aerosols: preparation and essential oils absorption ability. ACS Sustain Chem Eng 3:1428–1433

    Article  CAS  Google Scholar 

  24. Hao T, Wei X, Nie Y, Xu Y, Yan Y, Zhou Z (2016) An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim Acta 183:2197–2203

    Article  CAS  Google Scholar 

  25. Guo Y, Yang L, Li W, Wang X, Shang Y, Li B (2016) Carbon dots doped with nitrogen and sulfur and loaded with copper(II) as a "turn-on" fluorescent probe for cystein, glutathione and homocysteine. Microchim Acta 183:1409–1416

    Article  CAS  Google Scholar 

  26. Tang W, Wang Y, Wang P, Di J, Yang J, Wu Y (2016) Synthesis of strongly fluorescent carbon quantum dots modified with polyamidoamine and a triethoxysilane as quenchable fluorescent probes for mercury(II). Microchim Acta 183:2571–2578

    Article  CAS  Google Scholar 

  27. Wang B, Chen Y, Wu Y, Weng B, Liu Y, Li C (2016a) Synthesis of nitrogen- and iron-containing carbon dots, and their application to colorimetric and fluorometric determination of dopamine. Microchim Acta 183:2491–2500

    Article  CAS  Google Scholar 

  28. Zuo P, Lu X, Sun Z, Guo Y, He H (2016a) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183:519–542

    Article  CAS  Google Scholar 

  29. Shojaei T, Salleh M, Sijam K, Rahim R, Mohsenifar A, Safarnejad R, Tabatabaei M (2016) Fluorometric immunoassay for detecting the plant virus citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots. Microchim Acta 183:2277–2287

    Article  CAS  Google Scholar 

  30. Qu F, Sun Z, Liu D, Zhao X, You J (2016) Direct and indirect fluorescent detection of tetracyclines using dually emitting carbon dots. Microchim Acta 183:2547–2553

    Article  CAS  Google Scholar 

  31. Zuo P, Gao J, Peng J, Liu J, Zhao M, Zhao J, Zou P, He H (2016b) A sol-gel based molecular imprint incorporating carbon dots for fluorometric determination of nicotinic acid. Microchim Acta 183:329–336

    Article  CAS  Google Scholar 

  32. Chang M, Ginjom I, Ngu-Schwemlein M, Ng S (2016) Synthesis of yellow fluorescent carbon dots and their application to the determination of chromium(III) with selectivity improved by pH tuning. Microchim Acta 183:1899–1907

    Article  CAS  Google Scholar 

  33. Rao H, Liu W, Lu Z, Wang Y, Ge H, Zou P, Wang X, He H, Zeng X, Wang Y (2016) Silica-coated carbon dots conjugated to CdTe quantum dots: a ratiometric fluorescent probe for copper(II). Microchim Acta 183:581–588

    Article  CAS  Google Scholar 

  34. Lin Y, Yao B, Huang T, Zhang S, Cao X, Weng W (2016) Selective determination of free dissolved chlorine using nitrogen-doped carbon dots as a fluorescent probe. Microchim Acta 183:2221–2227

    Article  CAS  Google Scholar 

  35. Li H, Shao F, Zou S, Yang Q, Huang H, Feng J, Wang A (2016a) Microwave-assisted synthesis of N, P-doped carbon dots for fluorescent cell imaging. Microchim Acta 183:821–826

    Article  CAS  Google Scholar 

  36. Simões E, Leitão J, da Silva J (2016) Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite. Microchim Acta 183:1769–1777

    Article  Google Scholar 

  37. Yan F, Kong D, Luo Y, Ye Q, He J, Guo X, Chen L (2016) Carbon dots serve as an effective probe for the quantitative determination and for intracellular imaging of mercury(II). Microchim Acta 183:1611–1618

    Article  CAS  Google Scholar 

  38. Wang F, Hao Q, Zhang Y, Xu Y, Lei W (2016b) Fluorescence quenchometric method for determination of ferric ion using boron-doped carbon dots. Microchim Acta 183:273–279

    Article  Google Scholar 

  39. Benítez-Martínez S, López-Lorente Á, Valcárcel M (2016) Determination of TiO2 nanoparticles in sunscreen using N-doped graphene quantum dots as a fluorescent probe. Microchim Acta 183:781–789

    Article  Google Scholar 

  40. Tang Z, Kotov NA, Giersig M (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297:237–240

    Article  CAS  Google Scholar 

  41. Narayanaswamy A, Xu H, Pradhan N, Kim M, Peng X (2006) Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis. J Am Chem Soc 128:10310–10319

    Article  CAS  Google Scholar 

  42. Tang Z, Zhang Z, Wang Y, Glotzer SC, Kotov NA (2006) Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314:274–278

    Article  CAS  Google Scholar 

  43. Xu X, Zhuang J, Wang X (2008) SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J Am Chem Soc 130:12527–12535

    Article  CAS  Google Scholar 

  44. Tang Z, Kotov NA (2005) One-dimensional assemblies of nanoparticles: preparation, properties, and promise. Adv Mater 17:951–962

    Article  CAS  Google Scholar 

  45. Bottger-Hiller F, Mehner A, Anders S, Kroll L, Cox G, Simon F, Spange S (2012) Sulphur-doped porous carbon from a thiophene-based twin monomer. Chem Commun 48:10568–10570

    Article  Google Scholar 

  46. Wohlgemuth SA, White RJ, Willinger MG, Titirici MM, Antonietti M (2012) One-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction. Green Chem 14:1515–1523

    Article  CAS  Google Scholar 

  47. Sun D, Ban R, Zhang PH, Wu GH, Zhang JR, Zhu JJ (2013) Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 64:424–434

    Article  CAS  Google Scholar 

  48. Chen C, Levitin G, Hess DW, Fuller TF (2007) XPS investigation of Nafion® membrane degradation. J Power Sources 169:288–295

    Article  CAS  Google Scholar 

  49. Enciso E, Cerdán L, Gartzia-Rivero L, Bañuelos J, Costela A, López-Arbeloa I, García-Moreno I (2015) Emission properties of dye-doped cationic nanoparticles: size, surfactant and monomeric composition effects. RSC Adv 5:4454–4462

    Article  CAS  Google Scholar 

  50. Zheng J, Zhou C, Yu M, Liu J (2012) Different sized luminescent gold nanoparticles. Nano 4:4073–4083

    CAS  Google Scholar 

  51. Zhang X, Wang S, Liu M, Yang B, Feng L, Ji Y, Tao L, Wei Y (2013) Size tunable fluorescent nano-graphite oxides: preparation and cell imaging applications. Phys Chem Chem Phys 15:19013–19018

    Article  CAS  Google Scholar 

  52. Li Z, Xin Y, Wu W, Fu B, Zhang Z (2016b) Topotactic conversion of copper (I) phosphide nanowires for sensitive electrochemical detection of H2O2 release from living cells. Anal Chem 88:7724–7729

    Article  CAS  Google Scholar 

  53. Shan X, Chai L, Ma J, Qian Z, Chen J, Feng H (2014) B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst 139:2322–2325

    Article  CAS  Google Scholar 

  54. Qian Z, Shan X, Chai L, Ma J, Chen J, Feng H (2014) Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl Mater Interfaces 6:6797–6805

    Article  CAS  Google Scholar 

  55. Hu M, Tian J, Lu H, Weng L, Wang L (2010) H2O2-sensitive quantum dots for the label-free detection of glucose. Talanta 82:997–1002

    Article  CAS  Google Scholar 

  56. Yi Y, Deng J, Zhang Y, Li H, Yao S (2013) Label-free Si quantum dots as photoluminescence probes for glucose detection. Chem Commun 49:612–614

    Article  CAS  Google Scholar 

  57. Zhang W, Liu W, Li P, Huang F, Wang H, Tang B (2015) Rapid-response fluorescent probe for hydrogen peroxide in living cells based on increased polarity of C-B bonds. Anal Chem 87:9825–9828

    Article  CAS  Google Scholar 

  58. Yuan J, Cen Y, Kong X, Wu S, Liu C, Yu R, Chu X (2015) MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl Mater Interfaces 7:10548–10555

    Article  CAS  Google Scholar 

  59. Mao Z, Qing Z, Qing T, Xu F, Wen L, He X, Shi H, Wang K (2015) Poly (thymine)-templated copper nanoparticles as a fluorescent indicator for hydrogen peroxide and oxidase-based biosensing. Anal Chem 87:7454–7460

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by education bureau of fujian province of China (No.JA13195 and JAT160875), the science and technology foundation of the national general administration of quality supervision in China (No. 2012QK053), natural science foundation of Zhangzhou (No. ZZ2016J31) and college students’ innovative experiment project of Fujian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejian Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 1.53 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Li, F., Zou, C. et al. Sulfur-doped carbon quantum dots and derived 3D carbon nanoflowers are effective visible to near infrared fluorescent probes for hydrogen peroxide. Microchim Acta 184, 2055–2062 (2017). https://doi.org/10.1007/s00604-017-2181-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2181-8

Keywords

Navigation