Skip to main content
Log in

Continuous sensing of hydrogen peroxide and glucose via quenching of the UV and visible luminescence of ZnO nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on an indirect optical method for the determination of glucose via the detection of hydrogen peroxide (H2O2) that is generated during the glucose oxidase (GOx) catalyzed oxidation of glucose. It is based on the finding that the ultraviolet (~374 nm) and visible (~525 nm) photoluminescence of pristine zinc oxide (ZnO) nanoparticles strongly depends on the concentration of H2O2 in water solution. Photoluminescence is quenched by up to 90 % at a 100 mM level of H2O2. The sensor constructed by immobilizing GOx on ZnO nanoparticles enabled glucose to be continuously monitored in the 10 mM to 130 mM concentration range, and the limit of detection is 10 mM. This enzymatic sensing scheme is supposed to be applicable to monitoring glucose in the food, beverage and fermentation industries. It has a wide scope in that it may be extended to numerous other substrate or enzyme activity assays based on the formation of H2O2, and of assays based on the consumption of H2O2 by peroxidases.

We report the application of ZnO nanoparticles (NPs) in a biosensor for monitoring glucose at a large concentration range. The biosensor is based on the indirect detection of hydrogen peroxide via the respective change of the UV and visible PL of ZnO NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A (2013) Biosensor technology: recent advances in threat agent detection and medicine. Chem Soc Rev 42:8733–8768

    Article  CAS  Google Scholar 

  2. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  CAS  Google Scholar 

  3. Cass AEG, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins IJ, Plotkin EV, Scott LDL, Turner APF (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 56:667–671

    Article  CAS  Google Scholar 

  4. Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196

    Article  CAS  Google Scholar 

  5. Li J, Li H, Xue Y, Fang H, Wang W (2014) Facile electrodeposition of environment-friendly Cu2O/ZnO heterojunction for robust photoelectrochemical biosensing. Sensors Actuators B Chem 191:619–624

    Article  CAS  Google Scholar 

  6. Xi X, Li J, Wang H, Zhao Q, Li H (2015) Non-enzymatic photoelectrochemical sensing of hydrogen peroxide using hierarchically structured zinc oxide hybridized with graphite-like carbon nitride. Microchim Acta, 1–7

  7. Steiner M-S, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40:4805–4839

    Article  CAS  Google Scholar 

  8. Wilhelm S, del Barrio M, Heiland J, Himmelstoß SF, Galbán J, Wolfbeis OS, Hirsch T (2014) Spectrally matched upconverting luminescent nanoparticles for monitoring enzymatic reactions. ACS Appl Mater Interfaces 6:15427–15433

    CAS  Google Scholar 

  9. Yakimova R, Selegard L, Khranovskyy V, Pearce R, Spetz AL, Uvdal K (2012) ZnO materials and surface tailoring for biosensing. Frontiers in bioscience (Elite edition) 4:254–78

    Article  Google Scholar 

  10. SelegÅrd L, Khranovskyy V, Söderlind F, Vahlberg C, Ahrén M, Käll P-O, Yakimova R, Uvdal K (2010) Biotinylation of ZnO nanoparticles and thin films: a Two-step surface functionalization study. ACS Appl Mater Interfaces 2:2128–2135

    Article  Google Scholar 

  11. Shi X, Gu W, Li B, Chen N, Zhao K, Xian Y (2014) Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta 181:1–22

    Article  CAS  Google Scholar 

  12. Khranovskyy V, Tsiaoussis I, Yazdi GR, Hultman L, Yakimova R (2010) Heteroepitaxial ZnO nano hexagons on p-type SiC. J Cryst Growth 312:327–332

    Article  CAS  Google Scholar 

  13. Khranovskyy V, Lazorenko V, Lashkarev G, Yakimova R (2012) Luminescence anisotropy of ZnO microrods. J Lumin 132:2643–2647

    Article  CAS  Google Scholar 

  14. Wei Y, Li Y, Liu X, Xian Y, Shi G, Jin L (2010) ZnO nanorods/Au hybrid nanocomposites for glucose biosensor. Biosens Bioelectron 26:275–278

    Article  CAS  Google Scholar 

  15. Khranovskyy V, Yakimova R, Karlsson F, Syed AS, Holtz P-O, Urgessa ZN, Oluwafemi OS, Botha JR (2012) Comparative PL study of individual ZnO nanorods, grown by APMOCVD and CBD techniques. Phys B Condens Matter 407:1538–1542

    Article  CAS  Google Scholar 

  16. Raghavan R, Bechelany M, Parlinska M, Frey D, Mook WM, Beyer A, Michler J, Utke I (2012) Nanocrystalline-to-amorphous transition in nanolaminates grown by low temperature atomic layer deposition and related mechanical properties. Appl Phys Lett 100, 191912

  17. Elias J, Bechelany M, Utke I, Erni R, Hosseini D, Michler J, Philippe L (2012) Urchin-inspired zinc oxide as building blocks for nanostructured solar cells. Nano Energy 1:696–705

    Article  CAS  Google Scholar 

  18. Chaaya AA, Bechelany M, Balme S, Miele P (2014) ZnO 1D nanostructures designed by combining atomic layer deposition and electrospinning for UV sensor applications. J Mater Chem A 2:20650–20658

    Article  CAS  Google Scholar 

  19. Abou Chaaya A, Viter R, Baleviciute I, Bechelany M, Ramanavicius A, Gertnere Z, Erts D, Smyntyna V, Miele P (2014) Tuning optical properties of Al2O3/ZnO nanolaminates synthesized by atomic layer deposition. J Phys Chem C 118:3811–3819

    Article  Google Scholar 

  20. Dorfman A, Kumar N, Hahm J (2006) Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms. Langmuir 22:4890–4895

    Article  CAS  Google Scholar 

  21. Hong X, Chu X, Zou P, Liu Y, Yang G (2010) Magnetic-field-assisted rapid ultrasensitive immunoassays using Fe3O4/ZnO/Au nanorices as Raman probes. Biosens Bioelectron 26:918–922

    Article  CAS  Google Scholar 

  22. Gu B, Xu C, Yang C, Liu S, Wang M (2011) ZnO quantum dot labeled immunosensor for carbohydrate antigen 19–9. Biosens Bioelectron 26:2720–2723

    Article  CAS  Google Scholar 

  23. Somers RC, Bawendi MG, Nocera DG (2007) CdSe nanocrystal based chem-/bio- sensors. Chem Soc Rev 36:579–591

    Article  CAS  Google Scholar 

  24. Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625

    Article  CAS  Google Scholar 

  25. Wang L, Sun Y, Wang J, Wang J, Yu A, Zhang H, Song D (2010) Water-soluble ZnO–Au nanocomposite-based probe for enhanced protein detection in a SPR biosensor system. J Colloid Interface Sci 351:392–397

    Article  CAS  Google Scholar 

  26. Khranovskyy V, Ekblad T, Yakimova R, Hultman L (2012) Surface morphology effects on the light-controlled wettability of ZnO nanostructures. Appl Surf Sci 258:8146–8152

    Article  CAS  Google Scholar 

  27. Ferez L, Thami T, Akpalo E, Flaud V, Tauk L, Janot J-M, Déjardin P (2011) Interface of covalently bonded phospholipids with a phosphorylcholine head: characterization, protein nonadsorption, and further functionalization. Langmuir 27:11536–11544

    Article  CAS  Google Scholar 

  28. Balme S, Janot J-M, Déjardin P, Vasina EN, Seta P (2006) Potentialities of confocal fluorescence for investigating protein adsorption on mica and in ultrafiltration membranes. J Membr Sci 284:198–204

    Article  CAS  Google Scholar 

  29. Abou Chaaya A, Viter R, Bechelany M, Alute Z, Erts D, Zalesskaya A, Kovalevskis K, Rouessac V, Smyntyna V, Miele P (2013) Evolution of microstructure and related optical properties of ZnO grown by atomic layer deposition. Beilstein J Nanotechnol 4:690–698

    Article  Google Scholar 

  30. Liao Z-M, Zhang H-Z, Zhou Y-B, Xu J, Zhang J-M, Yu D-P (2008) Surface effects on photoluminescence of single ZnO nanowires. Phys Lett A 372:4505–4509

    Article  CAS  Google Scholar 

  31. Arya SK, Saha S, Ramirez-Vick JE, Gupta V, Bhansali S, Singh SP (2012) Recent advances in ZnO nanostructures and thin films for biosensor applications: Review. Anal Chim Acta 737:1–21

    Article  CAS  Google Scholar 

  32. Yi Y, Deng J, Zhang Y, Li H, Yao S (2013) Label-free Si quantum dots as photoluminescence probes for glucose detection. Chem Commun 49:612–614

    Article  CAS  Google Scholar 

  33. Rodriguez-Saona L E, Allendorf M E (2011) Use of FTIR for Rapid Authentication and Detection of Adulteration of Food. In Annual Review of Food Science and Technology, Vol 2, Doyle M P, Klaenhammer T R, Vol. 2, pp 467–483

  34. Scampicchio M, Arecchi A, Lawrence NS, Mannino S (2010) Nylon nanofibrous membrane for mediated glucose biosensing. Sensors Actuators B Chem 145:394–397

    Article  CAS  Google Scholar 

  35. Schäferling M, Wu M, Wolfbeis O (2004) Time-resolved fluorescent imaging of glucose. J Fluoresc 14:561–568

    Article  Google Scholar 

  36. Wolfbeis OS, Schäferling M, Dürkop A (2003) Reversible optical sensor membrane for hydrogen peroxide using an immobilized fluorescent probe, and its application to a glucose biosensor. Microchim Acta 143:221–227

    Article  CAS  Google Scholar 

  37. Wolfbeis OS, Dürkop A, Wu M, Lin Z (2002) A europium-Ion-based luminescent sensing probe for hydrogen peroxide. Angew Chem Int Ed 41:4495–4498

    Article  CAS  Google Scholar 

  38. Wu M, Lin Z, Wolfbeis OS (2003) Determination of the activity of catalase using a europium (III)–tetracycline-derived fluorescent substrate. Anal Biochem 320:129–135

    Article  CAS  Google Scholar 

  39. Lin Z, Wu M, Wolfbeis OS, Schäferling M (2006) A novel method for time-resolved fluorimetric determination and imaging of the activity of peroxidase, and its application to an enzyme-linked immunosorbent assay. Chem Eur J 12:2730–2738

    Article  CAS  Google Scholar 

  40. Wu M, Lin Z, Schäferling M, Dürkop A, Wolfbeis OS (2005) Fluorescence imaging of the activity of glucose oxidase using a hydrogen-peroxide-sensitive europium probe. Anal Biochem 340:66–73

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by EC FP-7 IRSES Grant #318520 “Development of nanotechnology based biosensors for agriculture” 2013–2016. Also, the support from the Swedish Research Council (VR) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhael Bechelany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sodzel, D., Khranovskyy, V., Beni, V. et al. Continuous sensing of hydrogen peroxide and glucose via quenching of the UV and visible luminescence of ZnO nanoparticles. Microchim Acta 182, 1819–1826 (2015). https://doi.org/10.1007/s00604-015-1493-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1493-9

Keyword

Navigation