Skip to main content
Log in

Fluorometric immunoassay for detecting the plant virus Citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Cadmium-telluride quantum dots (QDs) were conjugated to an antibody (Ab) against Citrus tristeza virus (CTV), while the coat protein (CP) of the CTV was immobilized on the surface of carbon nanoparticles (CNPs). Following immunobinding of the QD-Ab and the CP-loaded CNPs, the fluorescence of the CdTe QDs was quenched by the CNPs. This effect was exploited to design a detection assay for the CTV which was found more sensitive and specific than the existing enzyme linked immunosorbent assay (ELISA). The limit of detection was measured at about 220 ng⋅ mL‾1 of CTV. The Stern-Volmer plot of the CNPs-QD quencher pair showed a positive deviation from linearity which was ascribed to the presence of both static and dynamic quenching.

Cadmium-telluride quantum dots (QDs) were conjugated to an antibody (Ab) against Citrus tristeza virus (CTV), while the coat protein (CP) of the CTV was immobilized on the surface of carbon nanoparticles (CNPs). Following immunobinding of the QD-Ab and the CP-loaded CNPs, the fluorescence of the CdTe QDs was quenched by the CNPs. This effect was exploited to design a detection assay for the CTV which was found more sensitive and specific than the existing enzyme linked immunosorbent assay (ELISA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moreno P, Ambrós S, Albiach-Martí MR, et al. (2008) Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9:251–268. doi:10.1111/J.1364-3703.2007.00455.X

    Article  CAS  Google Scholar 

  2. Bertolini E, Moreno A, Capote N, et al. (2008) Quantitative detection of citrus tristeza virus in plant tissues and single aphids by real-time RT-PCR. Eur J Plant Pathol 120:177–188. doi:10.1007/s10658-007-9206-9

    Article  CAS  Google Scholar 

  3. Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13. doi:10.1016/j.compag.2010.02.007

    Article  Google Scholar 

  4. Loconsole G, Saponari M, Savino V (2010) Development of real-time PCR based assays for simultaneous and improved detection of citrus viruses. Eur J Plant Pathol 128:251–259. doi:10.1007/s10658-010-9653-6

    Article  CAS  Google Scholar 

  5. Barbarossa L, Savino V (2006) Sensitive and specific digoxigenin-labelled RNA probes for routine detection of citrus tristeza virus by dot-blot hybridization. J Phytopathol 154:329–335. doi:10.1111/j.1439-0434.2006.01102.x

    Article  CAS  Google Scholar 

  6. Garibotti AV, Pérez-Rentero S, Eritja R (2011) Functionalization and self-assembly of DNA bidimensional arrays. Int J Mol Sci 12:5641–5651. doi:10.3390/ijms12095641

    Article  CAS  Google Scholar 

  7. Cerf A, Alava T, Barton RA, Craighead HG (2011) Transfer-printing of single DNA molecule arrays on graphene for high-resolution electron imaging and analysis. Nano Lett 11:4232–4238. doi:10.1021/nl202219w

    Article  CAS  Google Scholar 

  8. Liu W, Zhong H, Wang R, Seeman NC (2011) Crystalline two-dimensional DNA-origami arrays. Angew Chem Int Ed Eng 50:264–267. doi:10.1002/anie.201005911

    Article  CAS  Google Scholar 

  9. Hongyang S, Yalei Z, Chunmin Z, et al. (2011) Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour Technol 102:9884–9890. doi:10.1016/j.biortech.2011.08.016

    Article  Google Scholar 

  10. Wu P, Li Y, Yan X-P (2009) CdTe quantum dots (QDs) based kinetic discrimination of Fe 2+ and Fe 3+, and CdTe QDs-Fenton hybrid system for sensitive photoluminescent detection of Fe 2 +. Anal Chem 81:6252–6257. doi:10.1021/ac900788w

    Article  CAS  Google Scholar 

  11. Pan J, Feng S-S (2009) Targeting and imaging cancer cells by folate-decorated, quantum dots (QDs)- loaded nanoparticles of biodegradable polymers. Biomaterials 30:1176–1183. doi:10.1016/j.biomaterials.2008.10.039

    Article  CAS  Google Scholar 

  12. Fei X, Gu Y, Wang J, et al. (2011) Preparation and fluorescent properties of a complex probe based on inorganic QDs and organic dye. J Lumin 131:291–296. doi:10.1016/j.jlumin.2010.10.015

    Article  CAS  Google Scholar 

  13. Zuo P, Lu X, Sun Z, et al. (2015) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183:519–542. doi:10.1007/s00604-015-1705-3

    Article  Google Scholar 

  14. Safarpour H, Safarnejad MR, Tabatabaei M, et al. (2012) Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol 34:507–515. doi:10.1080/07060661.2012.709885

    Article  Google Scholar 

  15. Zekavati R, Safi S, Hashemi SJ, et al. (2013) Highly sensitive FRET-based fluorescence immunoassay for aflatoxin B1 using cadmium telluride quantum dots. Microchim Acta 180:1217–1223. doi:10.1007/s00604-013-1047-y

    Article  CAS  Google Scholar 

  16. Roodbar Shojaei T, Mohd Salleh MA, Tabatabaei M, et al. (2014) Development of sandwich-form biosensor to detect mycobacterium tuberculosis complex in clinical sputum specimens. Braz J Infect Dis 18:600–608. doi:10.1016/j.bjid.2014.05.015

    Article  Google Scholar 

  17. Liu M, Zhao H, Quan X, et al. (2010) Distance-independent quenching of quantum dots by nanoscale-graphene in self-assembled sandwich immunoassay. Chem Commun 46:7909–7911. doi:10.1039/c0cc02085k

    Article  CAS  Google Scholar 

  18. Cui D, Pan B, Zhang H, et al. (2008) Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection. Anal Chem 80:7996–8001. doi:10.1021/ac800992m

    Article  CAS  Google Scholar 

  19. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd ed. doi:10.1007/978–0–387-46312-4

  20. Chao M-R, Hu C-W, Chen J-L (2014) Comparative syntheses of tetracycline-imprinted polymeric silicate and acrylate on CdTe quantum dots as fluorescent sensors. Biosens Bioelectron 61:471–477. doi:10.1016/j.bios.2014.05.058

    Article  CAS  Google Scholar 

  21. Mohd Yazid SNA, Chin SF, Pang SC, Ng SM (2013) Detection of Sn(II) ions via quenching of the fluorescence of carbon nanodots. Microchim Acta 180:137–143. doi:10.1007/s00604-012-0908-0

    Article  CAS  Google Scholar 

  22. Al-Kady AS, Gaber M, Hussein MM, Ebeid E-ZM (2011) Structural and fluorescence quenching characterization of hematite nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 83:398–405. doi:10.1016/j.saa.2011.08.052

    Article  CAS  Google Scholar 

  23. Nemzek TL (1975) Kinetics of diffusion-controlled reactions: transient effects in fluorescence quenching. J Chem Phys 62:477–489. doi:10.1063/1.430501

    Article  CAS  Google Scholar 

  24. Bhunia SK, Saha A, Maity AR, et al. (2013) Carbon nanoparticle-based fluorescent bioimaging probes. Sci Rep 3:1473–1479. doi:10.1038/srep01473

    Article  Google Scholar 

  25. Zhu A, Qu Q, Shao X, et al. (2012) Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew Chem Int Ed Eng 51:7185–7189. doi:10.1002/anie.201109089

    Article  CAS  Google Scholar 

  26. Adkar-Purushothama CR, Maheshwar PK, Sano T, Janardhana GR (2011) A sensitive and reliable RT-nested PCR assay for detection of citrus tristeza virus from naturally infected citrus plants. Curr Microbiol 62:1455–1459. doi:10.1007/s00284-011-9883-7

    Article  CAS  Google Scholar 

  27. Mathews DM, Riley K, Dodds JA (1997) Comparison of detection methods for citrus tristeza virus in field trees during months of nonoptimal titer. Plant Dis 81:525–529. doi:10.1094/PDIS.1997.81.5.525

    Article  Google Scholar 

  28. Zhang S, He Q, Li R, et al. (2011) Study on the fluorescence carbon nanoparticles. Mater Lett 65:2371–2373. doi:10.1016/j.matlet.2011.05.025

    Article  CAS  Google Scholar 

  29. Yang R, Tang Z, Yan J, et al. (2008) Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. Anal Chem 80:7408–7413. doi:10.1021/ac801118p

    Article  CAS  Google Scholar 

  30. Morales-Narváez E, Pérez-López B, Pires LB, Merkoçi A (2012) Simple förster resonance energy transfer evidence for the ultrahigh quantum dot quenching efficiency by graphene oxide compared to other carbon structures. Carbon N Y 50:2987–2993

    Article  Google Scholar 

  31. Ma N, Jiang W, Li T, et al. (2015) Fluorescence aggregation assay for the protein biomarker mucin 1 using carbon dot-labeled antibodies and aptamers. Microchim Acta 182:443–447. doi:10.1007/s00604-014-1386-3

    Article  CAS  Google Scholar 

  32. Du F, Zeng F, Ming Y, Wu S (2013) Carbon dots-based fluorescent probes for sensitive and selective detection of iodide. Microchim Acta 180:453–460. doi:10.1007/s00604-013-0954-2

    Article  CAS  Google Scholar 

  33. Wang Y, Bao L, Liu Z, Pang D-W (2011) Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal Chem 83:8130–8137. doi:10.1021/ac201631b

    Article  CAS  Google Scholar 

  34. Evale BG, Hanagodimath SM (2009) Fluorescence quenching of newly synthesized biologically active coumarin derivative by aniline in binary solvent mixtures. J Lumin 129:1174–1180. doi:10.1016/j.jlumin.2009.05.017

    Article  CAS  Google Scholar 

  35. Melavanki RM, Kusanur RA, Kadadevaramath JS, Kulakarni MV (2009) Quenching mechanisms of 5BAMC by aniline in different solvents using stern–Volmer plots. J Lumin 129:1298–1303. doi:10.1016/j.jlumin.2009.06.011

    Article  CAS  Google Scholar 

  36. Biradar DS, Thipperudrappa J, Hanagodimath SM (2007) Fluorescence quenching of 2,2″ dimethyl-p-terphenyl by carbon tetrachloride in different solvents and temperatures. J Lumin 126:339–346. doi:10.1016/j.jlumin.2006.08.066

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taha R. Shojaei or Mohamad A. Mohd Salleh.

Electronic Supplementary Material

ESM 1

(DOC 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaei, T.R., Salleh, M.A.M., Sijam, K. et al. Fluorometric immunoassay for detecting the plant virus Citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots. Microchim Acta 183, 2277–2287 (2016). https://doi.org/10.1007/s00604-016-1867-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1867-7

Keywords

Navigation