Skip to main content
Log in

Carbon dots serve as an effective probe for the quantitative determination and for intracellular imaging of mercury(II)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a new method for synthesis of water-soluble photoluminescent carbon dots (CDs) by one-pot hydrothermal treatment of adipic acid and triammonium citrate. The CDs have excitation/emission maxima of 340/440 nm, a quantum yield of 0.13, and are shown to be a viable fluorescent probe for the determination of Hg(II). It shows a linear relationship in the 4 to 18 μM mercury ion concentration range. The detection limit is as low as 2.47 μM. The CDs were applied to intracellular sensing and imaging of Hg(II) where they showed low toxicity.

Carbon dots synthesized by hydrothermal method can be used as “turn-off” fluorescent probe Hg2+ determination. Besides, the carbon dots were applied to intracellular sensing and imaging of Hg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yan FY, Zou Y, Wang M, Mu XL, Yang N, Chen L (2014) Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sensors Actuators B 192:488–495

    Article  CAS  Google Scholar 

  2. Nolan EM, Lippard SJ (2003) A “turn-on” fluorescent sensor for the selective detection of mercuric ion in aqueous media. J Am Chem Soc 125:14270–14271

    Article  CAS  Google Scholar 

  3. Nolan EM, Lippard SJ (2005) MS4, a seminaphthofluorescein-based chemosensorfor the ratiometric detection of Hg(II). J Mater Chem 15(27):2778–2783

    Article  CAS  Google Scholar 

  4. Leopold K, Foulkes M, Worsfold P (2010) Methods for the determination and speciation of mercury in natural waters—a review. Anal Chim Acta 663:127–138

    Article  CAS  Google Scholar 

  5. Gong Y, Zhang X, Chen Z, Yuan Y, Jin Z, Mei L, Zhang J, Tan W, Shen G, Yu R (2012) An efficient rhodamine thiospirolactambased fluorescent probe for detection of Hg(II) in aqueous samples. Analyst 137(4):932–938

    Article  CAS  Google Scholar 

  6. Lin Y, Tseng WL (2010) Ultrasensitive sensing of Hg(II) and CH3Hg+ based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Anal Chem 82(22):9194–9200

    Article  CAS  Google Scholar 

  7. Qin XY, Lu WB, Asiri AM, Al-Youbi AO, Sun XP (2013) Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury(II) ions. Sensors Actuators B 184:156–162

    Article  CAS  Google Scholar 

  8. Barman S, Sadhukhan M (2012) Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J Mater Chem 22(41):21832–21837

    Article  CAS  Google Scholar 

  9. Du FK, Zeng F, Ming YH, Wu SZ (2013) Carbon dots-based fluorescent probes for sensitive and selective detection of iodide. Microchim Acta 180(5):453–460

    Article  CAS  Google Scholar 

  10. Bourlinos A, Trivizas G, Karakassides M, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, Papagiannouli I, Aloukos P, Couris S (2015) Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon 83:173–179

    Article  CAS  Google Scholar 

  11. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744

    Article  CAS  Google Scholar 

  12. Ahmed G, Laíño R, Calzón G, García M (2015) Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters. Microchim Acta 182(1):51–59

    Article  CAS  Google Scholar 

  13. Bhaisare ML, Talib A, Khan MS, Pandey S, Wu HF (2015) Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging. Microchim Acta 182(13):2173–2181

    Article  CAS  Google Scholar 

  14. Yang MM, Kong WQ, Li H, Liu J, Huang H, Liu Y, Kang ZH (2015) Fluorescent carbon dots for sensitive determination and intracellular imaging of zinc(II) ion. Microchim Acta 182(15):2443–2450

    Article  CAS  Google Scholar 

  15. Hou JY, Dong J, Zhu HS, Teng X, Ai SY, Mang ML (2015) A simple and sensitive fluorescent sensor for methyl parathion based on L-tyrosine methyl ester functionalized carbon dots. Biosens Bioelectron 68:20–26

    Article  CAS  Google Scholar 

  16. Zhang PJ, Xue ZJ, Luo D, Yu W, Guo ZH, Wang T (2014) Dual-Peak electrogenerated chemiluminescence of carbon dots for iron ions detection. Anal Chem 86(12):5620–5623

    Article  CAS  Google Scholar 

  17. Zou Y, Yan FY, Zheng TC, Shi DC, Sun FZ, Yang N, Chen L (2015) Highly luminescent organosilane-functionalized carbon dots as a nanosensor for sensitive and selective detection of quercetin in aqueous solution. Talanta 135:145–148

    Article  CAS  Google Scholar 

  18. Yang ST, Cao L, Luo PG, Lu FS, Wang X, Wang HF, Meziani MJ, Liu YF, Qi G, Sun YP (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 32:11308–11309

    Article  Google Scholar 

  19. Wolfbeis O (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44(14):4743–4768

    Article  CAS  Google Scholar 

  20. Liu HP, Ye T, Mao CD (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed 46(34):6473–6475

    Article  CAS  Google Scholar 

  21. Qiao ZA, Wang YF, Gao Y, Li HW, Dai TY, Liu YL, Huo QS (2010) Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun 46(46):8812–8814

    Article  CAS  Google Scholar 

  22. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang HF, Luo PJG, Yang H, Kose ME, Chen BL, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757

    Article  CAS  Google Scholar 

  23. Tian L, Ghosh D, Chen W, Pradhan S, Chang XJ, Chen SW (2009) Nanosized carbon particles from natural gas soot. Chem Mater 21(13):2803–2809

    Article  CAS  Google Scholar 

  24. Hsu PC, Chang HT (2012) Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem Commun 48(33):3984–3986

    Article  CAS  Google Scholar 

  25. Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48(70):8835–8837

    Article  CAS  Google Scholar 

  26. Yang ZC, Wang M, Yong AM, Wong SY, Zhang XH, Tan H, Chang AY, Li X, Wang J (2011) Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem Commun 47(42):11615–11617

    Article  CAS  Google Scholar 

  27. Li HT, He XD, Kang ZH, Huang H, Liu Y, Liu JL, Lian SY, Tsang CA, Yang XB, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49(26):4430–4434

    Article  CAS  Google Scholar 

  28. Ahmed MJ, Hossan J (1995) Spectrophotometric determination of aluminium by morin. Talanta 42:1135–1142

    Article  CAS  Google Scholar 

  29. Li YF, Liu Y, Zhou M (2012) Synthesis and properties of a dendritic FRET donor–acceptor system with cationic iridium(III) complex core and carbazolyl periphery. Dalton Trans 41(9):2582–2591

    Article  CAS  Google Scholar 

  30. Ray SC, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113:18546–18551

    Article  CAS  Google Scholar 

  31. Hu SL, Niu KY, Sun J, Yang J, Zhao NQ, Du XW (2009) One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 19(4):484–488

    Article  CAS  Google Scholar 

  32. Chai F, Wang T, Li L, Liu H, Zhang L, Su Z, Wang C (2010) Fluorescent gold nanoprobes for the sensitive and selective detection for Hg(II). Nanoscale Res Lett 5(11):1856–1860

    Article  CAS  Google Scholar 

  33. Wang H, Wang Y, Jin J, Yang R (2008) Gold nanoparticle-based colorimetric and turn-on fluorescent probe for mercury(II) ions in aqueous solution. Anal Chem 80(23):9021–9028

    Article  CAS  Google Scholar 

  34. Niu LY, Guan YS, Chen YZ, Wu LZ, Tung CH, Yang QZ (2012) BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine. J Am Chem Soc 134:18928–18931

    Article  CAS  Google Scholar 

  35. Chai F, Wang CG, Wang TT, Ma ZF, Su ZM (2010) L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg(II) induced by ultraviolet light. Nanotechnology 21:025501

    Article  Google Scholar 

  36. Paramanik B, Bhattacharyya S, Patra A (2013) Detection of Hg(II) and F− ions by using fluorescence switching of quantum dots in an Au-Cluster–CdTe QD nanocomposite. Chem Eur J 19:5980–5987

    Article  CAS  Google Scholar 

  37. Zhou L, Lin YH, Huang ZZ, Ren JS, Qu XG (2012) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg(II) and biothiols in complex matrices. 48:1147–1149

  38. Staudinger C, Borisov SM (2015) Long-wavelength analyte-sensitive luminescent probes and optical (bio) sensors. Methods Appl Fluoresc 3:042005

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this manuscript was supported by the National Natural Science Foundation of China (Nos. 21174103, 21374078, 51308390) and Tianjin Research Program of Application Foundation and Advanced Technology (No. 15JCYBJC18100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanyong Yan or Li Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.40 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Kong, D., Luo, Y. et al. Carbon dots serve as an effective probe for the quantitative determination and for intracellular imaging of mercury(II). Microchim Acta 183, 1611–1618 (2016). https://doi.org/10.1007/s00604-016-1788-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1788-5

Keywords

Navigation