Skip to main content
Log in

Dynamics of In Vivo Membrane Processes in Algal Thylakoids as Analyzed from Chlorophyll Fluorescence Induction using the Photosystem II and Thylakoid Models

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The OJIPSMT pattern of chlorophyll (Chl) a fluorescence induction (FI) was obtained using Scenedesmus obliquus (Scenedesmus) microalgal cells exposed, after dark adaptation, to moderate and high light intensities (1200 and 1800 μmol photons m–2 s–1) in a time range from the microseconds to 10 minutes. The fast and, particularly, slow OJIPS(M)T stages of FI extending up to 100 s were quantitatively described by fitting a thylakoid membrane (TM) model. The calculations adequately reproduced the dynamics of P700 oxidoreduction transients. Parameters of TM processes were determined, and the transients of the TM model variables are shown in calculations. Dynamic stages of redox reactions in reaction centers (RCs) of photosystem II (PSII), the PQ/PQH2 quinone pool, the cytochrome b6 f complex (Cyt bf), and P700 of photosystem I (PSI) RCs were found to accompany the adaptation of the TM system to light. In silico analysis revealed the role that Cyt bf plays in regulating electron fluxes when bL/H hemes remain in a more reduced state at a high light intensity than at moderate illumination in an interval from 100 ms to 3 s. A dependence of the rate constants k42–49 on the level of \({\text{Q}}_{{\text{B}}}^{{(2) - }}\) reduction was revealed for non-radiative recombination of separated charges in the RC PheP680+ and Q\(_{{\text{A}}}^{ - }\)P680+, together with a dependence of k42–49 on chloroplast illumination. Setting the dynamic rate constants kFNR(t) and kD-qE(t) made it possible to compare the generation ΔpHo-i(t) = pHS(t) – pHL(t), initiation of qE quenching at pHL|trigg = 6.7, activation of FNR reductase in the light, and achievement of stationary charge flows within 1–2 minutes of light induction. Fitting the model of isolated PSII to phytoplankton FI signals showed similar electron transfer parameters of PSII RCs for Scenedesmus and Chlorella monocultures and phytoplankton samples. Markers of the phytoplankton community state were an exception, differing between degrading and ecologically functional water bodies. The differences in markers included a reduced size of the antennas, an increased energy dissipation, and a decrease in pH in the lumen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. N. E. Belyaeva, F.-J. Schmitt, R. Steffen, et al., Photosynth. Res., 98, 105 (2008).

    Article  Google Scholar 

  2. N. E. Belyaeva, F.-J. Schmitt, V. Z. Paschenko, et al., Photosynth. Res. 125, 123 (2015).

    Article  Google Scholar 

  3. N. E. Belyaeva, A. A. Bulychev, K. E. Klementiev, et al., Photosynth. Res. 146 (1), 259 (2020).

    Article  Google Scholar 

  4. A. Stirbet and Govindjee, Photosynth. Res. 113, 15 (2012).

    Article  Google Scholar 

  5. A. Stirbet D. Lazar, G. C. Papageorgiou, and Govindjee, in Cyanobacteria: From Basic Science to Applications, Ed. by A. K. Mishra, D. N. Tiwari, and A. N. Rai (Acad. Press, Elsevier, 2019), pp. 79–130.

  6. A. N. Tikhonov, Photosynth. Res. 125, 65 (2015). https://doi.org/10.1007/s11120-015-0094-0

    Article  Google Scholar 

  7. Chlorophyll a Fluorescence: a Signature of Photosynthesis, Vol. 19: Advances in Photosynthesis and Respiration, Ed. by G. C. Papageorgiou and Govindjee (Springer-Verlag, Dordrecht, 2004).

  8. A. N. Sharov, Doctoral Dissertation in Biology (St. Petersburg Sci. Res. Centre Ecol. Saf. Russ. Acad. Sci., St. Petersburg, 2020).

  9. N. F. Reimers, Ecology. Theories, Laws, Rules, Principles and Hypotheses (Rossiya molodaya, Moscow, 1994) [in Russian].

  10. C. R. Ireland, S. P. Long, and N. R. Baker, Planta 160, 550 (1984).

    Article  Google Scholar 

  11. G. H. Schatz, H. Brock, and A. R. Holzwarth, Biophys. J. 54, 397 (1988).

    Article  Google Scholar 

  12. T. A. Roelofs, C. H. Lee, and A. R. Holzwarth, Biophys. J. 61, 1147 (1992).

    Article  Google Scholar 

  13. J. M. Bowes and A. R. Crofts, Biochim. Biophys. Acta 590, 373 (1980).

    Article  Google Scholar 

  14. R. J. Strasser, A. Srivastava, and Govindgee, Photochem. Photobiol. 61, 32 (1995).

    Article  Google Scholar 

  15. G. Renger and A. Schulze, Photobiochem. Photobiophys. 9. 79 (1985).

    Google Scholar 

  16. E. Baake and J. P. Schloder, Bull. Math. Biol. 54, 999 (1992).

    Article  Google Scholar 

  17. A. Stirbet, Govindjee, B. J. Strasser, and R. J. Strasser, J. Theor. Biol. 193, 131 (1998).

    Article  ADS  Google Scholar 

  18. D. Lazar, J. Theor. Biol. 220, 469 (2003).

    Article  ADS  Google Scholar 

  19. D. Lazar, Photosynthetica 47 (4), 483 (2009).

    Article  Google Scholar 

  20. G. V. Lebedeva, N. E. Belyaeva, O. V. Demin, et al., Biofizika 47, 1044 (2002).

    Google Scholar 

  21. R. J. Strasser, M. Tsimilli-Michael, and A. Srivastava, in Chlorophyll a Fluorescence: a Signature of Photosynthesis, Vol. 19: Advances in Photosynthesis and Respiration, Ed. by G. C. Papageorgiou and Govindjee (Springer-Verlag, Dordrecht, 2004), pp. 321–362.

  22. A. A. Volgusheva, O. V. Yakovleva, G. P. Kukapckix, et al., Biofizika 56 (1), 105 (2011).

    Google Scholar 

  23. A. Stirbet, D. Lazar, J. Kromdijk, and Govindjee, Photosynthetica 56, 86 (2018).

    Article  Google Scholar 

  24. N. E. Belyaeva, A. A. Bulychev, G. Yu. Riznichenko, and A. B. Rubin, Photosynth. Res. 130, 491 (2016).

    Article  Google Scholar 

  25. N. Belyaeva, A. Bulychev, G. Riznichenko, and A. Rubin, Photosynth. Res. 140, 1 (2019).

    Article  Google Scholar 

  26. G. Riznichenko, G. Lebedeva, O. Demin, and A. Rubin, J. Biol. Phys. 25, 177 (1999).

    Article  Google Scholar 

  27. G. V. Lebedeva, N. E. Beljaeva, G. Yu. Riznichenko, and O. V. Demin, in BioThermoKinetics in the Post Genomic Era, Ed. by C. Larsson, I. Pahlman, and L. Gustafsson (Chalmers Reproservice, Goteborg, 1998), pp. 196–199.

    Google Scholar 

  28. N. E. Belyaeva, G. V. Lebedeva, G. Yu. Riznichenko, et al., in Mathematics. Computer. Education (Moscow, 2000), vol. 7, pp. 606–614.

    Google Scholar 

  29. N. E. Belyaeva, G. V. Lebedeva, G. Yu. Riznichenko, et al., in Mathematics. Computer. Education (Moscow, 2003), vol. 10, pp. 263–276.

    Google Scholar 

  30. N. E. Belyaeva, Candidate’s Dissertation in Mathematics and Physics (Moscow State Univ., Moscow, 2004).

  31. N. E. Belyaeva, V. Z. Pashchenko, G. Renger, et al., Biofizika 51 (6) 976 (2006).

    Google Scholar 

  32. N. E. Belyaeva, A. A. Bulychev, G. Yu. Riznichenko, and A. B. Rubin, Biophysics 56 (3) 464 (2011a).

    Article  Google Scholar 

  33. N. E. Belyaeva, F.-J. Schmitt, V. Z. Paschenko, et al., BioSystems 103 (2), 188 (2011b).

    Article  Google Scholar 

  34. N. E. Belyaeva, F.-J. Schmitt, V. Z. Paschenko, et al., Plant Physiol. Biochem. 77, 49 (2014).

    Article  Google Scholar 

  35. O. Ebenhoh, G. Fucile, G. Finazzi, et al., Philos. Trans. R. Soc., B 369, 20130223 (2014).

  36. A. Stirbet and Govindjee, Photosynth. Res. 130, 193 (2016).

    Article  Google Scholar 

  37. A. Laisk, H. Eichelmann, and V. Oja, Photosynth. Res. 90, 45 (2006).

    Article  Google Scholar 

  38. A. A. Bulychev, A. A. Cherkashin, E. M. Muronets, and I. V. Elanskaya, Biochim. Biophys. Acta, Bioenerg. 1859, 1086 (2018).

    Article  Google Scholar 

  39. V. V. Ptushenko, T. V. Zhigalova, O. V. Avercheva, and A. N. Tikhonov, Photosynth. Res. 139, 509 (2019).

    Article  Google Scholar 

  40. I. V. Elanskaya, A. A. Bulychev, E. P. Lukashev, and E. M. Muronets, Biochim. Biophys. Acta, Bioenerg. 1862, 148318 (2021).

    Article  Google Scholar 

  41. G. C. Papageorgiou, M. Tsimilli-Michael, and K. Stamatakis, Photosynth. Res. 94, 275 (2007).

    Article  Google Scholar 

  42. G. Schansker, S. Z. Toth, and R. J. Strasser, Biochim. Biophys. Acta 1757, 787 (2006).

    Article  Google Scholar 

  43. S. Kodru, T. Malavath, E. Devadasu, et al., Photosynth. Res. 125, 219 (2015).

    Article  Google Scholar 

  44. A. Morales, X. Yin, J. Harbinson, et al., Plant Physiol. 176, 1247 (2018).

    Article  Google Scholar 

  45. A. Stirbet, D. Lazar, Y. Guo, and Govindjee, Ann. Bot. 126, 511 (2020).

    Article  Google Scholar 

  46. P. V. Fursova, E. N. Voronova, A. P. Levich, et al., Moscow Univ. Biol. Sci. Bull. 72 (4), 184 (2017).

    Article  Google Scholar 

  47. S. I. Pogosyan, S. V. Gal’chuk, Yu. V. Kazimirko, et al., Voda: Khim. Ekol. 6, 34 (2009).

    Google Scholar 

  48. G. E. Milanovsky, A. A. Petrova, D. A. Cherepanov, and A. Y. Semenov, Photosynth. Res. 133, 185 (2017).

    Article  Google Scholar 

  49. M. J. Kamali, G. V. Lebedeva, O. V. Demin, et al., Biophysics 49, 1061 (2004).

    Google Scholar 

  50. I. A. Reynolds, E. A. Johnson, and C. Tanford, Proc. Natl. Acad. Sci. U. S. A. 82, 6869 (1985).

    Article  ADS  Google Scholar 

  51. A. A. Bulychev, M. M. Niyazova, and A. B. Rubin, Biol. Membr. 4, 262 (1987).

    Google Scholar 

  52. G. Schansker, S. Z. Toth, A. R. Holzwarth, and G. Garab, Photosynth. Res. 120, 43 (2014).

    Article  Google Scholar 

  53. A. Laisk and V. Oja, Photosynth. Res. 143, 335 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Cand. Sci. (Biol.) E.V. Voronova (Department of Biophysics, Biological Faculty, Moscow State University) for Scenedesmus obliquus microalgal cell samples, Prof. S.I. Pogosyan for fruitful discussion, and Cand. Sci. (Biol.) S.S. Khrushchev for technical support.

Funding

This work was supported by a state contract with the Moscow State University (project no. 121032500060-0), the Russian Foundation for Basic Research (project no. 20-04-00465), and the Russian Science Foundation (project no. 22-11-00009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Belyaeva.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: TM, thylakoid membrane; PSI, photosystem I; PSII, photosystem II; Cyt bf, cytochrome b6 f complex; RC, reaction center; QA and QB, primary and secondary quinone acceptors of PSII; PQ, plastoquinone; Phe, pheophytin; OEC, oxygen-evolving complex; Chl and Chl a, chlorophylls of antennae and RCs; ETC, electron transport chain; P680, chlorophyll of PSII RCs; FI, fluorescence induction; F0 and Fm, minimal and maximal fluorescence yields, respectively; LEF, linear electron flow; CEF, cyclic electron flow; PFD, photon flux density.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaeva, N.E., Bulychev, A.A., Paschenko, V.Z. et al. Dynamics of In Vivo Membrane Processes in Algal Thylakoids as Analyzed from Chlorophyll Fluorescence Induction using the Photosystem II and Thylakoid Models. BIOPHYSICS 67, 708–725 (2022). https://doi.org/10.1134/S0006350922050050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922050050

Keywords:

Navigation