Skip to main content
Log in

Variable fluorescence of closed photochemical reaction centers

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Chlorophyll fluorescence induction during 0.4 to 200 ms multiple-turnover pulses (MTP) was measured in parallel with O2 evolution induced by the MTP light. Additionally, a saturating single-turnover flash (STF) was applied at the end of each MTP and the total MTP +STF O2 evolution was measured. Quantum yield of O2 evolution during the MTP transients was calculated and related to the number of open PSII centers, found from the STF O2 evolution. Proportionality between the number of open PSII and their running photochemical activity showed the quantum yield of open PSII remained constant independent of the closure of adjacent centers. During the induction, total fluorescence was partitioned between Fo of all the open centers and Fc of all the closed centers. The fluorescence yield of a closed center was 0.55 of the final Fm while less than a half of the centers were closed, but later increased, approaching Fm to the end of the induction. In the framework of the antenna/radical pair equilibrium model, the collective rise of the fluorescence of centers closed earlier during the induction is explained by an electric field, facilitating return of excitation energy from the Pheo P680+ radical pair to the antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

ETR:

Electron transport rate

FI:

Fluorescence induction

F max :

Fluorescence yield from the antenna

Fm,:

Maximum fluorescence yield at the end of a saturation pulse

F f :

Fluorescence yield after a single-turnover flash

F c :

Running fluorescence yield of a closed center

FR:

Far-red light

LHCII:

Light-harvesting complex II

MTP:

Multiple-turnover pulse

PFD, PAD:

Photon flux density, incident and absorbed

Pheo:

Pheophytin

PQ:

Plastoquinone

PSI, PSII:

Photosystem I and photosystem II

P680:

Six-Chl complex in reaction center

QA :

Primary quinone acceptor of PSII

QB :

Secondary quinone acceptor of PSII

RP:

Radical pair

STF:

Single-turnover flash

E :

Voltage difference

References

  • Akhtar P, Zhang C, Do TN, Garab G, Lambrev PH, Tan H-S (2017) Two-dimensional spectroscopy of chlorophyll a excited-state equilibration in light-harvesting complex II. J Phys Chem Lett 8:257–263

    CAS  PubMed  Google Scholar 

  • Belgio E, Johnson MP, Jurić S, Ruban AV (2012) Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime—both the maximum and the nonphotochemically quenched. Biophys J 102:2761–2771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bulychev AA, Vredenberg WJ (1999) Light-triggered electrical events in the thylakoid membrane of plant chloroplasts. Physiol Plant 105:577–584

    CAS  Google Scholar 

  • Chukhutsina VU, Holzwarth AR, Croce R (2019) Time-resolved fluorescence measurements on leaves: principles and recent developments. Photosynth Res 140:355–369

    CAS  PubMed  Google Scholar 

  • Croce R, Dorra D, Holzwarth AR, Jennings RC (2000) Fluorescence decay and spectral evolution in intact photosystem I of higher plants. Biochemistry 39:6341–6348

    CAS  PubMed  Google Scholar 

  • Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM (2001) Contribution of electric field (DY) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of pmf parsing into DY and DpH by ionic strength. Biochemistry 40:1226–1237

    CAS  PubMed  Google Scholar 

  • Dau H, Sauer K (1992) Electric field effect on the picosecond fluorescence of Photosystem II and its relation to the energetics and kinetics of primary charge separation. Biochim Biophys Acta 1102:91–106

    CAS  Google Scholar 

  • Delosme R (1967) Étude de l'induction de fluorescence des algues vertes et des chloroplastes an début d'une illumination intense. Biochim Biophys Acta 143:108–128

    CAS  PubMed  Google Scholar 

  • Ehleringer J, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Dependence on temperature, CO2 and O2 concentration. Plant Physiol 59:86–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq S, Chmeliov J, Wientjes E, Koehorst R, Bader A, Valkunas L, Trinkunas G, van Amerongen H (1918) Dynamic feedback of the photosystem II reaction centre on photoprotection in plants. Nature Plants 4:225–231

    Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Gobets B, van Grondelle R (2001) Energy transfer and trapping in photosystem I. Biochim Biophys Acta 1507:80–99

    CAS  PubMed  Google Scholar 

  • Gruber JM, Chmeliov J, Krüger TPJ, Valkunas L, van Grondelle R (2015) Singlet–triplet annihilation in single LHCII complexes. Phys Chem Chem Phys 17:19844–19853

    PubMed  Google Scholar 

  • Holzwarth AR, Müller MG, Niklas J, Lubitz W (2006) Ultrafast transient absorption studies on Photosystem I reaction centers from Chlamydomonas reinhardtii. 2: Mutations near the P700 reaction center chlorophylls provide new Insight into the nature of the primary electron donor. Biophys J 90:552–565

    CAS  PubMed  Google Scholar 

  • Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P (2009) Identification of two quenching sites active in the regulation of photosynthetic light-harvesting. Chem Phys Lett 483:262–267

    CAS  Google Scholar 

  • Joliot A, Joliot P (1964) Étude cinétique de la réaction photochimique libérant l'oxygène au cours de la photosynthése. C R Acad Sci Paris 258:4622–4625

    CAS  PubMed  Google Scholar 

  • Joliot P, Joliot A (1977) Evidence for a double hit process in photosystem II based on fluorescence studies. Biochim Biophys Acta 462:559–574

    CAS  PubMed  Google Scholar 

  • Joliot P, Joliot A (1981) Double photoreactions induced by laser flash as measured by oxygen emission. Biochim Biophys Acta 638:132–140

    CAS  Google Scholar 

  • Junge W, Witt T (1968) On the ion transport system of photosynthesis. Investigations on a molecular level. Z Naturforsch 23b:244–254

    Google Scholar 

  • Keuper HJK, Sauer K (1989) Effect of photosystem II reaction center closure on nanosecond fluorescence relaxation kinetics. Photosynth Res 20:85–103

    CAS  PubMed  Google Scholar 

  • Klughammer K, Siebke K, Schreiber U (2013) Continuous ECS-indicated recording of the proton-motive charge flux in leaves. Photosynth Res 117:471–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koblížek M, Kaftan D, Nedbal L (2001) On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the photosystem II light harvesting efficiency. A repetitive flash fluorescence induction study. Photosynth Res 68:141–152

    PubMed  Google Scholar 

  • Laisk A, Oja V (2013) Thermal phase and excitonic connectivity in fluorescence induction. Photosynth Res 117:431–448. https://doi.org/10.1007/s11120-013-9915-1

    Article  CAS  PubMed  Google Scholar 

  • Laisk A, Oja V (2018) Kinetics of photosystem II electron transport: a mathematical analysis based on chlorophyll fluorescence induction. Photosynth Res 136:63–82. https://doi.org/10.1007/s11120-017-0439-y

    Article  CAS  PubMed  Google Scholar 

  • Laisk A, Oja V, Rasulov B, Rämma H, Eichelmann H, Kasparova I, Pettai H, Padu E, Vapaavuori E (2002) A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves. Plant Cell Env 25:923–943

    CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V (2012) Oxygen evolution and chlorophyll fluorescence from multiple turnover light pulses: charge recombination in photosystem II in sunflower leaves. Photosynth Res 113:145–155

    CAS  PubMed  Google Scholar 

  • Laisk A, Oja V, Eichelmann H, Dall’Osto L, (2014) Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1. Biochim Biophys Acta 1837:315–325

    CAS  PubMed  Google Scholar 

  • Laisk A, Eichelmann H, Oja V (2015) Oxidation of plastohydroquinone by photosystem II and by dioxygen in leaves. Biochim Biophys Acta 1847:565–575

    CAS  PubMed  Google Scholar 

  • Lambrev PH, Miloslavina Y, Jahns P, Holzwarth AR (2012) On the relationship between non-photochemical quenching and photoprotection of Photosystem II. Biochim Biophys Acta 1817:760–769

    CAS  PubMed  Google Scholar 

  • Leibl W, Breton J, Deprez J, Trissl H-W (1989) Photoelectric study on the kinetics of trapping and charge stabilization in oriented PS II membranes. Photosynth Res 22:257–275

    CAS  PubMed  Google Scholar 

  • Lyu H, Lazár D (2017a) Modeling the light-induced electric potential difference (ΔΨ), the pH difference (ΔpH) and the proton motive force across the thylakoid membrane in C3 leaves. J Theor Biol 413:11–23

    CAS  PubMed  Google Scholar 

  • Lyu H, Lazár D (2017b) Modeling the light-induced electric potential difference ΔΨ across the thylakoid membrane based on the transition state rate theory. Biochim Biophys Acta 1858:239–248

    CAS  Google Scholar 

  • Neubauer C, Schreiber U (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side. Z Naturforschung 42c:123–131

    Google Scholar 

  • Oja V, Eichelmann H, Anijalg A, Rämma H, Laisk A (2010) Equilibrium or disequilibrium? A dual-wavelength investigation of photosystem I donors. Photosynth Res. https://doi.org/10.1007/s11120-010-9534-z

    Article  PubMed  Google Scholar 

  • Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light harvesting. Nature 436:134–137. https://doi.org/10.1038/nature03795

    Article  CAS  PubMed  Google Scholar 

  • Peterson RB, Oja V, Eichelmann H, Bichele I, Dall'Osto L, Laisk A (2014) Fluorescence F0 of photosystems II and I in developing C3 and C4 leaves, and implications on regulation of excitation balance. Photosynth Res 122:41–56

    CAS  PubMed  Google Scholar 

  • Pospíšil P, Dau H (2002) Valinomycin sensitivity proves that light-induced thylakoid voltages result in millisecond phase of chlorophyll f luorescence transients. Biochim Biophys Acta 1554:94–100

    PubMed  Google Scholar 

  • Prášil O, Kolber ZS, Falkowski PG (2018) Control of the maximal chlorophyll fluorescence yield by the QB binding site. Photosynthetica 56:150–162

    Google Scholar 

  • Samson G, Bruce D (1996) Origin of the low yield of chlorophyll fluorescence induced by single turnover flash in spinach thylakoids. Biochim Biophys Acta 1276:147–153

    Google Scholar 

  • Schansker G, To'th S, Kova'cs L, Holzwarth AR, Garab G (2011) Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochim Biophys Acta 1807:1032–1043

    CAS  PubMed  Google Scholar 

  • Schatz G, Brock H, Holzwarth AR (1987) Picosecond kinetics of fluorescence and absorbance changes in photosystem II particles excited at low photon density. Proc Natl Acad Sci USA 84:8414–8418

    CAS  PubMed  Google Scholar 

  • Schatz GH, Brock H, Holzwarth AR (1988) Kinetic and energetic model for the primary processes in photosystem II. Biophys J 54:397–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber U (2002) Assessment of maximal fluorescence yield. Donor-side dependent quenching and QB-quenching. In: Kooten O, Snel J (eds) Plant Spectrophotometry: Applications and Basic research. Rozenberg, Amsterdam, pp 23–47

    Google Scholar 

  • Schreiber U, Krieger A (1996) Two fundamentally different types of variable chlorophyll fluorescence in vivo. FEBS Lett 397:131–135

    CAS  PubMed  Google Scholar 

  • Schreiber U, Neubauer C (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continous illumination: II. Partial control by the photosystem II donor side and possible ways of interpretation. Z Naturforsch 42c:132–141

    Google Scholar 

  • Schreiber U, Neubauer C (1990) O2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence. Photosynth Res 25:279–293

    CAS  PubMed  Google Scholar 

  • Sipka G, Müller P, Brettel K, Magyar M, Kovács L, Zhu Q, Xiao Y, Han G, Lambrev PH, Shen J-R, Garab G (2019) Redox transients of P680 associated with the incremental chlorophyll-a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated photosystem II core complex of Thermosynechococcus vulcanus. Physiol Plantarum 166:22–32

    CAS  Google Scholar 

  • Stirbet A, Govindjee (2012) Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth Res 113:15–61

    CAS  PubMed  Google Scholar 

  • Szczepaniak M, Sugiura M, Holzwarth AR (2008) The role of TyrD in the eelctron transfer kinetics in photosystem II. Biochim Biophys Acta 1777:1510–1517

    CAS  PubMed  Google Scholar 

  • Szczepaniak M, Sander J, Nowaczyk M, Müller MG, Rögner M, Holzwarth AR (2009) Charge separation, stabilization, and protein relaxation in photosystem II core particles with closed reaction center. Biophys J 96:621–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vredenberg WJ (2008) Analysis of initial chlorophyll fluorescence induction kinetics in chloroplasts in terms of rate constants of donor side quenching release and electron trapping in photosystem II. Photosynth Res 96:83–97

    CAS  PubMed  Google Scholar 

  • Vredenberg W, Durchan M, Prášil O (2009) Photochemical and photoelectrochemical quenching of chlorophyll fluorescence in photosystem II. Biochim Biophys Acta 1787:1468–1478

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We appreciate constructive discussions with Alfred Holzwarth, facilitating formulation of conclusions.

Funding

The project was financed by University of Tartu (Basic funding), Institute of Technology, and by Estonian Academy of Science (A.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agu Laisk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laisk, A., Oja, V. Variable fluorescence of closed photochemical reaction centers. Photosynth Res 143, 335–346 (2020). https://doi.org/10.1007/s11120-020-00712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-020-00712-3

Keywords

Navigation