Skip to main content
Log in

The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The green alga Chlamydomonas (C.) reinhardtii is a model organism for photosynthesis research. State transitions regulate redistribution of excitation energy between photosystem I (PS I) and photosystem II (PS II) to provide balanced photosynthesis. Chlorophyll (Chl) a fluorescence induction (the so-called OJIPSMT transient) is a signature of several photosynthetic reactions. Here, we show that the slow (seconds to minutes) S to M fluorescence rise is reduced or absent in the stt7 mutant (which is locked in state 1) in C. reinhardtii. This suggests that the SM rise in wild type C. reinhardtii may be due to state 2 (low fluorescence state; larger antenna in PS I) to state 1 (high fluorescence state; larger antenna in PS II) transition, and thus, it can be used as an efficient and quick method to monitor state transitions in algae, as has already been shown in cyanobacteria (Papageorgiou et al. 1999, 2007; Kaňa et al. 2012). We also discuss our results on the effects of (1) 3-(3,4-dichlorophenyl)-1,4-dimethyl urea, an inhibitor of electron transport; (2) n-propyl gallate, an inhibitor of alternative oxidase (AOX) in mitochondria and of plastid terminal oxidase in chloroplasts; (3) salicylhydroxamic acid, an inhibitor of AOX in mitochondria; and (4) carbonyl cyanide p-trifluoromethoxyphenylhydrazone, an uncoupler of phosphorylation, which dissipates proton gradient across membranes. Based on the data presented in this paper, we conclude that the slow PSMT fluorescence transient in C. reinhardtii is due to the superimposition of, at least, two phenomena: qE dependent non-photochemical quenching of the excited state of Chl, and state transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In the Supplementary Material, which is not a part of the main text, we have provided our preliminary results on the effect of using a compatible osmolyte (N,N,N-trimethyl-glycine (C5H11NO2); also called glycine betaine) for the benefit of those who may be asking if its use would have helped us in answering the question of relation between state changes and the SM rise, as it had in cyanobacteria (see e.g., Papageorgiou and Stamatakis 2004). Although our results are complex, and, further studies are necessary to examine these issues, we have made it available to researchers interested in it.

Abbreviations

AOX:

Alternative oxidase

CEF:

Cyclic electron flow

Chl:

Chlorophyll

Cyt:

Cytochrome

DCMU:

3-(3,4-Dichlorophenyl)-1,4-dimethyl urea; also known as Diuron

FCCP:

Carbonyl cyanide p-trifluoromethoxyphenylhydrazone

LEF:

Linear electron flow

NADP:

Nicotinamide adenine dinucleotide phosphate

Ndh:

NAD(P)H dehydrogenase

NDA2:

Type II NADPH dehydrogenase

OJIPSMT:

Chl a fluorescence transient, where “O” refers to the minimum fluorescence, J and I for inflections, P for peak, S for semi-steady state, M for maximum and T for terminal steady state

PC:

Plastocyanin

PG:

n-Propyl gallate

pmf :

Proton-motive force

PQ, PQH2 :

Plastoquinone, plastoquinol

PS:

Photosystem

PTOX:

Plastid (or plastoquinol) terminal oxidase

SHAM:

Salicylhydroxamic acid

References

  • Adir N, Zer H, Schochat S, Ohad I (2003) Photoinhibition—a historical perspective. Photosynth Res 76:343–370

    Article  CAS  PubMed  Google Scholar 

  • Allen JF, Mullineaux CW (2004) Probing the mechanism of state transitions in oxygenic photosynthesis by chlorophyll fluorescence spectroscopy, kinetics and imaging. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence—a signature of photosynthesis, vol 19. Springer, Dordrecht, pp 447–461

  • Allen JF, Bennett J, Steinback KE, Arntzen CJ (1981) Chloroplast protein phosphorylation couples PQ redox state to distribution of excitation-energy between photosystems. Nature 291:25–29

    Article  CAS  Google Scholar 

  • Allorent G, Tokutsu R, Roach T, Peers G, Cardol P, Girard-Bascou J, Finazzi G (2013) A dual strategy to cope with high light in Chlamydomonas reinhardtii. Plant Cell 25:545–557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alric J (2010) Cyclic electron flow around photosystem I in unicellular green algae. Photosynth Res 106:47–56

    Article  CAS  PubMed  Google Scholar 

  • Andersson B, Åkerlund HE, Jergil B, Larsson C (1982) Differential phosphorylation of the light-harvesting chlorophyll–protein complex in appressed and non-appressed regions of the thylakoid membrane. FEBS Lett 149:181–185

    Article  CAS  Google Scholar 

  • Antal TK, Krendeleva TE, Laurinavichene TV, Makarova VV, Tsygankov AA, Seibert M, Rubin AB (2001) The relationship between the photosystem 2 activity and hydrogen production in sulfur deprived Chlamydomonas reinhardtii cells. Doklady Biochem Biophys 381:371–374

    Article  CAS  Google Scholar 

  • Araújo WL, Nunes-Nesi A, Fernie AR (2014) On the role of plant mitochondrial metabolism and its impact on photosynthesis in both optimal and sub-optimal growth conditions. Phosynth Res 119:141–156

    Article  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Bellafiore S, Barneche F, Peltier G, Rochaix J-D (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895

    Article  CAS  PubMed  Google Scholar 

  • Bennett J, Steinback KE, Arntzen CJ (1980) Chloroplast phosphoproteins regulation of excitation-energy transfer by phosphorylation of thylakoid membrane polypeptides. Proc Natl Acad Sci USA 77:5253–5257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79:4352–4356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennoun P (1994) Chlororespiration revisited: mitochondrial–plastid interactions in Chlamydomonas. Biochim Biophys Acta 1186:59–66

    Article  CAS  Google Scholar 

  • Bennoun P (2001) Chlororespiration and the process of carotenoid biosynthesis. Biochim Biophys Acta 1506:133–142

    Article  CAS  PubMed  Google Scholar 

  • Bernát G, Schreiber U, Sendtko E, Stadnichuk IN, Sascha Rexroth S, Matthias Rögner M, Koenig F (2012) Unique properties vs. common themes: the atypical cyanobacterium Gloeobacter violaceus PCC 7421 is capable of state transitions and blue-light-induced fluorescence quenching. Plant Cell Physiol 53:528–542

    Article  PubMed  Google Scholar 

  • Bernát G, Kaňa R, Steinbach G, Govindjee, Misra AN, Kirilovsky D, Prašil O (2014) The very slow M to T chlorophyll fluorescence decay in cyanobacteria reflects photoinhibition. In: 9th European workshop on the molecular biology of cyanobacteria, Texel (the Netherlands), 7–11 September 2014, p 160

  • Blankenship RE (2014) Molecular mechanism of photosynthesis, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Bonaventura C, Myers J (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 189:366–383

    Article  CAS  PubMed  Google Scholar 

  • Briantais J-M, Vernotte C, Picaud M, Krause GH (1979) A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim Biophys Acta 548:128–138

    Article  CAS  PubMed  Google Scholar 

  • Briantais J-M, Vernotte C, Picaud M, Krause GH (1980) Chlorophyll fluorescence as a probe for the determination of the photo-induced proton gradient in isolated chloroplasts. Biochim Biophys Acta 591:198–202

    Article  CAS  PubMed  Google Scholar 

  • Briantais J-M, Vernotte C, Krause GH, Weis E (1986) Chlorophyll a fluorescence of higher plants: chloroplasts and leaves. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Orlando, pp 539–583

  • Bulté L, Gans P, Rebeille F, Wollman F-A (1990) ATP control on state transitions in vivo in Chlamydomonas reinhardtii. Biochim Biophys Acta 1020:72–80

    Article  Google Scholar 

  • Canaani O, Schuster G, Ohad I (1989) Photoinhibition in Chlamydomonas reinhardtii: effect of state transition, intersystem energy distribution and photosystem I cyclic electron flow. Photosynth Res 20:129–146

    CAS  PubMed  Google Scholar 

  • Cardol P, Alric J, Girard-Bascou J, Franck F, Wollman F-A, Finazzi G (2009) Impaired respiration discloses the physiological significance of state transitions in Chlamydomonas. Proc Natl Acad Sci USA 106:15979–15984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ceppi MG, Oukarroum A, Çiçek N, Strasser RJ, Schansker G (2012) The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol Plantarum 144:277–288

    Article  CAS  Google Scholar 

  • Cournac L, Josse EM, Joet T, Rumeau D, Redding K, Kuntz M, Peltier G (2000a) Flexibility in photosynthetic electron transport: a newly identified chloroplast oxidase involved in chlororespiration. Philos Trans R Soc Lond Ser B Biol Sci 355:1447–1453

    Article  CAS  Google Scholar 

  • Cournac L, Redding K, Ravenel J, Rumeau D, Josse EM, Kuntz M, Peltier G (2000b) Electron flow between Photosystem II and oxygen in chloroplasts of Photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. J Biol Chem 275:17256–17262

    Article  CAS  PubMed  Google Scholar 

  • Cournac L, Latouche G, Cerovic Z, Redding K, Ravenel J, Peltier G (2002) In vivo interactions between photosynthesis, mitorespiration, and chlororespiration in Chlamydomonas reinhardtii. Plant Physiol 129:1921–1928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeEll JR, Toivnen PMA (eds) (2003) Practical applications of chlorophyll fluorescence in plant biology. Kluwer (now Springer), Dordrecht

  • Delepelaire P, Wollman F-A (1985) Correlations between fluorescence and phosphorylation changes in thylakoid membranes of Chlamydomonas reinhardtii in vivo: a kinetic analysis. Biochim Biophys Acta 809(2):277–283

    Article  CAS  Google Scholar 

  • Delosme R, Olive J, Wollman FA (1996) Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim Biophys Acta 1273:150–158

    Article  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Garab G, Adams WWI, Govindjee (eds) (2014) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria, advances in photosynthesis and respiration, vol 40. Springer, Dordrecht

  • Depege N, Bellafiore S, Rochaix JD (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575

    Article  CAS  PubMed  Google Scholar 

  • Desplats C, Mus F, Cuiné S, Billon E, Cournac L, Peltier G (2009) Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in Chlamydomonas chloroplasts. J Biol Chem 284:4148–4157

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ, Pfannschmidt T (2011) Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiol 155:1477–1485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duysens LNM, Sweers HT (1963) Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. In: Japanese Society of Plant Physiologists (ed) Studies on microalgae and photosynthetic bacteria. University of Tokyo Press, Tokyo, pp 353–372

  • Elthon TE, McIntosh L (1987) Identification of the alternative terminal oxidase of higher plant mitochondria. Proc Natl Acad Sci USA 84:8399–8403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finazzi G, Barbagallo RP, Bergo E, Barbato R, Forti G (2001) Photoinhibition of Chlamydomonas reinhardtii in State 1 and State 2: damages to the photosynthetic apparatus under linear and cyclic electron flow. J Biol Chem 276:22251–22257

    Article  CAS  PubMed  Google Scholar 

  • Forti G, Caldiroli G (2005) State transitions in Chlamydomonas reinhardtii: the role of the Mehler reaction in State 2-to-State 1 transition. Plant Physiol 137:492–499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardii. Proc Natl Acad Sci USA 54:1665–1669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol (now Funct Plant Biol) 22:131–160

  • Govindjee (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, vol 19. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 2–42

  • Govindjee, Seufferheld MJ (2002) Non-photochemical quenching of chlorophyll a fluorescence: early history and characterization of two xanthophyll cycle mutants of Chlamydomonas reinhardtii. Funct Plant Biol 29:1141–1155

  • Govindjee, Amesz J, Fork DC (eds) (1986) Light emission by plants and bacteria. Academic Press, New York (now Elsevier, Amsterdam)

  • Govindjee, Schwarz B, Rochaix J-D, Strasser RJ (1991) The herbicide-resistant D1 mutant L275F of Chlamydomonas reinhardtii fails to show the bicarbonate-reversible formate effect on chlorophyll a fluorescence transients. Photosynth Res 27:199–208

  • Haldimann P, Strasser RJ (1999) Effects of anaerobiosis as probed by the polyphasic chlorophyll a fluorescence rise kinetic in pea (Pisum sativum L.). Photosynth Res 62:67–83

    Article  CAS  Google Scholar 

  • Hemschemeier A, Happe T (2011) Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii. Biochim Biophys Acta 1807:919–926

    Article  CAS  PubMed  Google Scholar 

  • Hoefnagel MHN, Atkin OK, Wiskich JT (1998) Interdependence between chloroplasts and mitochondria in the light and the dark. Biochim Biophys Acta 1366:235–255

    Article  CAS  Google Scholar 

  • Hohmann-Marriott HM, Takizawa K, Eaton-Rye JJ, Mets L, Minagawa J (2010) The redox state of the plastoquinone pool directly modulates minimum chlorophyll fluorescence yield in Chlamydomonas reinhardtii. FEBS Lett 584:1021–1026

    Article  CAS  PubMed  Google Scholar 

  • Holub O, Seufferheld MJ, Gohlke C, Govindjee, Heiss GJ, Clegg RM (2007) Flourescence lifetime imaging microscopy of Chlamydomonas reinhardtii: non-photochemical quenching mutants and the effect of photosynthetic inhibitors on the slow chlorophyll fluorescence transient. J Microsc 226:90–120

  • Houille-Vernes L, Rappaport F, Wollman F-A, Alric J, Johnson X (2011) Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. Proc Natl Acad Sci USA 108:20820–20825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwai M, Yokono M, Inada N, Minagawa J (2010) Live-cell imaging of photosystem II antenna dissociation during state transitions. Proc Natl Acad Sci USA 107:2337–2342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jans F, Mignolet E, Houyoux PA, Cardol P, Ghysels B, Cuiné S, Cournac L, Peltier G, Remacle C, Franck F (2008) A type II NAD (P) H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc Natl Acad Sci USA 105:20546–20551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalaji MH, Goltsev V, Bosa K, Allakhverdiev IS, Strasser JR, Govindjee (2012a) Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker. Photosynth Res 114:69–96

  • Kalaji MH, Carpentier R, Allakhverdiev SI, Bosa K (2012b) Fluorescence parameters as an early indicator of light stress in barley. J Photochem Photobiol B 112:1–6

  • Kalaji MH, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F et al (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaňa R, Kotabová E, Komárek O, Sedivá B, Papageorgiou GC, Govindjee, Prášil O (2012) The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. Biochim Biophys Acta 1817:1237–1247

  • Kodru S, Nellaepalli S, Malavath T, Devadasu E, Subramanyam R, Govindjee (2013) Does the slow S to M rise of chlorophyll a fluorescence induction reflect transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii? In: 16th international photosynthesis congress, St. Louis, MO, August 2013

  • Lavergne J (1982) Mode of action of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Evidence that the inhibitor competes with plastoquinone for binding to a common site on the acceptor side of Photosystem II. Biochim Biophys Acta 682:345–353

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (ed) (1988) Applications of chlorophyll fluorescence. Springer, Dordrecht

    Google Scholar 

  • Madireddi SK, Nama S, Devadasu ER, Subramanyam R (2014) Photosynthetic membrane organization and role of state transition in cyt, cpll, stt7 and npq mutants of Chlamydomonas reinhardtii. J Photochem Photobiol B 137:77–83

    Article  CAS  PubMed  Google Scholar 

  • Marutani Y, Yamauchi Y, Miyoshi A, Inoue K, Ikeda K-I, Mizutani M, Sugimoto Y (2014) Regulation of photochemical energy transfer accompanied by structural changes in thylakoid membranes of heat-stressed wheat. Int J Mol Sci 15:23042–23058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Minagawa J (2013) Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation of photosynthesis. Front Plant Sci 4:article # 513. doi:10.3389/fpls.2013.00513

  • Mohanty P, Vani B, Prakash JSS (2002) Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum. Z Naturforsch 57c:836–842

    Google Scholar 

  • Mohanty P, Nellaepalli S, Mishra S, Subramanyam R (2012) State shifts in photosynthetic organisms: tracking traits and techniques. In: Itoh S, Mohanty P, Guruprasad KN (eds) Photosynthesis: overviews on recent progress and future perspectives, chap 3. IK Publishers, New Delhi, pp 38–59

  • Munday JC, Govindjee (1969) Light induced changes in the fluorescence yield of chlorophyll a in vivo; III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. Biophys J 9:1–21

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K-I, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:558–579

    Article  Google Scholar 

  • Murata N (1969) Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta 172:242

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Allakhverdiev SI, Nishiyama Y (2012) The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochim Biophys Acta 1817:1127–1133

    Article  CAS  PubMed  Google Scholar 

  • Mus F, Cournac L, Cardettini V, Caruana A, Peltier G (2005) Inhibitor studies on non-photochemical plastoquinone reduction and H2 photoproduction in Chlamydomonas reinhardtii. Biochim Biophys Acta 1708:322–332

    Article  CAS  PubMed  Google Scholar 

  • Nagy G, Unnep R, Zsiros O, Tokutso R, Takizawa K, Porcar L, Moyet L, Petroutsos D, Garab G, Finazzi G, Minagawa J (2014) Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo. Proc Natl Acad Sci USA 111:5042–5047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nellaepalli S, Mekala NR, Zsiros O, Mohanty P, Subramanyam R (2011) Moderate heat stress induces state transitions in Arabidopsis thaliana. Biochem Biophys Acta 1807:1177–1184

    CAS  PubMed  Google Scholar 

  • Nellaepalli S, Kodru S, Malavath T, Subramanyam R (2012) Anaerobiosis induced state transition: a non-photochemical reduction of PQ pool mediated by NDH in Arabidopsis thaliana. PLoS ONE 7:e49839. doi:10.1371/journal.pone.0049839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nellaepalli S, Kodru S, Malavathi T, Subramanyam R (2013) Change in fast Chl a fluorescence transients, 2 dimensional protein profile and pigment protein interactions during state transitions in Arabidopsis thaliana. J Photochem Photobiol B 128:27–34

    Article  CAS  PubMed  Google Scholar 

  • Nixon PJ (2000) Chlororespiration. Philos Trans R Soc B 355:1541–1547

    Article  CAS  Google Scholar 

  • Papageorgiou GC (1968) Fluorescence induction in Chlorella pyrenoidosa and Anacystis nidulans and its relation to photophosphorylation. PhD Thesis in Biophysics, University of Illinois at Urbana-Champaign. http://www.life.illinois.edu/govindjee/theses.html

  • Papageorgiou GC, Govindjee (1968a) Light-induced changes in the fluorescence yield of chlorophyll a in vivo. II. Chlorella pyrenoidosa. Biophys J 8:1316–1328

  • Papageorgiou GC, Govindjee (1968b) Light-induced changes in the fluorescence yield of chlorophyll a in vivo. I. Anacystis nidulans. Biophys J 8:1299–1315

  • Papageorgiou GC, Govindjee (eds) (2004) Chlorophyll a fluorescence: a signature of photosynthesis, vol 19. Advances in photosynthesis and respiration. Springer, Dordrecht

  • Papageorgiou GC, Govindjee (2011) Photosystem II fluorescence: slow changes—scaling from the past. J Photochem Photobiol B104:258–270

  • Papageorgiou GC, Stamatakis K (2004) Water and solute transport in cyanobacteria as probed by chlorophyll a fluorescence. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, vol 19. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 663–678

  • Papageorgiou GC, Govindjee, Govindjee R, Mimuro M, Stamatakis K, Alygizaki-Zorba A, Murata N (1999) Light-induced and osmotically-induced changes in chlorophyll a fluorescence in two Synechocystic sp. PCC 6803 strains that differ in membrane lipid unsaturation. Photosynth Res 59:125–136

  • Papageorgiou GC, Tsimilli-Michael M, Stamatakis K (2007) The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth Res 94:275–290

    Article  CAS  PubMed  Google Scholar 

  • Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–521

    Article  CAS  PubMed  Google Scholar 

  • Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550

    Article  CAS  PubMed  Google Scholar 

  • Pribil M, Pesaresi P, Hertle A, Barbato R, Leister D (2010) Role of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flow. PLoS Biol 8:e1000288. doi:10.1371/journal.pbio.1000288

    Article  PubMed Central  PubMed  Google Scholar 

  • Rebeille F, Gans P (1988) Interaction between chloroplasts and mitochondria in microalgae. Plant Physiol 88:973–975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rintamaki E, Martinsuo P, Pursiheimo S, Aro EM (2000) Cooperative regulation of light-harvesting complex II phosphorylation via the plastoquinol and ferredoxin-thioredoxin system in chloroplasts. Proc Natl Acad Sci USA 97:11644–11649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rochaix J-D (2014) Regulation and dynamics of the light-harvesting system. Annu Rev Plant Biol 65:287–309

    Article  CAS  PubMed  Google Scholar 

  • Rochaix J-D, Goldschmidt-Clermont M, Merchant S (eds) (1998) The molecular biology of chloroplasts and mitochondria in Chlamydomonas, vol 7. Advances in photosynthesis and respiration. Springer, Dordrecht

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Sane PV, Desai TS, Tatake VG, Govindjee (1984) Heat induced reversible increase in Photosystem I emission in algae, leaves and chloroplasts: spectra, activities, and relation to state changes. Photosynthetica 18:439–444

  • Schansker G, Tóth SZ, Strasser RJ (2006) Dark recovery of the Chl-a fluorescence transient (OJIP) after light adaptation: the qT component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochim Biophys Acta 1757:787–797

    Article  CAS  PubMed  Google Scholar 

  • Schansker G, Tóth SZ, Kovács L, Holzwarth AR, Garab G (2011) Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochim Biophys Acta 1807:1032–1043

    Article  CAS  PubMed  Google Scholar 

  • Schansker G, Tóth SZ, Holzwarth AR, Garab G (2014) Chlorophyll a fluorescence: beyond the limits of the QA model. Photosynth Res 120:43–58

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, vol 19. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 279–319

  • Shapiguzov A, Ingelsson B, Samol I, Andres C, Kessler F, Rochaix J-D, Vener AV, Goldschmidt-Clermont M (2010) The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis. Proc Natl Acad Sci USA 107:4782–4787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siedow JN, Bickett DM (1981) Structural features required for inhibition of cyanide-insensitive electron transfer by propyl gallate. Arch Biochem Biophys 207:32–39

    Article  CAS  PubMed  Google Scholar 

  • Siedow JN, Umbach AL (2000) The mitochondrial cyanide-resistant oxidase: structural conservation amid regulatory diversity. Biochim Biophys Acta 1459:432–439

    Article  CAS  PubMed  Google Scholar 

  • Sireesha K, Radharani B, Krishna PS, Sreedhar N, Subramanyam R, Mohanty P, Prakash JS (2012) RNA helicase, CrhR is indispensable for the energy redistribution and the regulation of photosystem stoichiometry at low temperature in Synechocystis sp. PCC6803. Biochim Biophys Acta 1817:1525–1536

    Article  CAS  PubMed  Google Scholar 

  • Spalding MH, Critchley C, Govindjee, Ogren WL (1984) Influence of carbon dioxide concentration during growth on fluorescence induction characteristics of the green alga Chlamydomonas reinhardtii. Photosynth Res 5:169–176

  • Srivastava A, Strasser RJ, Govindjee (1995) Polyphasic rise of chlorophyll a fluorescence in herbicide-resistant D1 mutants of Chlamydomonas reinhardtii. Photosynth Res 43:131–141

  • Stamatakis K, Papageorgiou GC (2014) Delta pH-dependent non-photochemical quenching (qE) of excited chlorophylls in the photosystem II core complex of the freshwater cyanobacterium Synechococcus sp. PCC 7942. Plant Physiol Biochem 81:184–189

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis K, Tsimilli-Michael M, Papageorgiou GC (2007) Fluorescence induction in the phycobilisome-containing cyanobacterium Synechococcus sp. PCC 7942: analysis of the slow fluorescence transient. Biochim Biophys Acta 1767:766–772

    Article  CAS  PubMed  Google Scholar 

  • Stern D, Witman G, Harris EH (eds) (2008) The Chlamydomonas Sourcebook, 3 vol set, 2nd edn. Academic Press, San Diego (also available as an e-book (Kindle edition))

  • Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104:236–257

  • Stirbet A, Govindjee (2012) Chlorophyll a fluorescence induction: Understanding the thermal phase, the J-I-P rise. Photosynth Res 113:15–61

  • Stirbet A, Riznichenko GYu, Rubin AB, Govindjee (2014) Modeling chlorophyll a fluorescence transient: relation to photosynthesis. Biochemistry (Moscow) 79:291–323

  • Strasser RJ, Govindjee (1992) On the O–J–I–P fluorescence transients in leaves and D1 mutants of Chlamydomonas reinhardtii. In: Murata N (ed) Research in photosynthesis, vol 2. Kluwer, Dordrecht, pp 29–32

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, vol 19. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 321–362

  • Suggett J, Borowitzka MA, Prášil O (eds) (2010) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Developments in applied phycology, vol 4, XVIII. Springer, Dordrecht

  • Takahashi H, Iwai M, Takahashi Y, Minagawa J (2006) Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 103:477–482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi H, Clowez S, Wollman F-A, Vallon O, Rappaport F (2013) Cyclic electron flow is redox-controlled but independent of state transition. Nat Commun 4:Article number 1954. doi:10.1038/ncomms2954

  • Tóth SZ, Schansker G, Garab G, Strasser RJ (2007) Photosynthetic electron transport activity in heat-treated barley leaves: the role of internal alternative electron donors to photosystem II. Biochim Biophys Acta 1767:295–305

    Article  PubMed  Google Scholar 

  • Tsimilli-Michael M, Stamatakis K, Papageorgiou GC (2009) Dark-to-light transition in Synechococcus sp. PCC 7942 cells studied by fluorescence kinetics assesses plastoquinone redox poise in the dark and photosystem II fluorescence component and dynamics during state 2 to state 1 transition. Photosynth Res 99:243–255

    Article  CAS  PubMed  Google Scholar 

  • Ünlü C, Drop B, Croce R, van Amerongen H (2014) State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc Natl Acad Sci USA 111:3460–3465

    Article  PubMed Central  PubMed  Google Scholar 

  • Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Velthuys BR (1981) Electron dependent competition between plastoquinone and inhibitors for the binding to PSII. FEBS Lett 126:277–281

    Article  CAS  Google Scholar 

  • Wollman F-A (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20:3623–3630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wollman F-A, Bulté L (1990) Toward an understanding of the physiological role of state transitions. In: Hall DO, Grassi G (eds) Photoconversion processes for energy and chemicals. Elsevier, London, pp 198–207

    Google Scholar 

  • Wollman F-A, Delepelaire P (1984) Correlation between changes in light energy distribution and changes in thylakoid membrane polypeptide phosphorylation in Chlamydomonas reinhardtii. J Cell Biol 98:1–7

    Article  CAS  PubMed  Google Scholar 

  • Wollman F-A, Lemaire C (1988) Studies on kinase-controlled state transitions in Photosystem II and b6f mutants from Chlamydomonas reinhardtii which lack quinone-binding proteins. Biochim Biophys Acta 933:85–94

    Article  CAS  Google Scholar 

  • Yoshida K, Terashima I, Noguchi K (2006) Distinct roles of the cytochrome pathway and alternative oxidase in leaf photosynthesis. Plant Cell Physiol 47:22–31

    Article  CAS  PubMed  Google Scholar 

  • Zhang L-T, Zhang Z-S, Gao H-Y, Meng X-L, Yang C, Liu J-G, Meng Q-W (2012) The mitochondrial alternative oxidase pathway protects the photosynthetic apparatus against photodamage in Rumex K-1 leaves. BMC Plant Biol 12:40. http://www.biomedcentral.com/1471-2229/12/40

  • Zivcak M. Brestic M, Kalaji HM, Govindjee (2014) Photosynthetic responses of sun- and shade-grown barley leaves to high light: Is the lower connectivity in shade leaves associated with protection against excess of light. Photosynth Res 119:339–354

  • Zito F, Finazzi G, Delosme R, Nitschke W, Picot D, Wollman FA (1999) The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase. EMBO J 18:2961–2969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Rajagopal Subramanyam was supported by the Department of Biotechnology (BT/PR15132/BRB/10/909/2011) and the Council of Scientific and Industrial Research (38(1381)/14/EMR-II), India, and Sireesha Kodru by the Department of Biotechnology for a research associate fellowship (DBT-RA), India. Govindjee was supported by the US Fulbright foundation during his stay at the University of Hyderabad, India. We are grateful to Reto J. Strasser and to the late Prasanna Mohanty for providing the Handy PEA instrument used in our studies. We thank Vandana Chakravartty of the University of Illinois at Urbana-Champaign for her valuable comments during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajagopal Subramanyam or Govindjee.

Additional information

In earlier publications, Sireesha Kodru and Sreedhar Nellaepalli have used their names as Kodru Sireesha and Nellaepalli Sreedhar, respectively.

Rajagopal Subramanyam—in earlier publications, has used his name as Subramanyam Rajagopal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodru, S., Malavath, T., Devadasu, E. et al. The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii . Photosynth Res 125, 219–231 (2015). https://doi.org/10.1007/s11120-015-0084-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0084-2

Keywords

Navigation