Skip to main content
Log in

Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J–I–P rise

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

“If we study the history of science we see produced two phenomena which are, so to speak the inverse of the other. Sometimes it is simplicity which is hidden under what is apparently complex; sometimes, on the contrary, it is simplicity which is apparent, and which conceals complex realities”— Henri Poincare (1854—1912); see Science and Hypothesis, Dover Publications, New York, 1952

Abstract

The fast (up to 1 s) chlorophyll (Chl) a fluorescence induction (FI) curve, measured under saturating continuous light, has a photochemical phase, the O–J rise, related mainly to the reduction of QA, the primary electron acceptor plastoquinone of Photosystem II (PSII); here, the fluorescence rise depends strongly on the number of photons absorbed. This is followed by a thermal phase, the J–I–P rise, which disappears at subfreezing temperatures. According to the mainstream interpretation of the fast FI, the variable fluorescence originates from PSII antenna, and the oxidized QA is the most important quencher influencing the O–J–I–P curve. As the reaction centers of PSII are gradually closed by the photochemical reduction of QA, Chl fluorescence, F, rises from the O level (the minimal level) to the P level (the peak); yet, the relationship between F and [QA ] is not linear, due to the presence of other quenchers and modifiers. Several alternative theories have been proposed, which give different interpretations of the O–J–I–P transient. The main idea in these alternative theories is that in saturating light, QA is almost completely reduced already at the end of the photochemical phase O–J, but the fluorescence yield is lower than its maximum value due to the presence of either a second quencher besides QA, or there is an another process quenching the fluorescence; in the second quencher hypothesis, this quencher is consumed (or the process of quenching the fluorescence is reversed) during the thermal phase J–I–P. In this review, we discuss these theories. Based on our critical examination, that includes pros and cons of each theory, as well mathematical modeling, we conclude that the mainstream interpretation of the O–J–I–P transient is the most credible one, as none of the alternative ideas provide adequate explanation or experimental proof for the almost complete reduction of QA at the end of the O–J phase, and for the origin of the fluorescence rise during the thermal phase. However, we suggest that some of the factors influencing the fluorescence yield that have been proposed in these newer theories, as e.g., the membrane potential ΔΨ, as suggested by Vredenberg and his associates, can potentially contribute to modulate the O–J–I–P transient in parallel with the reduction of QA, through changes at the PSII antenna and/or at the reaction center, or, possibly, through the control of the oxidation–reduction of the PQ-pool, including proton transfer into the lumen, as suggested by Rubin and his associates. We present in this review our personal perspective mainly on our understanding of the thermal phase, the J–I–P rise during Chl a FI in plants and algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allakhverdiev SI, Tsuchiya T, Watabe K, Kojima A, Los DA, Tomo T, Klimov VV, Mimuro M (2011) Redox potentials of primary electron acceptor quinone molecule (QA) and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d. Proc Natl Acad Sci USA 108:198054–198058

    Article  Google Scholar 

  • Antal TK, Rubin AB (2008) In vivo analysis of chlorophyll a fluorescence induction. Photosynth Res 96:217–226

    Article  PubMed  CAS  Google Scholar 

  • Antal TK, Osipov V, Matorin DN, Rubin AB (2011) Membrane potential is involved in regulation of photosynthetic reactions in the marine diatom Thalassiosira weissflogii. J Photochem Photobiol B 102:169–173. doi:10.1016/j.jphotobiol.2010.11.005

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2000) The water–water cycle an alternative photon and electron sinks. Philos Trans R Soc Lond B 3555:1419–1431

    Article  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  Google Scholar 

  • Baake E, Schlöder JP (1992) Modelling the fast fluorescence rise of photosynthesis. Bull Math Biol 54:999–1021

    CAS  Google Scholar 

  • Baake E, Strasser RJ (1990) A differential equation model for the description of the fast fluorescence rise (O–I–D–P-Transient) in leaves. In: Baltscheffsky M (ed) Current research in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 567–570

    Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:659–668

    Article  CAS  Google Scholar 

  • Baniulis D, Yamashita E, Zhang H, Hasan SS, Cramer WA (2008) Structure–function of the cytochrome b6f complex. Photochem Photobiol 84:1349–1358

    Article  PubMed  CAS  Google Scholar 

  • Barber J (1980) Membrane surface charges and potentials in relation to photosynthesis. Biochim Biophys Acta 594:253–308

    Article  PubMed  CAS  Google Scholar 

  • Barzda V, Vengris M, Valkunas L, van Grondelle R, van Amerongen H (2000) Generation of fluorescence quenchers from the triplet states of chlorophylls in the major light harvesting complex II from green plants. Biochemistry 39:10468–10477

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva NE, Lebedeva GV, Riznichenko GYu (2003) Kinetic model of primary photosynthetic processes in chloroplasts. Modeling of thylakoid membranes electric potential. In: Riznichenko GYu (ed) Mathematics computer education, vol 10. Progress-Traditsiya, Moscow, pp 263–276

    Google Scholar 

  • Belyaeva NE, Paschenko VZ, Renger G, Riznichenko GYu, Rubin AB (2006) Application of photosystem II model for analysis of fluorescence induction curves in the 100 ns to 10 s time domain after excitation with a saturating light pulse. Biophysics 51:976–990

    Article  CAS  Google Scholar 

  • Belyaeva NE, Schmitt F-J, Steffen R, Paschenko VZ, Riznichenko GYu, Chemeris YuK, Renger G, Rubin AB (2008) PS II model-based simulations of single turnover flash-induced transients of fluorescence yield monitored within the time domain of 100 ns–10 s on dark-adapted Chlorella pyrenoidosa cells. Photosynth Res 98:105–119

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva NE, Schmitt F-J, Paschenko VZ, Riznichenko GYu, Rubin AB, Renger G (2011) PS II model based analysis of transient fluorescence yield measured on whole leaves of Arabidopsis thaliana after excitation with light flashes of different energies. BioSystems 103:188–195

    Article  PubMed  CAS  Google Scholar 

  • Bennoun P (1970) Reoxidation of the fluorescence quencher “Q” in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Biochim Biophys Acta 216:357–363

    Article  PubMed  CAS  Google Scholar 

  • Bennoun P, Joliot P (1969) Étude a la photooxydation de l’hydroxylamine par les chloroplastes d’épinards. Biochim Biophys Acta 189:85–94

    Article  PubMed  CAS  Google Scholar 

  • Bilger W, Schreiber U (1990) Chlorophyll luminescence as an indicator of stress-induced damage to the photosynthetic apparatus. Effect of heat-stress in isolated chloroplasts. Photosynth Res 25:161–171

    Article  CAS  Google Scholar 

  • Björkman O, Demmig E (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  Google Scholar 

  • Bjorn LO, Papageorgiou GC, Blankenship R, Govindjee (2009) A viewpoint: why chlorophyll a? Photosynth Res 99:85–98

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford

    Book  Google Scholar 

  • Böhme H, Cramer WA (1971) Plastoquinone mediates electron transport between cytochrome b-559 and cytochrome f in spinach chloroplasts. FEBS Lett 15:349–351

    Article  PubMed  Google Scholar 

  • Böhme H, Reimer S, Trebst A (1971) On the role of plastoquinone in photosynthesis. The effect of dibromothymoquinone on non cyclic and cyclic electron flow systems in isolated chloroplasts. Z Naturforsch 26b:341–352

    Google Scholar 

  • Boisvert S, Joly D, Carpentier R (2006) Quantitative analysis of the experimental O–J–I–P chlorophyll fluorescence induction kinetics. Apparent activation energy and origin of each kinetic step. FEBS J 273:4770–4777

    Article  PubMed  CAS  Google Scholar 

  • Bouges B (1971) Action de faibles concentrations d’hydroxylamine sur l’émission d’oxygène des algues Chlorella et des chloroplastes d’épinards. Biochim Biophys Acta 234:103–112

    Article  PubMed  CAS  Google Scholar 

  • Boussac A, Sugiura M, Rappaport F (2011) Probing the quinone binding site of Photosystem II from Thermosynechococcus elongatus containing either PsbA1 or PsbA3 as the D1 protein through the binding characteristics of herbicides. Biochim Biophys Acta 1807:119–129

    Article  PubMed  CAS  Google Scholar 

  • Bowes JM, Crofts AR (1981) Effect of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone on the secondary electron acceptor B of photosystem II. Arch Biochem Biophys 209:682–686. doi:10.1016/0003-9861(81)90329-5

    Article  PubMed  CAS  Google Scholar 

  • Bradbury M, Baker NR (1983) Analysis of the induction of chlorophyll fluorescence in leaves and isolated thylakoids: contributions of photochemical and non-photochemical quenching. Proc R Soc Lond B 220:251–264. doi:10.1098/rspb.1983.0098

    Article  CAS  Google Scholar 

  • Breton J (1982) The 692 nm fluorescence (F695) of chloroplasts at low temperature is emitted from the primary acceptor of photosystem II. FEBS Lett 147:16–20

    Article  CAS  Google Scholar 

  • Briantais J-M, Vernotte C, Picaud M, Krause GH (1979) A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim Biophys Acta 548:128–138

    Article  PubMed  CAS  Google Scholar 

  • Briantais J-M, Vernotte C, Krause GH, Weis E (1986) Chlrophyll a fluorescence of higher plants: chloroplasts and leaves. In: Govindjee, Amesz J, Fork DJ (eds) Light emission by plants and bacteria. Academic Press, New York, pp 539–583

    Google Scholar 

  • Bruce D, Samson G, Carpenter C (1997) The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH. Biochemistry 36:749–775

    Article  PubMed  CAS  Google Scholar 

  • Brudvig GW, Casey JL, Sauer K (1983) The effect of temperature on the formation and decay of the multiline EPR signal species associated with photosynthetic oxygen evolution. Biochim Biophys Acta 723:366–371

    Article  CAS  Google Scholar 

  • Bukhov NG, Govindachary S, Egorova EA, Joly D, Carpentier R (2003) N, N, NV, NV-Tetramethyl-p-phenylenediamnine initiates the appearance of a well-resolved I peak in the kinetics of chlorophyll fluorescence rise in isolated thylakoids. Biochim Biophys Acta 1607:91–96

    Article  PubMed  CAS  Google Scholar 

  • Bulychev AA, Niyazova MM (1989) Modelling of potential-depending changes of chlorophyll fluorescence in the photosystem 2. Biofizika 34:63–67 (in Russian)

    CAS  Google Scholar 

  • Bulychev AA, Vredenberg WJ (1999) Light-triggered electrical events in the thylakoid membrane of plant chloroplasts. Phys Plantarum 105:577–584

    Article  CAS  Google Scholar 

  • Bulychev AA, Vredenberg WJ (2001) Modulation of photosystem II chlorophyll fluorescence by electrogenic events generated by photosystem I. Bioelectrochemistry 54:157–168

    Article  PubMed  CAS  Google Scholar 

  • Bulychev AA, Niyazova MM, Turovetsky VB (1986) Electro-induced changes of chlorophyll fluorescence in individual intact chloroplasts. Biochim Biophys Acta 850:218–225

    Article  CAS  Google Scholar 

  • Buser CA, Diner BA, Brudvig GW (1992) Photooxidation of cytochrome b 559 in oxygen-evolving photosystem II. Biochemistry 31:11449–11459

    Article  PubMed  CAS  Google Scholar 

  • Butler WL (1966) Fluorescence yield in photosynthetic systems and its relation to electron transport. Curr Top Bioenerg 1:49–73

    CAS  Google Scholar 

  • Butler WL (1972) On the primary nature of fluorescence yield changes associated with photosynthesis. Proc Natl Acad Sci USA 69:3420–3422

    Article  PubMed  CAS  Google Scholar 

  • Butler WL (1980) Energy transfer between photosystem II units in a connected package model of the photochemical apparatus of photosynthesis. Proc Natl Acad Sci USA 77:4694–4701

    Article  Google Scholar 

  • Butler WL, Kitajima M (1975) Fluorescence quenching in photosystem II of chloroplasts. Biochim Biophys Acta 376:116–125

    Article  PubMed  CAS  Google Scholar 

  • Butler WL, Strasser RJ (1977a) Does the rate of cooling affect fluorescence properties of chloroplasts at −196 °C. Biochim Biophys Acta 462:283–289

    Article  PubMed  CAS  Google Scholar 

  • Butler WL, Strasser RJ (1977b) Effect of divalent cations on energy coupling between the light-harvesting chlorophyll a/b complex and PS II. In: Hall DA, Coombs J, Goodwin TW (eds) Photosynthesis 77. The Biochemical Society, London, pp 11–20

    Google Scholar 

  • Butler WL, Visser J, Simorts HL (1973) The kinetics of light-induced changes of C-550, cytochrome b559 and fluorescence yield in chloroplasts at low temperature. Biochim Biophys Acta 292:140–151

    Article  PubMed  CAS  Google Scholar 

  • Byrdin M, Rimke I, Schlodder E, Stehlik D, Roelofs TA (2000) Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: are the kinetics of excited state decay trap-limited or transfer-limited? Biophys J 79:992–1007

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Govindjee (1990) Chlorophyll a fluorescence transient as an indicator of active and inactive photosystem-II in thylakoid membranes. Biochim Biophys Acta 1015:180–188

    Article  PubMed  CAS  Google Scholar 

  • Cardol P, Forti G, Finazzi G (2011) Regulation of electron transport in microalgae. Biochim Biophys Acta 1807:912–918

    Article  PubMed  CAS  Google Scholar 

  • Cessna S, Demmig-Adams B, Adams WW III (2010) Exploring photosynthesis and plant stress using inexpensive chlorophyll fluorometers. JNRLSE 39:22–30

    Google Scholar 

  • Chen S, Yin C, Strasser RJ, Govindjee, Yang C, Qiang S (2012) Reactive oxygen species from chloroplasts contribute to 3-acetyl-5-isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana. Plant Physiol Biochem 52:38–51

    Article  PubMed  CAS  Google Scholar 

  • Christen G, Reifarth F, Renger G (1998) On the origin of the ‘35-μs kinetics’ of P680+ reduction in photosystem II with an intact water oxidizing complex. FEBS Lett 249:49–52

    Article  Google Scholar 

  • Clegg RM, Sener M, Govindjee (2010) From Forster resonance energy transfer (FRET) to coherent resonance energy transfer (CRET) and back-A wheen o’mickles mak’s a muckle. In: Alfano RR (ed) Optical Biopsy VII, Proceedings of SPIE, vol 7561, SPIE, Bellingham, WA, pp 7561–7572. CID number: 75610C, 2010, 21 pp

  • Codrea MC, Hakala-Yatkin M, Karlund-Marttila A, Nedbal L, Aittokallio T, Nevalainen OS, Tyystjärvi E (2010) Mahalanobis distance screening of Arabidopsis mutants with chlorophyll fluorescence. Photosynth Res 105:273–283

    Article  PubMed  CAS  Google Scholar 

  • Cramer WA, Zhang H (2006) Consequences of the structure of the cytochrome b6f complex for its charge transfer pathways. Biochim Biophys Acta 1757:339–345

    Article  PubMed  CAS  Google Scholar 

  • Cramer WA, Zhang H, Yan J, Kurrisu G, Smith JL (2006) Transmembrane traffic in the cytochrome b6f complex. Ann Rev Biochem 75:769–790

    Article  PubMed  CAS  Google Scholar 

  • Crofts AR (2004) The Q-cycle-a personal perspective. Photosynth Res 80:223–243

    Article  PubMed  CAS  Google Scholar 

  • Crofts AR, Wraight CA (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 726:149–185

    Article  CAS  Google Scholar 

  • Crofts AR, Robinson HH, Snozzi M (1984) Reactions of quinones at catalytic sites; a diffusional role in H-transfer. In: Sybesma C (ed) Advances in photosynthesis research, vol I. Martinus Nijhoff/Dr W Junk Publishers, The Hague, pp 461–468

    Google Scholar 

  • Cuni A, Xiong L, Sayre RT, Rappaport F, Lavergne J (2004) Modification of the pheophytin midpoint potential in Photosystem II: modulation of the quantum yield of charge separation and of charge recombination pathways. Phys Chem Chem Phys 6:4825–4831

    Article  CAS  Google Scholar 

  • DalCorso G, Pesaresi P, Masiero S, Aseeva E, Nemann DS, Finazzi G, Joliot P, Barbato R, Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285

    Article  PubMed  CAS  Google Scholar 

  • Dau H (1994) Molecular mechanisms and quantitative models of variable photosystem II fluorescence. Photochem Photobiol 60:1–23

    Article  CAS  Google Scholar 

  • Dau H, Sauer K (1991) Electric field effect on chlorophyll fluorescence and its relation to photosystem II charge separation reactions studied by a salt jump technique. Biochim Biophys Acta 1089:49–60

    Article  Google Scholar 

  • Dau H, Sauer K (1992) Electric field effect on the picosecond fluorescence of photosystem II and its relation to the energetics and kinetics of primary charge separation. Biochim Biophys Acta 1102:91–106

    Article  CAS  Google Scholar 

  • Dau H, Windecker R, Hansen UP (1991) Effect of light-induced changes in thylakoid voltage on chlorophyll fluorescence of Aegopodium podagraria leaves. Biochim Biophys Acta 1057:337–345

    Article  CAS  Google Scholar 

  • Delosme R (1967) Étude de l’induction de fluorescence des algues vertes et des chloroplastes au début d’une illumination intense. Biochim Biophys Acta 143:108–128

    Article  PubMed  CAS  Google Scholar 

  • Delosme R (1971) Photosynthèse—variations du rendement de fluorescence de la chlorophylle in vivo sous l’action d’éclairs de forte intensité. C R Acad Sci Paris 272D:2828–2831

    Google Scholar 

  • Delosme R, Joliot P (2002) Period four oscillations in chlorophyll a fluorescence. Photosynth Res 73:165–168

    Article  PubMed  CAS  Google Scholar 

  • Den Haan GA, Duysons LNM, Egberts DJN (1974) Fluorescence yield kinetics in the microsecond range in Chlurella pyrenoidosa and spinach chloroplasts in the presence of hydroxylamine. Biochim Biophys Acta 368:409–421

    Article  Google Scholar 

  • Diner B, Joliot P (1976) Effect of the transmembrane electric field on the photochemical and quenching properties of photosystem II in vivo. Biochim Biophys Acta 423:479–498

    Article  PubMed  CAS  Google Scholar 

  • Diner BA, Petrouleas V (1987) Q400, the non-heme iron of the Photosystem II iron-quinone complex. A spectroscopic probe of quinone and inhibitor binding to the reaction center. Biochim Biophys Acta 895:107–125

    Article  CAS  Google Scholar 

  • Duysens LMN, Sweers HT (1963) Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. In: Japanese Society of Plant Physiologists (ed) Studies on microalgae and photosynthetic bacteria, University of Tokyo Press, Tokyo, pp 353–372

  • Duysens LNM, van der Schatte-Olivier TE, den Haan GA (1972) Light induced quenching of the yield of chlorophyll a2 fluorescence, with microsecond back reaction stimulated by oxygen. In: Schenck GO (ed) Progress in photobiology, Proceedings of the VI International Congress on Photobiology held in Bochum 1972, Abstract No. 277

  • Duysens LNM, Den Haan GA, Van Best JA (1975) Rapid reactions of photosystem II as studied by the kinetics of fluorescence and luminescence of chlorophyll a in Chlorella pyrenoidosa. In: Avron M (ed) Proceedings of the Third International Congress on Photosynthesis. Elsevier, Amsterdam, pp 1–21

    Google Scholar 

  • Eaton-Rye JJ, Govindjee (1988a) Electron transfer through the quinone acceptor complex of Photosystem II in bicarbonate-depleted spinach thylakoid membranes as a function of actinic flash number and frequency. Biochim Biophys Acta 935:237–247. doi:10.1016/0005-2728(88)90220-4

    Article  CAS  Google Scholar 

  • Eaton-Rye JJ, Govindjee (1988b) Electron transfer through the quinone acceptor complex of photosystem II after one or two actinic flashes in bicarbonate-depleted spinach thylakoid membranes. Biochim Biophys Acta 935:248–257. doi:10.1016/0005-2728(88)90221-6

    Article  CAS  Google Scholar 

  • Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) (2011) Photosynthesis: plastid biology, energy conversion and carbon assimilation, advances in photosynthesis and respiration, vol 34. Advances in photosynthesis and respiration (Series eds, Govindjee, Sharkey TD). Springer, Dordrecht

  • Eckert HJ, Renger G (1980) Photochemistry of the reaction centers of system II under repetitive flash group excitation in isolated chloroplasts. Photochem Photobiol 31:501–511. doi:10.1111/j.1751-1097.1980.tb03736.x

    Article  CAS  Google Scholar 

  • Eckert HJ, Wiese N, Bernarding J, Eichler HJ, Renger G (1988) Analysis of the electron transfer from Phe to QA in PS II membrane fragments from spinach by time-resolved 325 nm absorption changes in the picosecond domain. FEBS Lett 240:153–158

    Article  PubMed  CAS  Google Scholar 

  • Eftink MR (1991) Fluorescence quenching: theory and applications. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, principles, vol 2. Plenum, New York, pp 53–126

    Chapter  Google Scholar 

  • Erixon K, Butler WL (1971) The relationship between Q, C-550 and cytochrome b 559 in photoreactions at −196° in chloroplasts. Biochim Biophys Acta 234:381–389

    Article  PubMed  CAS  Google Scholar 

  • Etienne AL, Lavergne J (1972) Action du m-dinitrobenzene sur la phase thermique d’induction de fluorescence en photosynthèse. Biochim Biophys Acta 283:268–278

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Flexas J, Escalona J, Evain S, Gulias J, Moya M, Osmond CB, Medrano H (2002) Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water stress in C3 plants. Physiol Plantarum 114:231–240

    Article  CAS  Google Scholar 

  • Forster B, Osmond CB, Pogson BJ (2011) Lutein from deepoxidation of lutein epoxide replaces zeaxanthin to sustain an enhanced capacity for nonphotochemical chlorophyll fluorescence quenching in avocado shade leaves in the dark. Plant Physiol 156:393–403

    Article  PubMed  CAS  Google Scholar 

  • Gauthier A, Joly D, Boisvert S, Carpentier R (2010) Period-four modulation of photosystem II primary quinone acceptor (QA) reduction/oxidation kinetics in thylakoid membranes. Photochem Photobiol 86:1064–1070

    Article  PubMed  CAS  Google Scholar 

  • Genty B, Wonders J, Baker NR (1990) Nonphotochemical quenching of F0 in leaves is emission wavelength dependent. Consequences for quenching analysis and its interpretation. Photosynth Res 26:133–139

    Article  CAS  Google Scholar 

  • Gibasiewicz K, Dobek A, Breton J, Leibl W (2001) Modulation of primary radical pair kinetics and energetics in photosystem II by the redox state of the quinone electron acceptor Q(A). Biophys J 80:1617–1630

    Article  PubMed  CAS  Google Scholar 

  • Gilmore AM, Itoh S, Govindjee (2000) Global spectral kinetic analysis of room temperature chlorophyll a fluorescence from light harvesting antenna mutants of barley. Philos Trans Roy Soc Lond B 335:1–14

    Google Scholar 

  • Goltsev V, Yordanov I (1997) Mathematical model of prompt and delayed chlorophyll fluorescence induction kinetics. Photosynthetica 33:571–586

    CAS  Google Scholar 

  • Goltsev V, Zaharieva I, Lambrev P, Yordanov I, Strasser R (2003) Simultaneous analysis of prompt and delayed chlorophyll a fluorescence in leaves during the induction period of dark to light adaptation. J Theor Biol 225:171–183

    Article  PubMed  CAS  Google Scholar 

  • Goltsev V, Chernev P, Zaharieva I, Lambrev P, Strasser R (2005) Kinetics of delayed chlorophyll a fluorescence registered in milliseconds time range. Photosynth Res 84:209–215

    Article  PubMed  CAS  Google Scholar 

  • Goltsev V, Zaharieva I, Chernev P, Strasser RJ (2009) Delayed fluorescence in photosynthesis. Photosynth Res 101:217–232

    Article  PubMed  CAS  Google Scholar 

  • Goth CH, Schreiber U, Hedrich R (1999) New approach of monitoring changes in chlorophyll-a fluorescence of single guard-cells and protoplasts in response to physiological stimuli. Plant Cell Environ 22:1057–1070

    Article  Google Scholar 

  • Govindjee (1990) Photosystem II heterogeneity: the acceptor side. Photosynth Res 25:151–160

    Article  CAS  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    Article  CAS  Google Scholar 

  • Govindjee (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 1–41

  • Govindjee, Jursinic P (1979) Photosynthesis and fast changes in light emission by green plants. Photochem Photobiol Rev 4:125–205

    Article  CAS  Google Scholar 

  • Govindjee, Papageorgiou GC (1971) Chlorophyll fluorescence and photosynthesis: fluorescence transients. Photophysiology 6:1–50

    Google Scholar 

  • Govindjee, Satoh K (1986) Fluorescence properties of chlorophyll b- and chlorophyll c-containing algae. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Orlando, pp 497–537

    Google Scholar 

  • Govindjee, Seufferheld M (2002) Non-photochemical quenching of chlorophyll a fluorescence: early history and characterization of two xanthophyll cycle mutants of Chlamydomonas Reinhardtii. Funct Plant Biol 29:1141–1155

    Article  CAS  Google Scholar 

  • Govindjee, Ichimura S, Cederstrand C, Rabinowitch E (1960) Effect of combining far-red light with shorter wave light on the excitation of fluorescence in Chlorella. Arch Biochem Biophys 89:322–323

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, Amesz J, Fork DC (eds) (1986) Light emission by plants and bacteria. Academic Press, Orlando

    Google Scholar 

  • Govindjee, Kern J, Messinger J, Whitmarsh J (2010) Photosystem II. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0000669.pub2

  • Graan T, Ort DR (1983) Initial events in the regulation of electron transfer in chloroplasts. The role of the membrane potential. J Biol Chem 258:2831–2836

    PubMed  CAS  Google Scholar 

  • Grabolle M, Dau H (2007) Efficiency and role of loss processes in light-driven water oxidation by PSII. Physiol Plant 131:50–63

    Article  PubMed  CAS  Google Scholar 

  • Gross EL, Hess SC (1973) Monovalent cation induced inhibition of chlorophyll a fluorescence: antagonism by divalent cations. Arch Biochem Biophys 159:832–836

    Article  CAS  Google Scholar 

  • Guissé B, Srivastava A, Strasser RJ (1995) The polyphasic rise of the chlorophyll a fluorescence (O–K–J–I–P) in heat stressed leaves. Arch Sci Genève 48:147–160

    Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342

    Article  PubMed  CAS  Google Scholar 

  • Haldimann P, Tsimilli-Michael M (2005) Non-photochemical quenching of chlorophyll a fluorescence by oxidized plastoquinone: new evidences based on modulation of the redox state of the endogenous plastoquinone pool in broken spinach chloroplasts. Biochim Biophys Acta 1706:239–249

    Article  PubMed  CAS  Google Scholar 

  • Hansen U-P, Dau H, Brüning B, Fritsch T, Moldaenke C (1991) Linear analysis applied to the comparative study of the I-D-P phase of chlorophyll fluorescence as induced by actinic PS-II light, PS-I light and changes in CO2-concentration. Photosynth Res 28:119–130

    Article  CAS  Google Scholar 

  • Heber U, Kobayashi Y, Leegood RC, Walker DA (1985) Low fluorescence yield in anaerobic chloroplasts and stimulation of chlorophyll a fluorescence by oxygen and inhibitors that block electron flow between photosystem II and I. Proc Royal Soc B London 225:41–53

    Article  CAS  Google Scholar 

  • Hemschemeier A, Happe T (2011) Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii. Biochim Biophys Acta 1807:919–926

    Article  PubMed  CAS  Google Scholar 

  • Homann P (1969) Cation effects on the fluorescence of isolated chloroplasts. Plant Physiol 44:932–936

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Bowyer JR (1990) Chlorophyll fluorescence transients. In: Harwood J, Bowyer JR (eds) Methods in plant biochemistry. Academic Press, London, pp 259–296

    Google Scholar 

  • Hsu B-D (1992) A theoretical study on the fluorescence induction curve of spinach thylakoids in the absence of DCMU. Biochim Biophys Acta 1140:30–36

    Article  CAS  Google Scholar 

  • Hsu B-D (1993) Evidence for the contribution of the S-state transitions of oxygen evolution to the initial phase of fluorescence induction. Photosynth Res 36:81–88. doi:10.1007/BF00016272

    Article  CAS  Google Scholar 

  • Ilik P, Schansker G, Kotabova E, Vaczi P, Strasser RJ, Bartak M (2006) A dip in the chlorophyll fluorescence induction at 0.2–2 s in Trebouxia-possesing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. Biochim Biophys Acta 1757:12–20

    Article  PubMed  CAS  Google Scholar 

  • Itoh S (1980) Correlation between the time coarse of millisecond delayed fluorescence and that of prompt fluorescence at low temperature in uncoupled spinach chloroplasts. Plant Cell Physiol 21:873–884

    CAS  Google Scholar 

  • Jablonsky J, Lazár D (2008) Evidence for intermediate S-states as initial phase in the process of oxygen-evolving complex oxidation. Biophys J 94:2725–2736

    Article  PubMed  CAS  Google Scholar 

  • Jablonsky J, Susila P, Lazar D (2008) Impact of dimeric organization of enzyme on its function: the case of photosynthetic water splitting. Bioinformatics 24:2755–2759

    Article  PubMed  CAS  Google Scholar 

  • Johnson GN (2011) Physiology of PSI cyclic electron transport in higher plants. Biochim Biophys Acta 1807:384–389

    Article  PubMed  CAS  Google Scholar 

  • Johnson GN, Rutherford AW, Krieger A (1995) A change in the midpoint potential of the quinone QA in Photosystem II associated with photoactivation of oxygen evolution. Biochim Biophys Acta 1229:202–207

    Article  Google Scholar 

  • Joliot P, Johnson GN (2011) Regulation of cyclic and linear electron flow in higher plants. Proc Natl Acad Sci USA 108:13317–13322

    Article  PubMed  CAS  Google Scholar 

  • Joliot A, Joliot P (1964) Étude cinétique de la réaction photochimique libérant l’oxygène au cours de la photosynthèse. CR Acad Sci Paris 258:4622–4625 (in French)

    CAS  Google Scholar 

  • Joliot P, Joliot A (1973) Different types of quenching involved in photosystem II centers. Biochim Biophys Acta 305:302–316

    Article  CAS  Google Scholar 

  • Joliot P, Joliot A (1977) Evidence for a double hit process in photosystem II based on fluorescence studies. Biochim Biophys Acta 462:559–574

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Joliot A (1979) Comparative study of the fluorescence yield and of the C550 absorption change at room temperature. Biochim Biophys Acta 546:93–105

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Joliot A (1981a) A photosystem II electron acceptor which is not a plastoquinone. FEBS Lett 134:155–158

    Article  CAS  Google Scholar 

  • Joliot P, Joliot A (1981b) Characterization of photosystem II centers by polarographic, spectroscopic and fluorescence methods. In: Akoyunoglou G (ed) Photosynthesis III. Balaban International Science Services, Philadelphia, pp 885–899

    Google Scholar 

  • Joliot P, Joliot A, Johnson G (2006) Cyclic electron transfer around photosystem I. In: Golbeck JH (ed) Photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase. Advances in photosynthesis and respiration, vol 24. Springer, Dordrecht, pp 639–656

  • Joly D, Carpentier R (2009) Sigmoidal reduction kinetics of the photosystem II acceptor side in intact photosynthetic materials during fluorescence induction. Photochem Photobiol Sci 8:167–173. doi:10.1039/B815070B

    Article  PubMed  CAS  Google Scholar 

  • Joshi MK, Mohanty P (2004) Chlorophyll fluorescence as a probe of heavy metal ion toxicity in plants. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 637–661

  • Jursinic P (1986) Delayed fluorescence: current concepts and status. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Orlando, pp 291–328

    Google Scholar 

  • Jursinic P, Govindjee (1977) The rise in chlorophyll a fluorescence yield and decay in delayed light emission in Tris-washed chloroplasts in the 6–100 μs time range after an excitation flash. Biochim Biophys Acta 461:253–267

    Article  PubMed  CAS  Google Scholar 

  • Jursinic P, Govindjee, Wraight CA (1978) Membrane potential and microsecond to millisecond delayed light emission after a single excitation flash on isolated chloroplasts. Photochem Photobiol 27:61–71

    Article  Google Scholar 

  • Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlensaureassimilation. Naturwissenschaften 19:964

    Article  CAS  Google Scholar 

  • Kautsky H, Appel W, Amann H (1960) Chlorophyllfluorescenzkurve und Kohlensäureassimilation: XIII. Die fluorescenzkurve und die Photochemie der Pflanze. Biochem Z 332:277–292

    PubMed  CAS  Google Scholar 

  • Ke B (2001) Photosynthesis: photobiochemistry and photobiophysics. Advances in photosynthesis and respiration (Series ed, Govindjee), vol 9. Kluwer Academic, Dordrecht

  • Kern J, Renger G (2007) Photosystem II: structure and mechanism of the water: plastoquinone oxidoreductase. Photosynth Res 94:183–202

    Article  PubMed  CAS  Google Scholar 

  • Keuper HJK, Sauer K (1989) Effect of photosystem II reaction center closure on nanosecond relaxation kinetics. Photosynth Res 20:85–103

    Article  CAS  Google Scholar 

  • Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376:105–115

    Article  PubMed  CAS  Google Scholar 

  • Klevanik AV, Klimov VV, Shuvalov VA, Krasnovskii AA (1977) Reduction of pheophytin in the light reaction of Photosystem II of higher plant. Dokl Akad Nauk SSSR 236:241–244 (in Russian)

    CAS  Google Scholar 

  • Klimov VV (2003) Discovery of pheophytin function in the photosynthetic energy conversion as the primary electron acceptor of Photosystem II. Photosynth Res 76:247–253

    Article  PubMed  CAS  Google Scholar 

  • Klimov VV, Klevanik AV, Shuvalov VA, Krasnovsky AA (1977) Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett 82:183–186

    Article  PubMed  CAS  Google Scholar 

  • Klimov VV, Allakhverdiev SI, Pashchenko VZ (1978) Measurement of the activation energy and lifetime of fluorescence of photosystem 2 chlorophyll. Dokl Akad Nauk SSSR 242:1204–1207 (in Russian)

    CAS  Google Scholar 

  • Klimov VV, Dolan E, Ke B (1980) EPR properties of an intermediary electron acceptor (pheophytin) in photosystem II reaction centers at cryogenic temperatures. FEBS Lett 112:97–100

    Article  CAS  Google Scholar 

  • Klimov VV, Shuvalov VA, Heber U (1985) Photoreduction of pheophytin as a result of electron donation from the water splitting system to photosystem II reaction centers. Biochim Biophys Acta 809:345–350

    Article  CAS  Google Scholar 

  • Klimov VV, Allakhverdiev SI, Ladygin VG (1986) Photoreduction of pheophytin in photosystem II of the whole cells of green algae and cyanobacteria. Photosynth Res 10:355–361

    Article  CAS  Google Scholar 

  • Klughammer C, Schreiber U (1998) Measuring P700 absorbance changes in the near infrared spectral region with a dual wavelength pulse modulation system. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol V. Kluwer, Dordrecht, pp 4357–4360

  • Klughammer C, Schreiber U (2008) Non-photochemical fluorescence quenching and quantum yields in PS I and PS II: analysis of heat-induced limitations using Maxi-Imaging-PAM and Dual-PAM-100. PAM Appl Notes 1:15–18

    Google Scholar 

  • Koblizek M, Kaftan D, Nedbal L (2001) On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the Photosystem II light harvesting efficiency. A repetitive flash fluorescence study. Photosynth Res 68:141–152

    Article  PubMed  CAS  Google Scholar 

  • Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution I. A linear four step mechanism. Photochem Photobiol 11:457–475

    Article  PubMed  CAS  Google Scholar 

  • Kolber ZS, Prasil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367:88–106

    Article  PubMed  CAS  Google Scholar 

  • Kolber Z, Klimov D, Ananyev G, Rascher U, Berry J, Osmond B (2005) Measuring photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for remote measurements of photosynthesis in terrestrial vegetation. Photosynth Res 84:121–129

    Article  PubMed  CAS  Google Scholar 

  • Kramer DM, Crofts AR (1996) Control and measurement of photosynthetic electron transport in vivo. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publ, Dordrecht, pp 25–66

    Google Scholar 

  • Kramer DM, DiMarco G, Loreto F (1995) Contribution of plastoquinone quenching to saturation pulse-induced rise of chlorophyll fluorescence in leaves. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol I. Kluwer Academic Publ, Dordrecht, pp 147–150

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Ann Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Krieger A, Weis E (1993) The role of calcium in the pH-dependent control of photosystem II. Photosynth Res 37:117–130

    Article  CAS  Google Scholar 

  • Kroon BMA, Thoms S (2006) From electron to biomass: a mechanistic model to describe phytoplankton photosynthesis and steady-state growth Mates. J Phycol 42:593–609

    Article  CAS  Google Scholar 

  • Küpper H, Šetlík I, Trtílek M, Nedbal L (2000) A microscope for two-dimensional measurements of in vivo chlorophyll fluorescence kinetics using pulsed measuring radiation, continuous actinic radiation, and saturating flashes. Photosynthetica 38:553–570

    Article  Google Scholar 

  • Kurreck J, Schödel R, Renger G (2000) Investigation of the plastoquinone pool size and fluorescence quenching in thylakoid membranes and photosystem II (PSII) membrane fragments. Photosynth Res 63:171–182

    Article  PubMed  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V (2006a) C3 photosynthesis in silico. Photosynth Res 90:45–46

    Article  PubMed  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Rasulov B, Rämma H (2006b) Photosystem II cycle and alternative electron flow in leaves. Plant Cell Physiol 47:972–983

    Article  PubMed  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Talts E, Scheibe R (2007) Rates and roles of cyclic and alternative electron flow in potato leaves. Plant Cell Physiol 48:1575–1588

    Article  PubMed  CAS  Google Scholar 

  • Laisk A, Nedbal L, Govindjee (eds) (2009a) Photosynthesis in silico: understanding complexity from molecules to ecosystems. Advances in photosynthesis and respiration, vol 29. Springer, Dordrecht

    Google Scholar 

  • Laisk A, Eichelmann H, Oja V (2009b) Leaf C3 photosynthesis in silico: integrated carbon/nitrogen metabolism. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico: understanding complexity from molecules to ecosystems. Advances in photosynthesis and respiration, vol 29. Springer, Dordrecht, pp 295–322

  • Laisk A, Talts E, Oja V, Eichelmann H, Peterson RB (2010) Fast cyclic electron transport around photosystem I in leaves under far-red light: a proton-uncoupled pathway? Photosynth Res 103:79–95

    Article  PubMed  CAS  Google Scholar 

  • Latimer P, Bannister TT, Rabinowitch E (1956) Quantum yields of fluorescence of plant pigments. Science 124:585–586

    Article  PubMed  CAS  Google Scholar 

  • Latimer P, Bannister TT, Rabinowitch E (1957) The absolute quantum yield of fluorescence of photosynthetically active pigment. In: Gaffron H et al (eds) Research in photosynthesis. Wiley, New York, pp 107–112

    Google Scholar 

  • Lavergne J, Leci E (1993) Properties of inactive photosystem II centers. Photosynth Res 38:323–343

    Article  Google Scholar 

  • Lavergne J, Rappaport F (1998) Stabilization of charge separation and photochemical misses in photosystem II. Biochemistry 37:7899–7906

    Article  PubMed  CAS  Google Scholar 

  • Lavergne J, Trissl H-W (1995) Theory of fluorescence induction in photosystem II: derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units. Biophys J 68:2474–2492

    Article  PubMed  CAS  Google Scholar 

  • Lavorel J (1959) Induction of fluorescence in quinone poisoned Chlorella cells. Plant Physiol 34:204–209

    Article  PubMed  Google Scholar 

  • Lavorel J (1962) Hétérogénéité de la chlorophylle in vivo I. Spectres d’émission de fluorescence. Biochim Biophys Acta 60:510–523

    Article  PubMed  CAS  Google Scholar 

  • Lavorel J (1975) Luminescence. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic Press, New York, pp 223–317

    Google Scholar 

  • Lazár D (1999) Chlorophyll a fluorescence induction. Biochim Biophys Acta 1412:1–28

    Article  PubMed  Google Scholar 

  • Lazár D (2003) Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. J Theor Biol 220:469–503

    Article  PubMed  CAS  Google Scholar 

  • Lazár D (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct Plant Biol 33:9–30

    Google Scholar 

  • Lazár D (2009) Modelling of light-induced chlorophyll a fluorescence rise (O–J–I–P transient) and changes in 820 nm-transmittance signal of photosynthesis. Photosynthetica 47:483–498

    Article  CAS  Google Scholar 

  • Lazár D, Jablonsky J (2009) On the approaches applied in formulation of a kinetic model of photosystem II: different approaches lead to different simulations of the chlorophyll a fluorescence transients. J Theor Biol 257:260–269

    Google Scholar 

  • Lazár D, Pospíšil P (1999) Mathematical simulation of chlorophyll a fluorescence rise measured with 3-(3-, 4-dichlorophenyl)-1,1-dimethylurea-treated barley leaves at room and high temperatures. Eur Biophys J 28:468–477

    Article  PubMed  Google Scholar 

  • Lazár D, Schansker G (2009) Models of chlorophyll a fluorescence transients. In: Laisk, Nedbal AL, Govindjee (eds) Photosynthesis in silico: understanding complexity from molecules to ecosystems. Advances in photosynthesis and respiration, vol 29. Springer, Dordrecht, pp 85–123

  • Lazár D, Nauš J, Matoušková M, Flašarová M (1997) Mathematical modeling of changes in chlorophyll fluorescence induction caused by herbicides. Pestic Biochem Physiol 57:200–210

    Article  Google Scholar 

  • Lazár D, Tomek P, Ilik P, Naus J (2001) Determination of the antenna heterogeneity of photosystem II by direct simultaneous fitting of several fluorescence rise curves measured with DCMU at different light intensities. Photosynth Res 68:247–257

    Article  PubMed  Google Scholar 

  • Lazár D, Ilík P, Kruk J, Strzałka K, Nauš J (2005) A theoretical study on effect of the initial redox state of cytochrome b559 on maximal chlorophyll fluorescencelevel (FM): implications for photoinhibition of photosystem II. J Theor Biol 233:287–300

    Article  PubMed  CAS  Google Scholar 

  • Lebedeva GV, Belyaeva NE, Riznichenko GY, Rubin AB, Demin OV (2000) Kinetic model of photosystem II of higher green plants. Russ J Phys Chem 74:1702–1710

    Google Scholar 

  • Lebedeva GV, Belyaeva NE, Demin OV, Riznichenko GY, Rubin AB (2002) A kinetic model of primary photosynthetic processes. Description of the fast phase of chlorophyll fluorescence induction under different light intensities. Biofizika 47:1044–1058

    PubMed  CAS  Google Scholar 

  • Leibl W, Breton J, Deprez J, Trissl HW (1989) Photoelectric study on the kinetics of trapping and charge stabilization in oriented PS II membranes. Photosynth Res 22:257–275

    Article  CAS  Google Scholar 

  • Logan BA, Adams WW III, Demmig-Adams B (2007) Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions. Funct Plant Biol 34:853–859

    Article  CAS  Google Scholar 

  • Long SP, Postl WF, Bolhar-Nordenkampf HR (1993) Quantum yields for uptake of carbon dioxide in C3 vascular plants of contrasting habitats and taxonomic groupings. Planta 189:226–234

    Article  CAS  Google Scholar 

  • Malkin S (1966) Fluorescence induction studies in isolated chloroplasts. II. Kinetic analysis of the fluorescence intensity dependence on time. Biochim Biophys Acta 126:432–442

    Google Scholar 

  • Malkin S, Kok B (1966) Fluorescence induction studies in isolated chloroplasts. I-Number of components involved in the reaction and quantum yields. Biochim Biophys Acta 126:413–432

    Article  PubMed  CAS  Google Scholar 

  • Malkin S, Wong D, Govindjee, Merkelo H (1980) Parallel measurements on fluorescence life-time and intensity changes from leaves during the fluorescence induction. Photobiochem Photobiophys 1:83–89

    CAS  Google Scholar 

  • Malkin S, Armond PA, Mooney HA, Fork DC (1981) Photosystem II photosynthetic unit sizes from fluorescence induction in leaves. Plant Physiol 67:570–579

    Article  PubMed  CAS  Google Scholar 

  • Malkin S, Bilger W, Schreiber U (1994) The relationship between millisecond luminescence and fluorescence in tobacco leaves during the induction period. Photosynth Res 39:57–66

    Article  CAS  Google Scholar 

  • Mauzerall DC (1972) Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of oxygen. Proc Natl Acad Sci USA 69:1358–1362

    Article  PubMed  CAS  Google Scholar 

  • Mauzerall DC (1976) Fluorescence and multiple excitation in photosynthetic systems. J Phys Chim 80:2306–2309

    Article  CAS  Google Scholar 

  • Mauzerall DC (1978) Multiple excitation and the yield of chlorophyll a fluorescence in photosynthetic system. Photochem Photobiol 28:991–998

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • McConnell IL, Eaton-Rye JJ, van Rensen JJS (2011) Regulation of Photosystem II electron transport by bicarbonate. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis: plastid biology, energy conversion and carbon assimilation. Advances in photosynthesis and respiration, vol 34 (Series eds, Govindjee, Sharkey TD). Springer, Dordrecht

  • McDonald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Hüner NPA (2011) Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX). Biochim Biophys Acta 1807:954–967

    Article  PubMed  CAS  Google Scholar 

  • Mehta P, Allakhverdiev SI, Jajoo A (2010) Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynth Res 105:249–255

    Article  PubMed  CAS  Google Scholar 

  • Mehta P, Kraslavsky V, Bharti S, Allakhverdiev SI, Jajoo A (2011) Analysis of salt stress induced changes in photosystem II heterogeneity by prompt fluorescence and delayed fluorescence in wheat (Triticum aestivum) leaves. J Photochem Photobiol B 104:308–313

    Article  PubMed  CAS  Google Scholar 

  • Meiburg RF, van Gorkom HJ, van Dorssen RJ (1983) Excitation trapping and charge separation in photosystem II in the presence of an electric field. Biochim Biophys Acta 724:352–358

    Article  CAS  Google Scholar 

  • Melis A, Homann PH (1975) Kinetic analysis of the fluorescence induction in 3-(3,4-dichlorophenyl)-l,l-dimethylurea poisoned chloroplasts. Photochem Photobiol 21:431–437

    Article  CAS  Google Scholar 

  • Melis A, Homann PH (1976) Heterogeneity of photochemical centers in system II of chloroplasts. Photochem Photobiol 23:343–350

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Schreiber U (1979) The kinetic relationship between the C-550 absorbance change, the reduction of Q(ΔA 320) and the variable fluorescence yield change in chloroplasts at room temperature. Biochim Biophys Acta 547:47–57. doi:10.1016/0005-2728(79)90094-X

    Article  PubMed  CAS  Google Scholar 

  • Miyake C, Yokota A (2001) Cyclic flow of electrons within PSII in thylakoid membranes. Plant Cell Physiol 42:508–515

    Article  PubMed  CAS  Google Scholar 

  • Miyake C, Yonekura K, Kobayashi Y, Yokota A (2002) Cyclic electron flow within PSII functions in intact chloroplasts from spinach leaves. Plant Cell Physiol 43:951–957

    Article  PubMed  CAS  Google Scholar 

  • Mohanty P, Govindjee (1973) Light-induced changes in the fluorescence yield of chlorophyll a in Anacystis nidulans. II. The fast changes and the effect of photosynthetic inhibitors on both the fast and slow fluorescence induction. Plant Cell Physiol 14:611–629

    CAS  Google Scholar 

  • Moise N, Moya I (2004a) Correlation between lifetime heterogeneity and kinetics heterogeneity during chlorophyll fluorescence induction in leaves: 1. Mono-frequency phase and modulation analysis reveals a conformational change of a PSII pigment complex during the IP thermal phase. Biochim Biophys Acta 1657:33–46

    Article  PubMed  CAS  Google Scholar 

  • Moise N, Moya I (2004b) Correlation between lifetime heterogeneity and kinetics heterogeneity during chlorophyll fluorescence induction in leaves: 2. Multi-frequency phase and modulation analysis evidences a loosely connected PSII pigment-protein complex. Biochim Biophys Acta 1657:47–60. doi:10.1016/j.bbabio.2004.04.003

    Article  PubMed  CAS  Google Scholar 

  • Morin P (1964) Études des cinétiques de fluorescence de la chlorophylle in vivo, dans les premiers instants qui suivent le début de l’illumination. J Chim Phys 61:674–680

    CAS  Google Scholar 

  • Moya I, Cernovic ZG (2004) Remote sensing of chlorophyll fluorescence: Instrumentation and analysis. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 429–445

    Google Scholar 

  • Munday JC Jr, Govindjee (1969a) Light-induced changes in the fluorescence yield of chlorophyll a in vivo. III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. Biophys J 9:1–21

    Article  PubMed  CAS  Google Scholar 

  • Munday JC Jr, Govindjee (1969b) Light-induced changes in the fluorescence yield of chlorophyll a in vivo. IV. The effect of preillumination on the fluorescence transient of Chlorella pyrenoidosa. Biophys J 9:22–35

    Article  PubMed  CAS  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    Article  PubMed  CAS  Google Scholar 

  • Murata N (1969a) Control of excitation transfer in photosynthesis. I. Light-induced changes of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta 172:242–251

    Article  PubMed  CAS  Google Scholar 

  • Murata N (1969b) Control of excitation energy transfer in photosynthesis. II. Magnesium ion dependent distribution of excitation energy between two pigment systems in spinach chloroplasts. Biochim Biophys Acta 189:171–181

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Nishimura M, Takamiya A (1966) Fluorescence of chlorophyll in photosynthetic systems. II. Induction of fluorescence in isolated spinach chloroplasts. Biochim Biophys Acta 120:23–33

    Article  PubMed  CAS  Google Scholar 

  • Nedbal L, Trtilek M, Kaftan D (1999) Flash fluorescence induction: a novel method to study regulation of Photosystem II. J Photochem Photobiol B 48:154–157

    Google Scholar 

  • Neubauer C, Schreiber U (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination. I. Saturation characteristics and partial control by the photosystem II acceptor side. Zeit Naturforschung 42c:1246–1254

    Google Scholar 

  • Nuijs AM, van Gorkom HJ, Plijter JJ, Duysens LNM (1986) Primary-charge separation and excitation of chlorophyll a in photosystem II particles from spinach as studied by picosecond absorbance-difference spectroscopy. Biochim Biophys Acta 848:167–175

    Article  CAS  Google Scholar 

  • Ohashi S, Miyashita H, Okada N, Iemura T, Watanabe T, Kobayashi M (2008) Unique photosystems in Acaryochloris marina. Photosynth Res 98:141–149

    Article  PubMed  CAS  Google Scholar 

  • Okayama S, Butler WL (1972) The influence of cytochrome b 559 on the fluorescence yield of chloroplasts at low temperature. Biochim Biophys Acta 267:523–527

    Article  PubMed  CAS  Google Scholar 

  • Okegawa Y, Kobayashi Y, Shikanai T (2010) Physiological links among alternative electron transport pathways that reduce and oxidize plastoquinone in Arabidopsis. Plant J 63:458–468

    Article  CAS  Google Scholar 

  • Osmond CB, Forster B (2006) Photoinhibition: then and now. In: Demmig-Adams B, Adams W, Mattoo A (eds) Photoprotection, photoinhibition, gene regulation, and environment. Springer, Netherlands, pp 11–22

    Chapter  Google Scholar 

  • Osmond CB, Schwartz O, Gunning B (1999) Photoinhibitory printing on leaves, visualized by chlorophyll fluorescence imaging and confocal microscopy, is due to diminished fluorescence from grana. Aust J Plant Physiol 26:717–724

    Article  CAS  Google Scholar 

  • Oxborough K, Baker NR (1997) An instrument capable of imaging chlorophyll-a fluorescence from intact leaves at very low irradiance and at cellular and subcellular levels of organization. Plant Cell Environ 20:1473–1483

    Article  Google Scholar 

  • Papageorgiou GC (1975) Chlorophyll fluorescence: an intrinsic probe of photosynthesis. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic Press, New York, pp 319–372

    Google Scholar 

  • Papageorgiou GC (2011) Fluorescence emission from the photosynthetic apparatus. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis: plastid biology, energy conversion and carbon assimilation. Advances in photosynthesis and respiration, vol 34 (Series eds, Govindjee, Sharkey TD). Springer, Dordrecht, p 29. doi:10.1007/978-94-007-1579-0_18

  • Papageorgiou GC, Govindjee (1968a) Light induced changes in the fluorescence yield of chlorophyll a in vivo. I. Anacystis nidulans. Biophys J 8:299–1315

    Google Scholar 

  • Papageorgiou GC, Govindjee (1968b) Light induced changes in the fluorescence yield of chlorophyll a in vivo. II. Chlorella pyrenoidosa. Biophys J 8:1316–1328

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou GC, Govindjee (eds) (2004) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht

  • Papageorgiou GC, Govindjee (2011) Photosystem II fluorescence: slow changes—scaling from the past. J Photochem Photobiol B: Biol 104:258–270. doi:10.1016/j.jphotobiol.2011.03.008

    Article  CAS  Google Scholar 

  • Papageorgiou GC, Tsimilli-Michael M, Stamatakis K (2007) The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth Res 94:275–290

    Article  PubMed  CAS  Google Scholar 

  • Peltier G, Tolleter D, Billon E, Cournac L (2010) Auxiliary electron transport pathways in chloroplasts of microalgae. Photosynth Res 106:19–31

    Article  PubMed  CAS  Google Scholar 

  • Peterson RB, Oja V, Laisk A (2001) Chlorophyll fluorescence at 680 and 730 nm and leaf photosynthesis. Photosynth Res 70:185–196

    Article  PubMed  CAS  Google Scholar 

  • Petrouleas V, Diner BA (1987) Light-induced oxidation of the acceptor-side Fe(II) of photosystem-II by exogenous quinones acting through the QB binding-site.1. Quinones, kinetics and pH-dependence. Biochim Biophys Acta 893:126–137

    Article  CAS  Google Scholar 

  • Pfündel E (1998) Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynth Res 56:185–195

    Article  Google Scholar 

  • Pospíšil P, Dau H (2000) Chlorophyll fluorescence transients of photosystem II membrane particles as a tool for studying photosynthetic oxygen evolution. Photosynth Res 65:41–52

    Article  PubMed  Google Scholar 

  • Pospíšil P, Dau H (2002) Valinomycin sensitivity proves that light-induced thylakoid voltages result in millisecond phase of chlorophyll fluorescence transients. Biochim Biophys Acta 1554:94–100

    Article  PubMed  Google Scholar 

  • Prasil O, Kolber Z, Berry JA, Falkowski PG (1996) Cyclic electron flow around photosystem II in vivo. Photosynth Res 48:395–410

    Article  CAS  Google Scholar 

  • Rappaport F, Blanchard-Desce M, Lavergne J (1994) Kinetics of electron transfer and electrochromic change during the redox transitions of the photosynthetic oxygen-evolving complex. Biochim Biophys Acta 1184:178–192

    Article  CAS  Google Scholar 

  • Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA, Lavergne J (2002) Kinetics and pathways of charge recombination in photosystem II. Biochemistry 41:8518–8527

    Article  PubMed  CAS  Google Scholar 

  • Rappaport F, Cuni A, Xiong L, Sayre R, Lavergne J (2005) Charge recombination and thermoluminescence in photosystem II. Biophys J 88:1948–1958

    Article  PubMed  CAS  Google Scholar 

  • Rappaport F, Beal D, Joliot A, Joliot P (2007) On the advantages of using green light to study fluorescence yield changes in leaves. Biochim Biophys Acta 1767:56–65

    Article  PubMed  CAS  Google Scholar 

  • Renger G (2010) The light reactions of photosynthesis. Curr Sci 98:1305–1319

    CAS  Google Scholar 

  • Renger G (2011) Photosynthetic water splitting: apparatus and mechanism. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis: plastid biology, energy conversion and carbon assimilation. Advances in photosynthesis and respiration, vol 34 (Series eds, Govindjee, Sharkey TD). Springer, Dordrecht, p 51. doi:10.1007/978-94-007-1579-0_17

  • Renger G, Holzwarth AR (2005) Primary electron transfer. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Springer, Berlin, pp 139–175

    Google Scholar 

  • Renger T, Schlodder E (2010) Primary photochemical processes in photosystem II: bridging the gap between crystal structure and optical spectra. Chem Phys Chem 11:1141–1153

    Article  PubMed  CAS  Google Scholar 

  • Renger G, Schreiber U (1986) Practical applications of fluorometric methods to algae and higher plant research. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, New York, pp 587–620

    Google Scholar 

  • Renger G, Schulze A (1985) Quantitative analysis of fluorescence induction curves in isolated spinach chloroplasts. Photobiochem Photobiophys 9:79–87

    CAS  Google Scholar 

  • Renger G, Eckert HJ, Bergmann A, Bernarding J, Liu B, Napiwotzki A, Reifarth F, Eichler HJ (1995) Fluorescence and spectroscopic studies on exciton trapping and electron transfer in photosystem II of higher plants. Aust J Plant Physiol 22:167–181

    Article  CAS  Google Scholar 

  • Riznichenko G, Lebedeva G, Demin O, Rubin A (1999) Kinetic mechanisms of biological regulation in photosynthetic organisms. J Biol Phys 25:177–192

    Article  CAS  Google Scholar 

  • Riznichenko G, Lebedeva G, Demin O, Belyaeva NE, Rubin A (2000) Levels of regulation of photosynthetic processes. Biofizika 45:440–448

    Google Scholar 

  • Riznichenko GYu, Belyaeva NE, Kovalenko IB, Rubin AB (2009) Mathematical and computer modeling of primary photosynthetic processes. Biophysics 54:10–22

    Article  Google Scholar 

  • Robinson HH, Crofts AR (1984) Kinetics of proton uptake and the oxidation-reduction reactions of the quinone acceptor complex of photosystem II from pea chloroplasts. In: Sybesma C (ed) Advances in photosynthesis research, vol 1. Nijhoff M, Junk W Publishers, The Hague, pp 477–480

    Google Scholar 

  • Roelofs TA, Holzwarth AR (1990) In search of a putative long lived relaxed radical pair state in closed photosystem II. Kinetic modeling of picosecond fluorescence data. Biophys J 57:1141–1153

    Article  PubMed  CAS  Google Scholar 

  • Roelofs TA, Lee C-H, Holzwarth AR (1992) Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts. A new approach to the characterization of the primary processes in photosystem II α- and β-units. Biophys J 61:1147–1163

    Article  PubMed  CAS  Google Scholar 

  • Roháček K, Soukupová J, Barták M (2008) Chlorophyll fluorescence: a wonderful tool to study plant physiology and plant stress. Research Signpost, India, pp 41–104

    Google Scholar 

  • Rosenqvist E, van Kooten O (2003) Chlorophyll fluorescence: a general description and nomenclature. In: DeEll JR, Toivonen PMA (eds) Practical applications of chlorophyll fluorescence in plant biology. Kluwer Academic Publishers, Dordrecht, pp 31–78

    Chapter  Google Scholar 

  • Rottgers R (2007) Comparison of different variable chlorophyll a fluorescence techniques to determine photosynthetic parameters of natural phytoplankton. Deep-Sea Res I 54:437–451

    Article  Google Scholar 

  • Rubin AB, Riznichenko GYu (2009) Modeling of the primary processes in a photosynthetic membrane. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico: understanding complexity from molecules to ecosystems, vol 29. Springer, Dordrecht, pp 151–176

  • Safranek D, Cerveny J, Klement M, Pospisilova J, Brim L, Lazár D, Nedbal L (2011) E-photosynthesis: web-based platform for modeling of complex photosynthetic processes. Biosystems 103:115–124. doi:10.1016/j.biosystems.2010.10.013

    Article  PubMed  CAS  Google Scholar 

  • Samson G, Bruce D (1996) Origins of the low yield of chlorophyll a fluorescence induced by single turnover flash in spinach thylakoids. Biochim Biophys Acta 1276:147–153

    Article  Google Scholar 

  • Samson G, Prášil O, Yaakoubd B (1999) Photochemical and thermal phases of chlorophyll a fluorescence. Photosynthetica 37:163–182

    Article  CAS  Google Scholar 

  • Satoh K (1981) Fluorescence induction and activity of ferredoxin-NADP+ reductase in Bryopsis chloroplasts. Biochim Biophys Acta 638:327–333

    Article  CAS  Google Scholar 

  • Satoh K, Katoh S (1983) Induction kinetics of millisecond delayed luminescence in intact Bryopsis chloroplasts. Plant Cell Physiol 24:953–962

    Google Scholar 

  • Satoh K, Strasser R, Butler WL (1976) A demonstration of energy transfer from photosystem II to photosystem I in chloroplasts. Biochim Biophys Acta 440:337–345

    Article  PubMed  Google Scholar 

  • Schansker G, Strasser RJ (2005) Quantification of non-QB-reducing centers in leaves using a far-red pre-illumination. Photosynth Res 84:145–151

    Article  PubMed  CAS  Google Scholar 

  • Schansker G, Srivastava A, Govindjee, Strasser RJ (2003) Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol 30:785–796

    Article  CAS  Google Scholar 

  • Schansker G, Tóth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta 1706:250–261

    Article  PubMed  CAS  Google Scholar 

  • Schansker G, Tóth SZ, Strasser RJ (2006) Dark-recovery of the Chl a fluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochim Biophys Acta 1757:787–797

    Article  PubMed  CAS  Google Scholar 

  • Schansker G, Yuan Y, Strasser RJ (2008) Chl a fluorescence and 820 nm transmission changes occurring during a dark-to-light transition in pine needles and pea leaves: a comparison. In: Allen JF, Osmond B, Golbeck JH, Gantt E (eds) Energy from the Sun. Springer, Dordrecht, pp 945–949

    Chapter  Google Scholar 

  • Schansker G, Tóth ZS, Kovács L, Holzwarth AR, Garab G (2011) Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochim Biophys Acta 1807:1032–1043

    Article  PubMed  CAS  Google Scholar 

  • Schatz GH, Holzwarth AR (1986) Mechanisms of chlorophyll fluorescence revisited: prompt or delayed emission from photosystem II with closed reaction centers? Photosynth Res 10:309–318

    Article  CAS  Google Scholar 

  • Schatz GH, Brock H, Holzwarth AR (1987) Picosecond kinetics of fluorescence and absorbance changes in photosystem II particles excited at low photon density. Proc Natl Acad Sci USA 84:9414–9418

    Article  Google Scholar 

  • Schatz GH, Brock H, Holzwarth AR (1988) A kinetic and energetic model for the primary processes in photosystem II. Biophys J 54:397–405

    Article  PubMed  CAS  Google Scholar 

  • Schlodder E (2008) Temperature dependence of the reduction kinetics of P680+ in oxygen-evolving PSII complexes throughout the range from 320 to 80 K. In: Allen JF, Osmond B, Golbeck JH, Gantt E (eds) Energy from the Sun. Springer, Dordrecht, pp 187–190

    Chapter  Google Scholar 

  • Schmidt W, Schneckenburger H (1995) Induction kinetics of delayed luminescence in photosynthetic organisms as measured by an LED-based phosphorimeter. Photochem Photobiol 62:745–750

    Article  CAS  Google Scholar 

  • Schreiber U (1986) Detection of rapid induction kinetics with a new type of high frequency modulated chlorophyll fluorometer. Photosynth Res 9:261–272

    Article  CAS  Google Scholar 

  • Schreiber U (1998) Chlorophyll fluorescence: new instruments for special applications. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol V. Kluwer Academic Publishers, Dordrecht, pp 4253–4258

    Google Scholar 

  • Schreiber U (2002) Assessment of maximal fluorescence yield: donor-side dependent quenching and QB-quenching. In: Van Kooten O, Snel JFH (eds) Plant spectrofotometry: applications and basic research. Rozenberg Publishers, Amsterdam, pp 23–47

    Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 279–319

  • Schreiber U, Krieger A (1996) Two fundamentally different types of variable chlorophyll fluorescence in vivo. FEBS Lett 397:131–135

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U, Neubauer C (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: II. Partial control by the Photosystem II donor side and possible ways of interpretation. Z Naturforsch 42c:1255–1264

    Google Scholar 

  • Schreiber U, Neubauer C (1989) Correlation between dissipative fluorescence quenching at photosystem II and 50 μs recombination luminescence. FEBS Lett 258:339–342

    Article  CAS  Google Scholar 

  • Schreiber U, Neubauer C (1990) O2-dependent electron flow, membrane energisation and the mechanism of non-photochemical quenching of chlorophyll fluorescence. Photosynth Res 25:279–293

    Article  CAS  Google Scholar 

  • Schreiber U, Schliwa U (1987) A solid state instrument for measurement of chlorophyll fluorescence induction in plants. Photosynth Res 11:173–182

    Article  Google Scholar 

  • Schreiber U, Vidaver W (1974) Chlorophyll fluorescence induction in anaerobic Scenedesmus obliquus. Biochim Biophys Acta 368:97–112

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U, Vidaver W (1976) The I-D fluorescence transient. An indicator of rapid energy distribution changes in photosynthesis. Biochim Biophys Acta 440:205–214

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U, Klughammer C, Neubauer C (1988) Measuring P700 absorbance changes around 830 nm with a new type of pulse modulation system. Z Naturforsch 43c:686–698

    Google Scholar 

  • Schreiber U, Neubauer C, Klughammer C (1989) Devices and methods for room-temperature fluorescence analysis. Philos Trans R Soc Lond B 323:241–251

    Article  CAS  Google Scholar 

  • Schweitzer RH, Brudvig GW (1997) Fluorescence quenching by chlorophyll cations in photosystem II. Biochemistry 36:11351–11359

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217

    Article  PubMed  CAS  Google Scholar 

  • Shinkarev VP, Govindjee (1993) Insight into the relationship of chlorophyll a fluorescence yield to the concentration of its natural quenchers in oxygenic photosynthesis. Proc Natl Acad Sci USA 90:7466–7469

    Article  PubMed  CAS  Google Scholar 

  • Shinopoulos KE, Brudvig GW (2011) Cytochrome b559 and cyclic electron transfer within photosystem II. Biochim Biophys Acta. doi:10.1016/j.bbabio.2011.08.002

    PubMed  Google Scholar 

  • Shuvalov VA, Klimov VV (1976) The primary photoreactions in the complex cytochrome-P-890∙P-760 (bacteriopheophytin760) of Chromatium minutissimum at low redox potentials. Biochim Biophys Acta 440:587–599

    Article  PubMed  CAS  Google Scholar 

  • Shuvalov VA, Klimov VV, Dolan E, Parson WW, Ke B (1980) Nanosecond fluorescence and absorbance changes in photosystem II at low redox potential. Pheophytin as an intermediary electron acceptor. FEBS Lett 118:279–282

    Article  CAS  Google Scholar 

  • Snel JFH, Dassen HHA (2000) Measurement of light and pH dependence of single-cell photosynthesis by fluorescence microscopy. J Fluoresc 10:269–273

    Article  CAS  Google Scholar 

  • Sorokin EM (1985) The induction curve of chlorophyll a fluorescence in DCMU-treated chloroplasts and its properties. Photobiochem Photobiophys 9:3–19

    CAS  Google Scholar 

  • Srivastava A, Strasser RJ, Govindjee (1995) Differential effects of dimethylbenzoquinone and dichlorobenzoquinone on chlorophyll fluorescence transient in spinach thylakoids. J Photochem Photobiol B Biol 31:163–169

    Article  CAS  Google Scholar 

  • Srivastava A, Strasser RJ, Govindjee (1999) Greening of peas: parallel measurements of 77 K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. Photosynthetica 37:365–392

    Article  CAS  Google Scholar 

  • Steffen R (2003) Time-resolved spectroscopic investigations of photosystem II. Ph.D Thesis, Technischen Universität Berlin

  • Steffen R, Christen G, Renger G (2001) Time-resolved monitoring of flash-induced changes of fluorescence quantum yield and decay of delayed light emission in oxygen-evolving photosynthetic organisms. Biochemistry 40:173–180. doi:10.1021/bi0011779

    Article  PubMed  CAS  Google Scholar 

  • Steffen R, Eckert H-J, Kelly AA, Dörmann P, Renger G (2005) Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana by time-resolved fluorometric analysis. Biochemistry 44:3123–3133. doi:10.1021/bi0484668

    Article  PubMed  CAS  Google Scholar 

  • Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B: Biol 104:236–257

    Article  CAS  Google Scholar 

  • Stirbet A, Strasser JR (1995) Numerical simulation of the fluorescence induction in plants. Archs Sci Geneve 48:41–60

    CAS  Google Scholar 

  • Stirbet A, Strasser RJ (1996) Numerical simulation of the in vivo fluorescence in plants. Math Comp Sim 42:245–253

    Article  Google Scholar 

  • Stirbet A, Strasser RJ (2001) The possible role of pheophytin in the fast fluorescence rise OKJIP. In: Proceedings of the 12th International Congress on Photosynthesis, CSIRO Publishing, Colingwood.

  • Stirbet A, Govindjee, Strasser BJ, Strasser RJ (1998) Chlorophyll a flurescence induction in higher plants: modelling and numerical simulation. J Theor Biol 193:131–151

    Article  CAS  Google Scholar 

  • Strasser RJ (1978) The grouping model of plant photosynthesis. In: Argyroudi-Akoyunoglou JH, Akoyunoglou G (eds) Chloroplast development. Elsevier Biomedical, Amsterdam, pp 513–538

    Google Scholar 

  • Strasser RJ (1981) The grouping model of plant photosynthesis: heterogeneity of photosynthetic units in thylakoids. In: Akoyunoglou G (ed) Photosynthesis: Proceedings of the Vth International Congress on Photosynthesis, Halkidiki, Greece 1980, Structure and Molecular Organisation of the Photosynthetic Apparatus, vol III. Balaban International Science Services, Philadelphia, pp 727–737

    Google Scholar 

  • Strasser RJ, Govindjee (1991) The F0 and the O-J–I–P fluorescence rise in higher plants and algae. In: Argyroudi-Akoyunoglou JH (ed) Regulation of chloroplast biogenesis. Plenum Press, New York, pp 423–426

    Google Scholar 

  • Strasser RJ, Govindjee (1992) On the O–J–I–P fluorescence transients in leaves and D1 mutants of Chlamydomonas reinhardtii. In: Murata N (ed) Research in photosynthesis, vol II. Kluwer Academic Publishers, Dordrecht, pp 29–32

    Google Scholar 

  • Strasser RJ, Stirbet A (1998) Heterogeneity of photosystem II probed by the numerically simulated chlorophyll a fluorescence rise (O–J–I–P). Math Comput Simul 48:3–9

    Article  Google Scholar 

  • Strasser RJ, Stirbet A (2001) Estimation of the energetic connectivity of PS II centres in plants using the fluorescence rise O–J–I–P; fitting of experimental data to three different PS II models. Math Comput Simul 56:451–461

    Article  Google Scholar 

  • Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental questions: the JIP test. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol 5. Kluwer Academic, The Netherlands, pp 977–980

    Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor and Francis, London, pp 443–480

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 321–362

  • Strasser RJ, Tsimilli-Michael M, Dangre D, Rai M (2007) Biophysical phenomics reveals functional building blocks of plants systems biology: a case study for the evaluation of the impact of mycorrhization with Piriformospora indica. In: Varma A, Oelmüler R (eds) Advanced techniques in soil microbiology, soil biology. Springer, Berlin, pp 319–341

    Chapter  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim Biophys Acta 1797:1313–1326

    Article  PubMed  CAS  Google Scholar 

  • Suggett DJ, Borowitzka MA, Prášil O (eds) (2010) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Developments in applied phycology, vol 4, 1st edn. Springer, Dordrecht

    Google Scholar 

  • Sušila P, Lazár D, Ilík P, Tomek P, Nauš J (2004) The gradient of exciting radiation within a sample affects relative heights of steps in the fast chlorophyll a fluorescence rise. Photosynthetica 42:161–172

    Article  Google Scholar 

  • Thompson LK, Brudvig GW (1988) Cytochrome b-559 may function to protect photosystem II from photoinhibition. Biochemistry 27:6653–6658

    Article  PubMed  CAS  Google Scholar 

  • Tomek P, Lazár D, Ilík P, Nauš J (2001) On the intermediate steps between the O and P steps in chlorophyll a fluorescence rise measured at different intensities of exciting light. Aust J Plant Physiol 28:1151–1160

    Google Scholar 

  • Tomek P, Ilík P, Lazár D, Štroch M, Nauš J (2003) On the determination of QB-non-reducing photosystem II centers from chlorophyll a fluorescence induction. Plant Sci 164:665–670

    Article  CAS  Google Scholar 

  • Tóth SZ, Schansker G, Strasser RJ (2005) In intact leaves, the maximum fluorescence level (FM) is independent of the redox state of the plastoquinone pool: a DCMU-inhibition study. Biochim Biophys Acta 1708:275–282

    Article  PubMed  CAS  Google Scholar 

  • Tóth SZ, Schansker G, Garab G, Strasser RJ (2007a) Photosynthetic electron transport activity in heat-treated barley leaves: the role of internal alternative electron donors to photosystem II. Biochim Biophys Acta 1767:295–305

    Article  PubMed  CAS  Google Scholar 

  • Tóth SZ, Schansker G, Strasser RJ (2007b) A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth Res 93:193–203

    Article  PubMed  CAS  Google Scholar 

  • Trebst A, Hart E, Draber W (1970) On a new inhibitor of photosynthetic electron transport. Z Naturforsch 25b:1157–1159

    Google Scholar 

  • Trissl H-W (2002) Theory of fluorescence induction: an introduction. http://www.biologie.uni-osnabrueck.de/biophysik/Trissl/teaching/teaching.html

  • Trissl H-W, Lavergne J (1995) Fluorescence induction from photosystem II: analytical equations for the yields of photochemistry and fluorescence derived from analysis of a model including exciton radical pair equilibrium and restricted energy transfer between photosynthetic units. Aust J Plant Physiol 22:183–193

    Article  CAS  Google Scholar 

  • Trissl H-W, Gao Y, Wulf K (1993) Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by excition–radical pair equilibrium. Biophys J 64:974–988

    Article  PubMed  CAS  Google Scholar 

  • Tsimilli-Michael M, Strasser RJ (2008) In vivo assessment of plants’ vitality: applications in detecting and evaluating the impact of mycorrhization on host plants. In: Varma A (ed) Mycorrhiza: state of the art. Genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, Dordrecht, pp 679–703

  • Tyystjärvi E, Vass I (2004) Light emission as a probe of charge separation and recombination in the photosynthetic apparatus: relation of prompt fluorescence to delayed light emission and thermoluminescence. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 363:388

  • Tyystjärvi E, Rantamäki S, Tyystjärvi J (2009) Connectivity of photosystem II is the physical basis of retrapping in photosynthetic thermoluminescence. Biophys J 96:3735–3743

    Article  PubMed  CAS  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  PubMed  CAS  Google Scholar 

  • Van der Weij-de Wit CD, Dekker JP, van Grondelle R, van Stokkum IHM (2011) Charge separation is virtually irreversible in photosystem II core complexes with oxidized primary quinone acceptor. J Phys Chem 115:3947–3956

    Article  CAS  Google Scholar 

  • van Gorkom HJ (1986) Fluorescence measurements in the study of photosystem II electron transport. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Ontario, pp 267–289

    Google Scholar 

  • van Gorkom HJ, Pulles MPJ, Etienne A-L (1978) Fluorescence and absorbance changes in Tris-washed chloroplasts. In: Metzner H (ed) Photosynthetic oxygen evolution. Academic Press, London, pp 135–145

    Google Scholar 

  • van Rensen JJS, Vredenberg WJ (2011) Adaptation of photosystem II to high and low light in wild-type and triazine-resistant Canola plants: analysis by a fluorescence induction algorithm. Photosynth Res 108:191–200

    Article  PubMed  CAS  Google Scholar 

  • Vasilev S, Bruce D (1998) Non-photochemical quenching of excitation energy in Photosystem II. A picosecond time resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids. Biochemistry 37:11046–11054

    Article  CAS  Google Scholar 

  • Velthuys BR (1981) Electron dependent competition between plastoquinone and inhibitors for the binding to PSII. FEBS Lett 126:277–281

    Article  CAS  Google Scholar 

  • Velthuys BR, Amesz J (1974) Charges accumulation at the reducing side of system 2 of photosynthesis. Biochim Biophys Acta 333:85–94. doi:10.1016/0005-2728(74)90165-0

    Article  PubMed  CAS  Google Scholar 

  • Vermaas WFJ, Govindjee (1981) The acceptor side of photosystem II in photosynthesis. Photochem Photobiol 34:775–793

    Google Scholar 

  • Vermaas WFJ, Renger G, Dohnt G (1984) The reduction of the oxygen evolving system in chloroplasts by thylakoid components. Biochim Biophys Acta 764:194–202

    Article  CAS  Google Scholar 

  • Vernotte C, Etienne AL, Briantais J-M (1979) Quenching of the system II chlorophyll fluorescence by the plastoquinone pool. Biochim Biophys Acta 545:519–527

    Article  PubMed  CAS  Google Scholar 

  • Vredenberg WJ (2000) A Three-State Model for Energy Trapping and Chlorophyll Fluorescence in Photosystem II Incorporating Radical Pair Recombination. Biophys J 79:26–38

    Article  PubMed  CAS  Google Scholar 

  • Vredenberg WJ (2004) System analysis of photoelectrochemical control of chlorophyll fluorescence in terms of trapping models of photosystem II: a challenging view. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 133–172

  • Vredenberg WJ (2008a) Algorithm for analysis of OJDIP fluorescence induction curves in terms of photo- and electrochemical events in photosystems of plant cells: derivation and application. J Photochem Photobiol B 91:58–65

    Article  PubMed  CAS  Google Scholar 

  • Vredenberg WJ (2008b) Analysis of initial chlorophyll fluorescence induction kinetics in chloroplasts in terms of rate constants of donor side quenching release and electron trapping in photosystem II. Photosynth Res 96:83–97

    Article  PubMed  CAS  Google Scholar 

  • Vredenberg WJ (2009) Kinetic models of photosystem II should accommodate the effect on donor side quenching on variable fluorescence in the microsecond time range. Photosynth Res 102:99–101

    Google Scholar 

  • Vredenberg WJ (2011) Kinetic analysis and mathematical modeling of primary photochemical and photoelectrochemical processes in plant photosystems. BioSystems 103:139–151

    Article  CAS  Google Scholar 

  • Vredenberg WJ, Bulychev AA (2002) Photoelectrochemical control of photosystem II chlorophyll fluorescence in vivo. Bioelectrochem 57:123–128

    Article  CAS  Google Scholar 

  • Vredenberg WJ, Bulychev AA (2003) Photoelectric effects on chlorophyll fluorescence of photosystem II in vivo. Kinetics in the absence and presence of valinomycin. Bioelectrochemistry 60:87–95

    Article  PubMed  CAS  Google Scholar 

  • Vredenberg WJ, Duysens LNM (1963) Transfer and trapping of excitation energy from bacteriochlorophyll to a reaction center during bacterial photosynthesis. Nature 197:355–357

    Article  PubMed  CAS  Google Scholar 

  • Vredenberg W, Prášil O (2009) Modeling of chlorophyll a fluorescence kinetics in plant cells: derivation of a descriptive algorithm. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico: understanding complexity from molecules to ecosystems. Advances in photosynthesis and respiration, vol 29. Springer, Dordrecht, pp 125–149

  • Vredenberg WJ, Rodrigues GC, van Rensen JJS (2002) A quantitative analysis of the chlorophyll fluorescence induction in terms of electron transfer rates at donor and acceptor sides of photosystem II. In: PS2001 Proceedings: 12th International Congress on Photosynthesis, S14-10, CSIRO Publishing, Melbourne (CD-ROM)

  • Vredenberg WJ, Kasalicky V, Durchan M, Prášil O (2006) The chlorophyll a fluorescence induction pattern in chloroplasts upon repetitive single turnover excitations: accumulation and function of QB-nonreducing centers. Biochim Biophys Acta 1757:173–181

    Article  PubMed  CAS  Google Scholar 

  • Vredenberg WJ, Durchan M, Prášil O (2007) On the chlorophyll a fluorescence yield in chloroplasts upon excitation with twin turnover flashes (TTF) and high frequency flash trains. Photosynth Res 93:183–192

    Article  PubMed  CAS  Google Scholar 

  • Vredenberg WJ, Durchan M, Prášil O (2012) The analysis of PS II photochemical activity using single and multi-turnover excitations. J Photochem Photobiol B: Biol 107:45–54

    Article  CAS  Google Scholar 

  • Wong D, Govindjee (1979) Antagonistic effects of mono- and divalent cations on polarization of chlorophyll fluorescence in thylakoids and changes in excitation energy transfer. FEBS Lett 97:373–377. doi:10.1016/0014-5793(79)80124-6

    Article  CAS  Google Scholar 

  • Wong D, Govindjee (1981) Action spectra of cation effects on the fluorescence polarization and intensity in thylakoids at room temperature. Photochem Photobiol 33:103–108

    Article  CAS  Google Scholar 

  • Wraight CA, Crofts AR (1970) Energy-dependent quenching of chlorophyll a fluorescence in isolated chloroplasts. Eur J Biochem 17:319–327

    Article  PubMed  CAS  Google Scholar 

  • Wraight CA, Crofts AR (1971) Delayed fluorescence and the high-energy state of chloroplasts. Eur J Biochem 19:386–397

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Auger J, Govindjee (1990) Chlorophyll a fluorescence measurements of isolated spinach thylakoids using single-laser-based flow cytometry. Cytometry 11:349–358

    Article  PubMed  CAS  Google Scholar 

  • Yaakoubd B, Andersen R, Desjardins Y, Samson G (2002) Contributions of the free oxidized and QB-bound plastoquinone molecules to the thermal phase of chlorophyll-a fluorescence. Photosynth Res 74:251–257

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Butler WL (1968a) Photoreduction and photophosphorylation with tris washed chloroplasts. Plant Physiol 43:1978–1986

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Butler WL (1968b) Inhibition of chloroplasts by UV-irradiation and heat treatment. Plant Physiol 43:2037–2040

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Butler WL (1969) Photooxidation by photosystem II of Tris washed chloroplasts. Plant Physiol 44:1342–1346

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Kurisu G, Cramer WA (2006) Intraprotein transfer of the quinone analogue inhibitor 2,5-dibromo-3-methyl-6-isopropyl-pbenzoquinone in the cytochrome b6f complex. Proc Natl Acad Sci USA 103:69–74

    Article  PubMed  CAS  Google Scholar 

  • Zankel KL (1973) Rapid fluorescence changes observed in chloroplasts: their relationship to the O2 evolving system. Biochim Biophys Acta 325:138–148

    Article  PubMed  CAS  Google Scholar 

  • Zheng C, Davis ME, McCammon JA (1990) Electric field distribution inside the bacterial photosynthetic reaction center of Rhodopseudomonas viridis. Chem Phys Lett 173:246–252

    Article  CAS  Google Scholar 

  • Zhu X-G, Govindjee, Baker NR, deSturler E, Ort DR, Long SP (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II. Planta 223:114–133

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are highly thankful to Dusan Lazár for a thorough analysis of the manuscript. His comments and suggestions helped us to improve significantly our review. We are equally grateful to Wim Vredenberg, as his criticism was very helpful in bringing more clarity to some ideas expounded here, and his advice has helped us in organizing our paper a bit better than before. Yet, as this review is a personal perspective, we are responsible for all the views expressed here. Govindjee thanks the office of Information Technology of Life Sciences at the UIUC, Urbana, Illinois (Jeff Hass, Director) and the Department of Plant Biology (Feng-Sheng Hu, Head), UIUC, Urbana, IL, USA for support during the preparation of this paper; this review was finalized when Govindjee was a Visiting Professor of Life Sciences, at the Jawaharlal Nehru University, New Delhi, India. Govindjee gives special thanks to Lisa Boise and Martha Plummer for their support for years before their retirement in June 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindjee.

Additional information

This perspective/review is written in honor of C. Barry Osmond for his extensive contributions to photosynthesis research in plants; he is a pioneer of plant physiology, photoprotection by xanthophyll pigments, photoinhibition, and photosynthetic efficiency of plants under varied ecological conditions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stirbet, A., Govindjee Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J–I–P rise. Photosynth Res 113, 15–61 (2012). https://doi.org/10.1007/s11120-012-9754-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-012-9754-5

Keywords

Navigation