Skip to main content

Advertisement

Log in

Materials and Fabrication Methods for Electrochemical Supercapacitors: Overview

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

The rapid economic development and immense growth in the portable electronic market create tremendous demand for clean energy sources and energy storage and conversion technologies. To meet this demand, supercapacitors have emerged as a promising technology to store renewable energy resources. Based on this, this review will provide a detailed and current overview of the various materials explored as potential electrodes and electrolytes in the development of efficient supercapacitors along with corresponding synthesis routes and electrochemical properties. In addition, this review will provide introductions into the various types of supercapacitors as well as fundamental parameters that affect supercapacitor performance. Finally, this review will conclude with presentations on the role of electrolytes in supercapacitors and corresponding materials along with challenges and perspectives to guide future development.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Han, J., Wei, W., Zhang, C., et al.: Engineering graphenes from the nano- to the macroscale for electrochemical energy storage. Electrochem. Energy Rev. 1, 139–168 (2018). https://doi.org/10.1007/s41918-018-0006-z

    Article  CAS  Google Scholar 

  2. Im, H., Gunjakar, J.L., Inamdar, A., et al.: Direct growth of 2D nickel hydroxide nanosheets intercalated with polyoxovanadate anions as a binder-free supercapacitor electrode. Nanoscale 10, 8953–8961 (2018). https://doi.org/10.1039/C7NR09626G

    Article  PubMed  Google Scholar 

  3. Dong, J., Lu, G., Wu, F., et al.: Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors. Appl. Surf. Sci. 427, 986–993 (2018). https://doi.org/10.1016/j.apsusc.2017.07.291

    Article  CAS  Google Scholar 

  4. Dubal, D.P., Chodankar, N.R., Kim, D.H., et al.: Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018). https://doi.org/10.1039/C7CS00505A

    Article  CAS  PubMed  Google Scholar 

  5. Song, Q.S., Li, Y.Y., Chan, S.L.I.: Physical and electrochemical characteristics of nanostructured nickel hydroxide powder. J. Appl. Electrochem. 35, 157–162 (2005). https://doi.org/10.1007/s10800-004-6301-x

    Article  CAS  Google Scholar 

  6. Cao, L., Xu, F., Liang, Y.Y., et al.: Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Adv. Mater. 16, 1853–1857 (2004). https://doi.org/10.1002/adma.200400183

    Article  CAS  Google Scholar 

  7. Bose, S., Kuila, T., Mishra, A.K., et al.: Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 22, 767–784 (2012). https://doi.org/10.1039/C1JM14468E

    Article  CAS  Google Scholar 

  8. Yuan, J., Tang, S., Zhu, Z., et al.: Facile synthesis of high-performance Ni(OH)2/expanded graphite electrodes for asymmetric supercapacitors. J. Mater. Sci.: Mater. Electron. 28, 18022–18030 (2017). https://doi.org/10.1007/s10854-017-7745-1

    Article  CAS  Google Scholar 

  9. Wang, R., Sui, Y., Huang, S., et al.: High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem. Eng. J. 331, 527–535 (2018). https://doi.org/10.1016/j.cej.2017.09.004

    Article  CAS  Google Scholar 

  10. Sharma, V., Singh, I., Chandra, A.: Hollow nanostructures of metal oxides as next generation electrode materials for supercapacitors. Sci. Rep. 8, 1307 (2018). https://doi.org/10.1038/s41598-018-19815-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Conway, B.E., Pell, W.G.: Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem. 7, 637–644 (2003). https://doi.org/10.1007/s10008-003-0395-7

    Article  CAS  Google Scholar 

  12. Miller, J.R.: Electrochemical capacitor thermal management issues at high-rate cycling. Electrochim. Acta 52, 1703–1708 (2006). https://doi.org/10.1016/j.electacta.2006.02.056

    Article  CAS  Google Scholar 

  13. Sugimoto, W., Yokoshima, K., Murakami, Y., et al.: Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides. Electrochim. Acta 52, 1742–1748 (2006). https://doi.org/10.1016/j.electacta.2006.02.054

    Article  CAS  Google Scholar 

  14. Chen, Z., Augustyn, V., Wen, J., et al.: High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 23, 791–795 (2011). https://doi.org/10.1002/adma.201003658

    Article  CAS  PubMed  Google Scholar 

  15. Paleo, A.J., Staiti, P., Brigandì, A., et al.: Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes. Energy Storage Mater. 12, 204–215 (2018). https://doi.org/10.1016/j.ensm.2017.12.013

    Article  Google Scholar 

  16. Du, C., Pan, N.: High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17, 5314–5318 (2006). https://doi.org/10.1088/0957-4484/17/21/005

    Article  CAS  Google Scholar 

  17. Park, J.H., Kim, S., Park, O.O., et al.: Improved asymmetric electrochemical capacitor using Zn–Co co-doped Ni(OH)2 positive electrode material. Appl. Phys. A 82, 593–597 (2006). https://doi.org/10.1007/s00339-005-3400-4

    Article  CAS  Google Scholar 

  18. Kotz, R., Carlen, M.: Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000)

    Article  CAS  Google Scholar 

  19. Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004). https://doi.org/10.1021/cr020730k

    Article  CAS  PubMed  Google Scholar 

  20. Yu, G., Xie, X., Pan, L., et al.: Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2, 213–234 (2013). https://doi.org/10.1016/j.nanoen.2012.10.006

    Article  CAS  Google Scholar 

  21. Zhi, M., Xiang, C., Li, J., et al.: Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5, 72–88 (2013). https://doi.org/10.1039/C2NR32040A

    Article  CAS  PubMed  Google Scholar 

  22. Bello, A., Makgopa, K., Fabiane, M., et al.: Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J. Mater. Sci. 48, 6707–6712 (2013). https://doi.org/10.1007/s10853-013-7471-x

    Article  CAS  Google Scholar 

  23. Icaza, J.C., Guduru, R.K.: Electrochemical characterization of nanocrystalline RuO2 with aqueous multivalent (Be2+ and Al3+) sulfate electrolytes for asymmetric supercapacitors. J. Alloys Compd. 735, 735–740 (2018). https://doi.org/10.1016/j.jallcom.2017.11.184

    Article  CAS  Google Scholar 

  24. Subramanian, V.: Mesoporous anhydrous RuO2 as a supercapacitor electrode material. Solid State Ionics 175, 511–515 (2004). https://doi.org/10.1016/j.ssi.2004.01.070

    Article  CAS  Google Scholar 

  25. Lee, J.W., Ahn, T., Kim, J.H., et al.: Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochim. Acta 56, 4849–4857 (2011). https://doi.org/10.1016/j.electacta.2011.02.116

    Article  CAS  Google Scholar 

  26. Xing, Z., Chu, Q., Ren, X., et al.: Ni3S2 coated ZnO array for high-performance supercapacitors. J. Power Sources 245, 463–467 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.012

    Article  CAS  Google Scholar 

  27. Wang, G., Zhang, L., Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012). https://doi.org/10.1039/C1CS15060J

    Article  CAS  PubMed  Google Scholar 

  28. Tan, Y., Liu, Y., Kong, L., et al.: Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in situ reduction method. J. Power Sources 363, 1–8 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.054

    Article  CAS  Google Scholar 

  29. Srinivasan, V.: An electrochemical route for making porous nickel oxide electrochemical capacitors. J. Electrochem. Soc. 144, L210 (1997). https://doi.org/10.1149/1.1837859

    Article  CAS  Google Scholar 

  30. Jänes, A., Kurig, H., Lust, E.: Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon N.Y. 45, 1226–1233 (2007). https://doi.org/10.1016/j.carbon.2007.01.024

    Article  CAS  Google Scholar 

  31. Vangari, M., Pryor, T., Jiang, L.: Supercapacitors: review of materials and fabrication methods. J. Energy Eng. 139, 72–79 (2013). https://doi.org/10.1061/(ASCE)EY.1943-7897.0000102

    Article  Google Scholar 

  32. Iro, Z.S., Subramani, C., Dash, S.S.: A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci. 11, 10628–10643 (2016). https://doi.org/10.20964/2016.12.50

    Article  CAS  Google Scholar 

  33. Jayalakshmi, M., Balasubramanian, K.: Simple capacitors to supercapacitors—an overview. Int. J. Electrochem. Sci. 3, 1196–1217 (2008)

    CAS  Google Scholar 

  34. Spyker, R.L.: Classical equivalent circuit parameters for a double-layer capacitor. IEEE Trans. Aerosp. Electron. Syst. 36, 829–836 (2000). https://doi.org/10.1109/7.869502

    Article  Google Scholar 

  35. Sharma, P., Bhatti, T.S.: A review on electrochemical double-layer capacitors. Energy Convers. Manag. 51, 2901–2912 (2010). https://doi.org/10.1016/j.enconman.2010.06.031

    Article  CAS  Google Scholar 

  36. Gao, H., Xin, S., Goodenough, J.B.: The origin of superior performance of Co(OH)2 in hybrid supercapacitors. Chem 3, 26–28 (2017). https://doi.org/10.1016/j.chempr.2017.06.008

    Article  CAS  Google Scholar 

  37. Shi, F., Li, L., Wang, X., et al.: Metal oxide/hydroxide-based materials for supercapacitors. RSC Adv. 4, 41910–41921 (2014). https://doi.org/10.1039/C4RA06136E

    Article  CAS  Google Scholar 

  38. Brousse, T., Belanger, D., Long, J.W.: To be or not to be pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015). https://doi.org/10.1149/2.0201505jes

    Article  CAS  Google Scholar 

  39. Gund, G.S., Dubal, D.P., Jambure, S.B., et al.: Temperature influence on morphological progress of Ni(OH)2 thin films and its subsequent effect on electrochemical supercapacitive properties. J. Mater. Chem. A 1, 4793 (2013). https://doi.org/10.1039/c3ta00024a

    Article  CAS  Google Scholar 

  40. Wang, H., Lin, J., Shen, Z.X.: Polyaniline (PANi) based electrode materials for energy storage and conversion. J. Sci. Adv. Mater. Devices 1, 225–255 (2016). https://doi.org/10.1016/j.jsamd.2016.08.001

    Article  Google Scholar 

  41. Afzal, A., Abuilaiwi, F.A., Habib, A., et al.: Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges. J. Power Sources 352, 174–186 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.128

    Article  CAS  Google Scholar 

  42. Seung, K., Hyo, C., Kim, B.: Electrochimica acta preparation and electrochemical properties of RuO2-containing activated carbon nano fiber composites with hollow cores. Electrochim. Acta 174, 290–296 (2015). https://doi.org/10.1016/j.electacta.2015.05.176

    Article  CAS  Google Scholar 

  43. Wang, J.-G., Kang, F., Wei, B.: Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog. Mater Sci. 74, 51–124 (2015). https://doi.org/10.1016/j.pmatsci.2015.04.003

    Article  CAS  Google Scholar 

  44. Zhang, Y., Zhao, Y., An, W., et al.: Heteroelement Y-doped α-Ni(OH)2 nanosheets with excellent pseudocapacitive performance. J. Mater. Chem. A 5, 10039–10047 (2017). https://doi.org/10.1039/C7TA00963A

    Article  CAS  Google Scholar 

  45. Gupta, V., Kusahara, T., Toyama, H., et al.: Potentiostatically deposited nanostructured α-Co(OH)2: a high performance electrode material for redox-capacitors. Electrochem. Commun. 9, 2315–2319 (2007). https://doi.org/10.1016/j.elecom.2007.06.041

    Article  CAS  Google Scholar 

  46. González, A., Goikolea, E., Barrena, J.A., et al.: Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016). https://doi.org/10.1016/j.rser.2015.12.249

    Article  CAS  Google Scholar 

  47. Kate, R.S., Khalate, S.A., Deokate, R.J.: Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J. Alloys Compd. 734, 89–111 (2018). https://doi.org/10.1016/j.jallcom.2017.10.262

    Article  CAS  Google Scholar 

  48. Zhang, Y., Feng, H., Wu, X., et al.: Progress of electrochemical capacitor electrode materials: a review. Int. J. Hydrogen Energy 34, 4889–4899 (2009). https://doi.org/10.1016/j.ijhydene.2009.04.005

    Article  CAS  Google Scholar 

  49. Zang, X., Sun, C., Dai, Z., et al.: Nickel hydroxide nanosheets supported on reduced graphene oxide for high-performance supercapacitors. J. Alloys Compd. 691, 144–150 (2017). https://doi.org/10.1016/j.jallcom.2016.08.233

    Article  CAS  Google Scholar 

  50. Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009). https://doi.org/10.1039/b813846j

    Article  CAS  PubMed  Google Scholar 

  51. Pandolfo, A.G., Hollenkamp, A.F.: Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  52. Simon, P., Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  CAS  PubMed  Google Scholar 

  53. Salunkhe, R.R., Lin, J., Malgras, V., et al.: Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 11, 211–218 (2015). https://doi.org/10.1016/j.nanoen.2014.09.030

    Article  CAS  Google Scholar 

  54. Yan, J., Wang, Q., Wei, T., et al.: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4, 1300816 (2014). https://doi.org/10.1002/aenm.201300816

    Article  CAS  Google Scholar 

  55. Choudhary, N., Li, C., Moore, J., et al.: Asymmetric supercapacitor electrodes and devices. Adv. Mater. 29, 1605336 (2017). https://doi.org/10.1002/adma.201605336

    Article  CAS  Google Scholar 

  56. Yuan, C., Wu, H.B., Xie, Y., et al.: Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014). https://doi.org/10.1002/anie.201303971

    Article  CAS  Google Scholar 

  57. Moreno-Fernandez, G., Ibañez, J., Rojo, J.M., et al.: Activated carbon fiber monoliths as supercapacitor electrodes. Adv. Mater. Sci. Eng. 2017, 1–8 (2017). https://doi.org/10.1155/2017/3625414

    Article  CAS  Google Scholar 

  58. Simon, P., Burke, A.: Nanostructured carbons: double-layer capacitance and more. Electrochem. Soc. Interface 17, 38–43 (2008)

    CAS  Google Scholar 

  59. Raymundo-Piñero, E., Leroux, F., Béguin, F.: A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv. Mater. 18, 1877–1882 (2006). https://doi.org/10.1002/adma.200501905

    Article  CAS  Google Scholar 

  60. Saleem, A.M., Desmaris, V., Enoksson, P.: Performance enhancement of carbon nanomaterials for supercapacitors. J. Nanomater. 17, 1537269 (2016). https://doi.org/10.1155/2016/1537269

    Article  CAS  Google Scholar 

  61. Li, L., Wang, X., Wang, S., et al.: Activated carbon prepared from lignite as supercapacitor electrode materials. Electroanalysis 28, 243–248 (2016). https://doi.org/10.1002/elan.201500532

    Article  CAS  Google Scholar 

  62. Liu, L., Niu, Z., Chen, J.: Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem. Soc. Rev. 45, 4340–4363 (2016). https://doi.org/10.1039/C6CS00041J

    Article  CAS  PubMed  Google Scholar 

  63. Futaba, D.N., Hata, K., Yamada, T., et al.: Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987–994 (2006). https://doi.org/10.1038/nmat1782

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, H., Cao, G., Wang, Z., et al.: Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8, 2664–2668 (2008). https://doi.org/10.1021/nl800925j

    Article  CAS  PubMed  Google Scholar 

  65. Zheng, H., Wang, J., Jia, Y., et al.: In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors. J. Power Sources 216, 508–514 (2012). https://doi.org/10.1016/j.jpowsour.2012.06.047

    Article  CAS  Google Scholar 

  66. Pan, H., Li, J., Feng, Y.P.: Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 5, 654–668 (2010). https://doi.org/10.1007/s11671-009-9508-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, J.H., Li, W.Z., Wang, D.Z., et al.: Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon N.Y. 40, 1193–1197 (2002). https://doi.org/10.1016/S0008-6223(01)00266-4

    Article  CAS  Google Scholar 

  68. Du, C., Pan, N.: Supercapacitors using carbon nanotubes films by electrophoretic deposition. J. Power Sources 160, 1487–1494 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.092

    Article  CAS  Google Scholar 

  69. Lee, S.W., Kim, B.-S.S., Chen, S., et al.: Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc. 131, 671–679 (2008). https://doi.org/10.1021/ja807059k

    Article  CAS  Google Scholar 

  70. Lee, S.W., Yabuuchi, N., Gallant, B.M., et al.: High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 5, 531–537 (2010). https://doi.org/10.1038/nnano.2010.116

    Article  CAS  PubMed  Google Scholar 

  71. Niu, C., Sichel, E.K., Hoch, R., et al.: High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480–1482 (1997). https://doi.org/10.1063/1.118568

    Article  CAS  Google Scholar 

  72. Shi, R., Jiang, L., Pan, C.: A single-step process for preparing supercapacitor electrodes from carbon nanotubes. Soft Nanosci. Lett. 1, 11–15 (2011). https://doi.org/10.4236/snl.2011.11003

    Article  CAS  Google Scholar 

  73. Alam, S.N., Sharma, N., Kumar, L.: Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)*. Graphene 6, 1–18 (2017). https://doi.org/10.4236/graphene.2017.61001

    Article  CAS  Google Scholar 

  74. Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009). https://doi.org/10.1126/science.1158877

    Article  CAS  PubMed  Google Scholar 

  75. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  CAS  PubMed  Google Scholar 

  76. Pumera, M.: Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 39, 4146 (2010). https://doi.org/10.1039/c002690p

    Article  CAS  PubMed  Google Scholar 

  77. Tan, Y.B., Lee, J.-M.: Graphene for supercapacitor applications. J. Mater. Chem. A 1, 14814 (2013). https://doi.org/10.1039/c3ta12193c

    Article  CAS  Google Scholar 

  78. Zhang, L.L., Zhao, X., Stoller, M.D., et al.: Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitor. Nano Lett. 12, 1806–1812 (2012). https://doi.org/10.1021/nl203903z

    Article  CAS  PubMed  Google Scholar 

  79. Wang, Y., Shi, Z., Huang, Y., et al.: Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009). https://doi.org/10.1021/jp902214f

    Article  CAS  Google Scholar 

  80. Li, N., Tang, S., Dai, Y., et al.: The synthesis of graphene oxide nanostructures for supercapacitors: a simple route. J. Mater. Sci. 49, 2802–2809 (2014). https://doi.org/10.1007/s10853-013-7986-1

    Article  CAS  Google Scholar 

  81. Lokhande, V.C., Lokhande, A.C., Lokhande, C.D., et al.: Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. J. Alloys Compd. 682, 381–403 (2016). https://doi.org/10.1016/j.jallcom.2016.04.242

    Article  CAS  Google Scholar 

  82. Wang, Y., Guo, J., Wang, T., et al.: Mesoporous transition metal oxides for supercapacitors. Nanomaterials 5, 1667–1689 (2015). https://doi.org/10.3390/nano5041667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Long, J.W., Swider, K.E., Merzbacher, C.I., et al.: Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: the nature of capacitance in nanostructured materials. Langmuir 15, 780–785 (1999). https://doi.org/10.1021/la980785a

    Article  CAS  Google Scholar 

  84. Sugimoto, W., Iwata, H., Yokoshima, K., et al.: Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. J. Phys. Chem. B 109, 7330–7338 (2005). https://doi.org/10.1021/jp044252o

    Article  CAS  PubMed  Google Scholar 

  85. Arunachalam, R., Gnanamuthu, R.M., Al Ahmad, M., et al.: Development of nano-spherical RuO2 active material on AISI 317 steel substrate via pulse electrodeposition for supercapacitors. Surf. Coat. Technol. 276, 336–340 (2015). https://doi.org/10.1016/j.surfcoat.2015.06.054

    Article  CAS  Google Scholar 

  86. McKeown, D.A., Hagans, P.L., Carette, L.P.L., et al.: Structure of hydrous ruthenium oxides: implications for charge storage. J. Phys. Chem. B 103, 4825–4832 (1999). https://doi.org/10.1021/jp990096n

    Article  CAS  Google Scholar 

  87. Kim, H., Popov, B.N.: Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method. J. Power Sources 104, 52–61 (2002)

    Article  CAS  Google Scholar 

  88. Zheng, J.P., Cygan, P.J., Jow, T.R.: Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142, 98–102 (1995)

    Article  Google Scholar 

  89. Ramani, M., Haran, B.S., White, R.E., et al.: Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors. J. Electrochem. Soc. 148, A374 (2001). https://doi.org/10.1149/1.1357172

    Article  CAS  Google Scholar 

  90. Kuratani, K., Kiyobayashi, T., Kuriyama, N.: Influence of the mesoporous structure on capacitance of the RuO2 electrode. J. Power Sources 189, 1284–1291 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.087

    Article  CAS  Google Scholar 

  91. Mohajernia, S., Hejazi, S., Mazare, A., et al.: Semimetallic core-shell TiO2 nanotubes as a high conductivity scaffold and use in efficient 3D-RuO2 supercapacitors. Mater. Today Energy 6, 46–52 (2017). https://doi.org/10.1016/j.mtener.2017.08.001

    Article  Google Scholar 

  92. Ma, H., Kong, D., Xu, Y., et al.: Disassembly–reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 13, 1701026 (2017). https://doi.org/10.1002/smll.201701026

    Article  CAS  Google Scholar 

  93. Chen, L.Y., Hou, Y., Kang, J.L., et al.: Toward the theoretical capacitance of RuO2 reinforced by highly conductive nanoporous gold. Adv. Energy Mater. 3, 851–856 (2013). https://doi.org/10.1002/aenm.201300024

    Article  CAS  Google Scholar 

  94. Wu, Z.S., Wang, D.W., Ren, W., et al.: Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20, 3595–3602 (2010). https://doi.org/10.1002/adfm.201001054

    Article  CAS  Google Scholar 

  95. Kong, S., Cheng, K., Ouyang, T., et al.: Facile electrodepositing processed of RuO2-graphene nanosheets-CNT composites as a binder-free electrode for electrochemical supercapacitors. Electrochim. Acta 246, 433–442 (2017). https://doi.org/10.1016/j.electacta.2017.06.019

    Article  CAS  Google Scholar 

  96. Cho, S., Kim, J., Jo, Y., et al.: Bendable RuO2/graphene thin film for fully flexible supercapacitor electrodes with superior stability. J. Alloys Compd. 725, 108–114 (2017). https://doi.org/10.1016/j.jallcom.2017.07.135

    Article  CAS  Google Scholar 

  97. Zhang, Y., Park, S.: Incorporation of RuO2 into charcoal-derived carbon with controllable microporosity by CO2 activation for high-performance supercapacitor. Carbon N.Y. 122, 287–297 (2017). https://doi.org/10.1016/j.carbon.2017.06.085

    Article  CAS  Google Scholar 

  98. Wu, N., Kuo, S., Lee, M.: Preparation and optimization of RuO2-impregnated SnO2 xerogel supercapacitor. J. Power Sources 104, 62–65 (2002)

    Article  CAS  Google Scholar 

  99. Hu, C., Chen, W., Chang, K.: How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J. Electrochem. Soc. 151, A281 (2004). https://doi.org/10.1149/1.1639020

    Article  CAS  Google Scholar 

  100. Yong-gang, W., Xiao-gang, Z.: Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites. Electrochim. Acta 49, 1957–1962 (2004). https://doi.org/10.1016/j.electacta.2003.12.023

    Article  CAS  Google Scholar 

  101. Hu, C., Chang, K., Lin, M., et al.: Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690–2695 (2006)

    Article  CAS  PubMed  Google Scholar 

  102. Kim, I.H., Kim, K.: Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications. J. Electrochem. Soc. 153, A383 (2006). https://doi.org/10.1149/1.2147406

    Article  CAS  Google Scholar 

  103. Yue-feng, S.U., Feng, W.U., Li-ying, B.A.O., et al.: RuO2/activated carbon composites as a positive electrode in an alkaline electrochemical capacitor. New Carbon Mater. 22, 53–58 (2007)

    Article  Google Scholar 

  104. Wen, J., Ruan, X., Zhou, Z.: Preparation and electrochemical performance of novel ruthenium–manganese oxide electrode materials for electrochemical capacitors. J. Phys. Chem. Solids 70, 816–820 (2009). https://doi.org/10.1016/j.jpcs.2009.03.015

    Article  CAS  Google Scholar 

  105. Lin, Y., Lee, K., Chen, K., et al.: Superior capacitive characteristics of RuO2 nanorods grown on carbon nanotubes. Appl. Surf. Sci. 256, 1042–1045 (2009). https://doi.org/10.1016/j.apsusc.2009.08.026

    Article  CAS  Google Scholar 

  106. Egashira, M., Matsuno, Y., Yoshimoto, N., et al.: Pseudo-capacitance of composite electrode of ruthenium oxide with porous carbon in non-aqueous electrolyte containing imidazolium salt. J. Power Sources 195, 3036–3040 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.046

    Article  CAS  Google Scholar 

  107. Xia, H., Shirley Meng, Y., Yuan, G., et al.: A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte. Electrochem. Solid-State Lett. 15, A60 (2012). https://doi.org/10.1149/2.023204esl

    Article  CAS  Google Scholar 

  108. Fugare, B.Y., Lokhande, B.J.: Study on structural, morphological, electrochemical and corrosion properties of mesoporous RuO2 thin films prepared by ultrasonic spray pyrolysis for supercapacitor electrode application. Mater. Sci. Semicond. Process. 71, 121–127 (2017). https://doi.org/10.1016/j.mssp.2017.07.016

    Article  CAS  Google Scholar 

  109. Li, X., Zheng, F., Luo, Y., et al.: Preparation and electrochemical performance of TiO2–SnO2 doped RuO2 composite electrode for supercapacitors. Electrochim. Acta 237, 177–184 (2017). https://doi.org/10.1016/j.electacta.2017.03.191

    Article  CAS  Google Scholar 

  110. Arunachalam, R., Prataap, R.K.V., Pavul Raj, R., et al.: Pulse electrodeposited RuO2 electrodes for high-performance supercapacitor applications. Surf. Eng. 844, 1–7 (2018). https://doi.org/10.1080/02670844.2018.1426408

    Article  CAS  Google Scholar 

  111. Toupin, M., Brousse, T., Bélanger, D.: Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004). https://doi.org/10.1021/cm049649j

    Article  CAS  Google Scholar 

  112. Toupin, M., Brousse, T., Belanger, D.: Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem. Mater. 14, 3946–3952 (2002). https://doi.org/10.1021/cm020408q

    Article  CAS  Google Scholar 

  113. Devaraj, S., Munichandraiah, N.: Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112, 4406–4417 (2008). https://doi.org/10.1021/jp7108785

    Article  CAS  Google Scholar 

  114. Zhu, J., Shi, W., Xiao, N., et al.: Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors. ACS Appl. Mater. Interfaces 4, 2769–2774 (2012). https://doi.org/10.1021/am300388u

    Article  CAS  PubMed  Google Scholar 

  115. Chang, J.K., Huang, C.H., Lee, M.T., et al.: Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes. Electrochim. Acta 54, 3278–3284 (2009). https://doi.org/10.1016/j.electacta.2008.12.042

    Article  CAS  Google Scholar 

  116. Subramanian, V., Zhu, H., Vajtai, R., et al.: Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 109, 20207–20214 (2005). https://doi.org/10.1021/jp0543330

    Article  CAS  PubMed  Google Scholar 

  117. Sun, C., Zhang, Y., Song, S., et al.: Tunnel-dependent supercapacitance of MnO2: effects of crystal structure. J. Appl. Crystallogr. 46, 1128–1135 (2013). https://doi.org/10.1107/S0021889813015999

    Article  CAS  Google Scholar 

  118. Ghodbane, O., Pascal, J.L., Favier, F.: Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces 1, 1130–1139 (2009). https://doi.org/10.1021/am900094e

    Article  CAS  PubMed  Google Scholar 

  119. Dongale, T.D., Jadhav, P.R., Navathe, G.J., et al.: Development of nano fiber MnO2 thin film electrode and cyclic voltammetry behavior modeling using artificial neural network for supercapacitor application. Mater. Sci. Semicond. Process. 36, 43–48 (2015). https://doi.org/10.1016/j.mssp.2015.02.084

    Article  CAS  Google Scholar 

  120. Wei, J., Nagarajan, N., Zhitomirsky, I.: Manganese oxide films for electrochemical supercapacitors. J. Mater. Process. Technol. 186, 356–361 (2007). https://doi.org/10.1016/j.jmatprotec.2007.01.003

    Article  CAS  Google Scholar 

  121. Ghodbane, O., Pascal, J.L., Fraisse, B., et al.: Structural in situ study of the thermal behavior of manganese dioxide materials: toward selected electrode materials for supercapacitors. ACS Appl. Mater. Interfaces 2, 3493–3505 (2010). https://doi.org/10.1021/am100669k

    Article  CAS  PubMed  Google Scholar 

  122. Lu, W., Huang, S., Miao, L., et al.: Synthesis of MnO2/N-doped ultramicroporous carbon nanospheres for high-performance supercapacitor electrodes. Chin. Chem. Lett. 28, 1324–1329 (2017). https://doi.org/10.1016/j.cclet.2017.04.007

    Article  CAS  Google Scholar 

  123. Pang, S.-C., Anderson, M.A., Chapman, T.W.: Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol–gel-derived and electrodeposited manganese dioxide. J. Electrochem. Soc. 147, 444 (2000). https://doi.org/10.1149/1.1393216

    Article  CAS  Google Scholar 

  124. Hu, C.-C.: Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem. Commun. 4, 105–109 (2002). https://doi.org/10.1016/S1388-2481(01)00285-5

    Article  CAS  Google Scholar 

  125. Ali, G.A.M., Yusoff, M.M., Shaaban, E.R., et al.: High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram. Int. 43, 8440–8448 (2017). https://doi.org/10.1016/j.ceramint.2017.03.195

    Article  CAS  Google Scholar 

  126. Liu, J., Jiang, J., Bosman, M., et al.: Three-dimensional tubular arrays of MnO2–NiO nanoflakes with high areal pseudocapacitance. J. Mater. Chem. 22, 2419–2426 (2012). https://doi.org/10.1039/C1JM14804D

    Article  CAS  Google Scholar 

  127. Jiang, H., Li, C., Sun, T., et al.: High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core–shell nanostructures. Chem. Commun. 48, 2606 (2012). https://doi.org/10.1039/c2cc18079k

    Article  CAS  Google Scholar 

  128. Yang, P., Xiao, X., Li, Y., et al.: Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7, 2617–2626 (2013). https://doi.org/10.1021/nn306044d

    Article  CAS  PubMed  Google Scholar 

  129. Sarkar, D., Khan, G.G., Singh, A.K., et al.: High-performance pseudocapacitor electrodes based on α-Fe2O3/MnO2 core–shell nanowire heterostructure arrays. J. Phys. Chem. C 117, 15523–15531 (2013). https://doi.org/10.1021/jp4039573

    Article  CAS  Google Scholar 

  130. Sherrill, S.A., Duay, J., Gui, Z., et al.: MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage. Phys. Chem. Chem. Phys. 13, 15221 (2011). https://doi.org/10.1039/c1cp21815h

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, J.F., Hou, S.P.: The generalization of the Poisson sum formula associated with the linear canonical transform. J. Appl. Math. 9, 102039 (2012). https://doi.org/10.1155/2012/102039

    Article  Google Scholar 

  132. Sharma, R.K., Rastogi, A.C., Desu, S.B.: Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor. Electrochim. Acta 53, 7690–7695 (2008). https://doi.org/10.1016/j.electacta.2008.04.028

    Article  CAS  Google Scholar 

  133. Nam, K.W., Lee, C.W., Yang, X.Q., et al.: Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: supercapacitive behaviour in aqueous and organic electrolytes. J. Power Sources 188, 323–331 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.133

    Article  CAS  Google Scholar 

  134. Prasad, K.R., Miura, N.: Polyaniline-MnO2 composite electrode for high energy density electrochemical capacitor. Electrochem. Solid-State Lett. 7, A425 (2004). https://doi.org/10.1149/1.1805504

    Article  CAS  Google Scholar 

  135. Lv, P., Feng, Y.Y., Li, Y., et al.: Carbon fabric-aligned carbon nanotube/MnO2/conducting polymers ternary composite electrodes with high utilization and mass loading of MnO2 for super-capacitors. J. Power Sources 220, 160–168 (2012). https://doi.org/10.1016/j.jpowsour.2012.07.073

    Article  CAS  Google Scholar 

  136. Li, Q., Lu, X.F., Xu, H., et al.: Carbon/MnO2 double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors. ACS Appl. Mater. Interfaces 6, 2726–2733 (2014). https://doi.org/10.1021/am405271q

    Article  CAS  PubMed  Google Scholar 

  137. Kang, Y.J., Kim, B., Chung, H., et al.: Fabrication and characterization of flexible and high capacitance supercapacitors based on MnO2/CNT/papers. Synth. Met. 160, 2510–2514 (2010). https://doi.org/10.1016/j.synthmet.2010.09.036

    Article  CAS  Google Scholar 

  138. Liu, R., Sang, B.L.: MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J. Am. Chem. Soc. 130, 2942–2943 (2008). https://doi.org/10.1021/ja7112382

    Article  CAS  PubMed  Google Scholar 

  139. Cakici, M., Reddy, K.R., Alonso-Marroquin, F.: Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem. Eng. J. 309, 151–158 (2017). https://doi.org/10.1016/j.cej.2016.10.012

    Article  CAS  Google Scholar 

  140. Wang, J., Dong, L., Xu, C., et al.: Polymorphous supercapacitors constructed from flexible three-dimensional carbon network/polyaniline/MnO2 composite textiles. ACS Appl. Mater. Interfaces 10, 10851–10859 (2018). https://doi.org/10.1021/acsami.7b19195

    Article  CAS  PubMed  Google Scholar 

  141. Fan, Z., Chen, J., Zhang, B., et al.: High dispersion of γ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors. Diam. Relat. Mater. 17, 1943–1948 (2008). https://doi.org/10.1016/j.diamond.2008.04.015

    Article  CAS  Google Scholar 

  142. Ghosh, D., Giri, S., Mandal, M., et al.: High performance supercapacitor electrode material based on vertically aligned PANI grown on reduced graphene oxide/Ni(OH)2 hybrid composite. RSC Adv. 4, 26094–26101 (2014). https://doi.org/10.1039/C4RA02653E

    Article  CAS  Google Scholar 

  143. Ci, S., Wen, Z., Qian, Y., et al.: NiO-microflower formed by nanowire-weaving nanosheets with interconnected Ni-network decoration as supercapacitor electrode. Sci. Rep. 5, 11919 (2015). https://doi.org/10.1038/srep11919

    Article  PubMed  PubMed Central  Google Scholar 

  144. Zhang, Y.Q., Xia, X.H., Tu, J.P., et al.: Self-assembled synthesis of hierarchically porous NiO film and its application for electrochemical capacitors. J. Power Sources 199, 413–417 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.065

    Article  CAS  Google Scholar 

  145. Xia, X., Tu, J., Wang, X., et al.: Hierarchically porous NiO film grown by chemical bath depositionvia a colloidal crystal template as an electrochemical pseudocapacitor material. J. Mater. Chem. 21, 671–679 (2011). https://doi.org/10.1039/C0JM02784G

    Article  CAS  Google Scholar 

  146. Srinivasan, V., Weidner, J.W.: Studies on the capacitance of nickel oxide films: effect of heating temperature and electrolyte concentration. J. Electrochem. Soc. 147, 880 (2000). https://doi.org/10.1149/1.1393286

    Article  CAS  Google Scholar 

  147. Gund, G.S., Lokhande, C.D., Park, H.S.: Controlled synthesis of hierarchical nanoflake structure of NiO thin film for supercapacitor application. J. Alloys Compd. 741, 549–556 (2018). https://doi.org/10.1016/j.jallcom.2018.01.166

    Article  CAS  Google Scholar 

  148. Patil, U.M., Salunkhe, R.R., Gurav, K.V., et al.: Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Appl. Surf. Sci. 255, 2603–2607 (2008). https://doi.org/10.1016/j.apsusc.2008.07.192

    Article  CAS  Google Scholar 

  149. Miao, F., Tao, B., Ci, P., et al.: 3D ordered NiO/silicon MCP array electrode materials for electrochemical supercapacitors. Mater. Res. Bull. 44, 1920–1925 (2009). https://doi.org/10.1016/j.materresbull.2009.05.004

    Article  CAS  Google Scholar 

  150. Ren, Y., Gao, L.: From three-dimensional flower-like α-Ni(OH)2 nanostructures to hierarchical porous NiO nanoflowers: microwave-assisted fabrication and supercapacitor properties. J. Am. Ceram. Soc. 93, 3560–3564 (2010). https://doi.org/10.1111/j.1551-2916.2010.04090.x

    Article  CAS  Google Scholar 

  151. Al-Osta, A., Samer, B.S., Jadhav, V.V., et al.: NiO@CuO@Cu bilayered electrode: two-step electrochemical synthesis supercapacitor properties. J. Solid State Electrochem. 21, 2609–2614 (2017). https://doi.org/10.1007/s10008-016-3489-8

    Article  CAS  Google Scholar 

  152. Hu, Q., Gu, Z., Zheng, X., et al.: Three-dimensional Co3O4@NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances. Chem. Eng. J. 304, 223–231 (2016). https://doi.org/10.1016/j.cej.2016.06.097

    Article  CAS  Google Scholar 

  153. Yang, H., Xu, H., Li, M., et al.: Assembly of NiO/Ni(OH)2/PEDOT nanocomposites on contra wires for fiber-shaped flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 8, 1774–1779 (2016). https://doi.org/10.1021/acsami.5b09526

    Article  CAS  PubMed  Google Scholar 

  154. Qiu, K., Lu, M., Luo, Y., et al.: Engineering hierarchical nanotrees with CuCo2O4 trunks and NiO branches for high-performance supercapacitors. J. Mater. Chem. A 5, 5820–5828 (2017). https://doi.org/10.1039/C7TA00506G

    Article  CAS  Google Scholar 

  155. Ouyang, Y., Xia, X., Ye, H., et al.: Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. ACS Appl. Mater. Interfaces 10, 3549–3561 (2018). https://doi.org/10.1021/acsami.7b16021

    Article  CAS  PubMed  Google Scholar 

  156. Zhang, X., Shi, W., Zhu, J., et al.: Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res. 3, 643–652 (2010). https://doi.org/10.1007/s12274-010-0024-6

    Article  CAS  Google Scholar 

  157. Lu, Z., Chang, Z., Liu, J., et al.: Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano Res. 4, 658–665 (2011). https://doi.org/10.1007/s12274-011-0121-1

    Article  CAS  Google Scholar 

  158. Jagadale, A.D., Kumbhar, V.S., Dhawale, D.S., et al.: Potentiodynamically deposited nickel oxide (NiO) nanoflakes for pseudocapacitors. J. Electroanal. Chem. 704, 90–95 (2013). https://doi.org/10.1016/j.jelechem.2013.06.020

    Article  CAS  Google Scholar 

  159. Kim, S., Lee, J., Ahn, H., et al.: Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl. Mater. Inter. 5, 1596–1603 (2013). https://doi.org/10.1021/am3021894

    Article  CAS  Google Scholar 

  160. Zhu, S., Dai, Y., Huang, W., et al.: In situ preparation of NiO nanoflakes on Ni foams for high performance supercapacitors. Mater. Lett. 161, 731–734 (2015). https://doi.org/10.1016/j.matlet.2015.09.086

    Article  CAS  Google Scholar 

  161. Cai, G., Wang, X., Cui, M., et al.: Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 12, 258–267 (2015). https://doi.org/10.1016/j.nanoen.2014.12.031

    Article  CAS  Google Scholar 

  162. Huang, M., Li, F., Zhang, Y.X., et al.: Hierarchical NiO nanoflake coated CuO flower core-shell nanostructures for supercapacitor. Ceram. Int. 40, 5533–5538 (2014). https://doi.org/10.1016/j.ceramint.2013.10.143

    Article  CAS  Google Scholar 

  163. Jiao, Y., Liu, Y., Yin, B., et al.: Hybrid α-Fe2O3@NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts. Nano Energy 10, 90–98 (2014). https://doi.org/10.1016/j.nanoen.2014.09.002

    Article  CAS  Google Scholar 

  164. Gund, G.S., Dubal, D.P., Shinde, S.S., et al.: Architectured morphologies of chemically prepared NiO/MWCNTs nanohybrid thin films for high performance supercapacitors. ACS Appl. Mater. Interfaces. 6, 3176–3188 (2014). https://doi.org/10.1021/am404422g

    Article  CAS  PubMed  Google Scholar 

  165. Ede, S.R., Anantharaj, S., Kumaran, K.T., et al.: One step synthesis of Ni/Ni(OH)2 nano sheets (NSs) and their application in asymmetric supercapacitors. RSC Adv. 7, 5898–5911 (2017). https://doi.org/10.1039/C6RA26584G

    Article  CAS  Google Scholar 

  166. Zhang, X., Li, C., Miao, W., et al.: Microwave-assisted synthesis of 3D flowerlike α-Ni(OH)2 nanostructures for supercapacitor application. Sci. China Technol. Sci. 58, 1871–1876 (2015). https://doi.org/10.1007/s11431-015-5934-9

    Article  CAS  Google Scholar 

  167. Wang, H., Gao, J., Li, Z., et al.: One-step synthesis of hierarchical α-Ni(OH)2 flowerlike architectures and their gas sensing properties for NOx at room temperature. CrystEngComm 14, 6843 (2012). https://doi.org/10.1039/c2ce25553g

    Article  CAS  Google Scholar 

  168. Visscher, W., Barendrecht, E.: Investigation of thin-film α- and β-Ni(OH)2 electrodes in alkaline solutions. J. Electroanal. Chem. Interfacial Electrochem. 154, 69–80 (1983). https://doi.org/10.1016/S0022-0728(83)80532-4

    Article  CAS  Google Scholar 

  169. Bode, H., Dehmelt, K., Witte, J.: Zur Kenntnis der Nickelhydroxidelektrode—I. Über das nickel(II)-hydroxidhydrat. Electrochim. Acta 11, 1079–1087 (1966). https://doi.org/10.1016/0013-4686(66)80045-2

    Article  CAS  Google Scholar 

  170. Bernard, M.C., Cortes, R., Keddam, M., et al.: Structural defects and electrochemical reactivity of β-Ni(OH)2. J. Power Sources 63, 247–254 (1996). https://doi.org/10.1016/S0378-7753(96)02482-2

    Article  CAS  Google Scholar 

  171. Quimica, D.D.F.: A simple and novel method for preparing Ni(OH)2 part I: structural studies and voltammetric response. J. Appl. Electrochem. 24, 256–260 (1994)

    Article  Google Scholar 

  172. Oesten, R., Kasper, M., Huggins, R.A., et al.: Structural aspects of undoped and doped nickel hydroxides. Ionics (Kiel) 2, 293–301 (1996)

    Article  CAS  Google Scholar 

  173. Zhao, D., Bao, S., Zhou, W., et al.: Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem. Commun. 9, 869–874 (2007). https://doi.org/10.1016/j.elecom.2006.11.030

    Article  CAS  Google Scholar 

  174. Кovalenko, V., Kotok, V., Bolotin, O.: Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. East. Eur. J. Enterp. Technol. 5, 17–22 (2016). https://doi.org/10.15587/1729-4061.2016.79406

    Article  CAS  Google Scholar 

  175. Lang, J., Kong, L., Wu, W., et al.: A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. J. Solid State Electrochem. 13, 333–340 (2009). https://doi.org/10.1007/s10008-008-0560-0

    Article  CAS  Google Scholar 

  176. Lokhande, P.E., Chavan, U.S.: Nanoflower-like Ni(OH)2 synthesis with chemical bath deposition method for high performance electrochemical applications. Mater. Lett. 218C, 225–228 (2018). https://doi.org/10.1016/j.matlet.2018.02.012

    Article  CAS  Google Scholar 

  177. Chai, H., Peng, X., Liu, T., et al.: High-performance supercapacitors based on conductive graphene combined with Ni(OH)2 nanoflakes. RSC Adv. 7, 36617–36622 (2017). https://doi.org/10.1039/C7RA04986B

    Article  CAS  Google Scholar 

  178. Lu, Z., Chang, Z., Zhu, W., et al.: Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun. 47, 9651 (2011). https://doi.org/10.1039/c1cc13796d

    Article  CAS  Google Scholar 

  179. Cui, H., Xue, J., Wang, M.: Synthesis of high electrochemical performance Ni(OH)2 nanosheets through a solvent-free reaction for application in supercapacitor. Adv. Powder Technol. 26, 434–438 (2015). https://doi.org/10.1016/j.apt.2014.11.016

    Article  CAS  Google Scholar 

  180. Aguilera, L., Leyet, Y., Peña-Garcia, R., et al.: Cabbage-like α-Ni(OH)2 with a good long-term cycling stability and high electrochemical performances for supercapacitor applications. Chem. Phys. Lett. 677, 75–79 (2017). https://doi.org/10.1016/j.cplett.2017.03.084

    Article  CAS  Google Scholar 

  181. Kore, R.M., Lokhande, B.J.: Hierarchical mesoporous network of amorphous α-Ni(OH)2 for high performance supercapacitor electrode material synthesized from a novel solvent deficient approach. Electrochim. Acta 245, 780–790 (2017). https://doi.org/10.1016/j.electacta.2017.06.001

    Article  CAS  Google Scholar 

  182. Li, X.J., Song, Z.W., Guo, W., et al.: Vertically porous Ni(OH)2/Ni thin film on carbon cloth for high performance flexible supercapacitors. Mater. Lett. 190, 20–23 (2017). https://doi.org/10.1016/j.matlet.2016.12.094

    Article  CAS  Google Scholar 

  183. Lokhande, P.E., Panda, H.S.: Synthesis and characterization of Ni.Co(OH)2 material for supercapacitor application. IARJSET 2, 10–13 (2015). https://doi.org/10.17148/iarjset.2015.2903

    Article  Google Scholar 

  184. Xi, Y., Wei, G., Li, J., et al.: Facile synthesis of MnO2–Ni(OH)2 3D ridge-like porous electrode materials by seed-induce method for high-performance asymmetric supercapacitor. Electrochim. Acta 233, 26–35 (2017). https://doi.org/10.1016/j.electacta.2017.02.038

    Article  CAS  Google Scholar 

  185. Bai, X., Liu, Q., Liu, J., et al.: Hierarchical Co3O4@Ni(OH)2 core–shell nanosheet arrays for isolated all-solid state supercapacitor electrodes with superior electrochemical performance. Chem. Eng. J. 315, 35–45 (2017). https://doi.org/10.1016/j.cej.2017.01.010

    Article  CAS  Google Scholar 

  186. Ye, L., Zhao, L., Zhang, H., et al.: Serpent-cactus-like Co-doped Ni(OH)2/Ni3S2 hierarchical structure composed of ultrathin nanosheets for use in efficient asymmetric supercapacitors. J. Mater. Chem. A 5, 1603–1613 (2017). https://doi.org/10.1039/C6TA09547J

    Article  CAS  Google Scholar 

  187. Zeng, Z., Sun, P., Zhu, J., et al.: Porous petal-like Ni(OH)2–MnOx nanosheet electrodes grown on carbon fiber paper for supercapacitors. Surf. Interf. 8, 73–82 (2017). https://doi.org/10.1016/j.surfin.2017.04.011

    Article  CAS  Google Scholar 

  188. Hao, J., Wang, X., Liu, F., et al.: Facile synthesis ZnS/ZnO/Ni(OH)2 composites grown on Ni foam: a bifunctional materials for photocatalysts and supercapacitors. Sci. Rep. 7, 3021 (2017). https://doi.org/10.1038/s41598-017-03200-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ke, Q., Guan, C., Zhang, X., et al.: Surface-charge-mediated formation of H-TiO2 @Ni(OH)2 heterostructures for high-performance supercapacitors. Adv. Mater. 29, 1604164 (2017). https://doi.org/10.1002/adma.201604164

    Article  CAS  Google Scholar 

  190. Nguyen, T., Boudard, M., João Carmezim, M., et al.: NixCo1−x(OH)2 nanosheets on carbon nanofoam paper as high areal capacity electrodes for hybrid supercapacitors. Energy 126, 208–216 (2017). https://doi.org/10.1016/j.energy.2017.03.024

    Article  CAS  Google Scholar 

  191. Pan, Y., Gao, H., Zhang, M., et al.: Three-dimensional porous ZnCo2O4 sheet array coated with Ni(OH)2 for high-performance asymmetric supercapacitor. J. Colloid Interface Sci. 497, 50–56 (2017). https://doi.org/10.1016/j.jcis.2017.02.053

    Article  CAS  PubMed  Google Scholar 

  192. Wang, M., Li, Z., Wang, C., et al.: Novel core–shell FeOF/Ni(OH)2 hierarchical nanostructure for all-solid-state flexible supercapacitors with enhanced performance. Adv. Funct. Mater. 27, 1701014 (2017). https://doi.org/10.1002/adfm.201701014

    Article  CAS  Google Scholar 

  193. Dong, B., Li, M., Chen, S., et al.: Formation of g-C3N4 @Ni(OH)2 honeycomb nanostructure and asymmetric supercapacitor with high energy and power density. ACS Appl. Mater. Interfaces. 9, 17890–17896 (2017). https://doi.org/10.1021/acsami.7b02693

    Article  CAS  PubMed  Google Scholar 

  194. Li, L., Qin, J., Bi, H., et al.: Ni(OH)2 nanosheets grown on porous hybrid g-C3N4/RGO network as high performance supercapacitor electrode. Sci. Rep. 7, 43413 (2017). https://doi.org/10.1038/srep43413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lu, K., Zhang, J., Wang, Y., et al.: Interfacial deposition of three-dimensional nickel hydroxide nanosheet-graphene aerogel on Ni wire for flexible fiber asymmetric supercapacitors. ACS Sustain. Chem. Eng. 5, 821–827 (2017). https://doi.org/10.1021/acssuschemeng.6b02144

    Article  CAS  Google Scholar 

  196. Wang, H., Shi, X., Zhang, W., et al.: One-pot hydrothermal synthesis of flower-like β-Ni(OH)2 encapsulated by reduced graphene oxide for high-performance supercapacitors. J. Alloys Compd. 711, 643–651 (2017). https://doi.org/10.1016/j.jallcom.2017.04.035

    Article  CAS  Google Scholar 

  197. Kazemi, S.H., Malae, K.: Electrodeposited Ni(OH)2 nanostructures on electro-etched carbon fiber paper for highly stable supercapacitors. J. Iran. Chem. Soc. 14, 419–425 (2017). https://doi.org/10.1007/s13738-016-0990-z

    Article  CAS  Google Scholar 

  198. Wei, G., Xu, X., Liu, J., et al.: Carbon quantum dots decorated hierarchical Ni(OH)2 with lamellar structure for outstanding supercapacitor. Mater. Lett. 186, 131–134 (2017). https://doi.org/10.1016/j.matlet.2016.09.126

    Article  CAS  Google Scholar 

  199. Kalaji, M., Murphy, P.J., Williams, G.O.: Study of conducting polymers for use as redox supercapacitors. Synth. Met. 102, 1360–1361 (1999). https://doi.org/10.1016/S0379-6779(98)01334-4

    Article  CAS  Google Scholar 

  200. Gupta, V., Miura, N.: High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Mater. Lett. 60, 1466–1469 (2006). https://doi.org/10.1016/j.matlet.2005.11.047

    Article  CAS  Google Scholar 

  201. Ryu, K.S., Wu, X., Lee, Y.G., et al.: Electrochemical capacitor composed of doped polyaniline and polymer electrolyte membrane. J. Appl. Polym. Sci. 89, 1300–1304 (2003). https://doi.org/10.1002/app.12242

    Article  CAS  Google Scholar 

  202. Meng, Q., Cai, K., Chen, Y., et al.: Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017). https://doi.org/10.1016/j.nanoen.2017.04.040

    Article  CAS  Google Scholar 

  203. Rudge, A., Davey, J., Raistrick, I., et al.: Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 47, 89–107 (1994). https://doi.org/10.1016/0378-7753(94)80053-7

    Article  CAS  Google Scholar 

  204. Giannelis, E.: Polymer layered silicate nanocomposites. Adv. Mater. 8, 29–35 (1996). https://doi.org/10.1002/adma.19960080104

    Article  CAS  Google Scholar 

  205. Conway, B.E.: Electrochemical capacitors. Electrochem.Cwru. Edu. 17, 34–37 (2003). https://doi.org/10.1007/978-3-662-46657-5_17

    Article  Google Scholar 

  206. Ryu, K.S., Kim, K.M., Park, Y.J., et al.: Redox supercapacitor using polyaniline doped with Li salt as electrode. Solid State Ionics 152–153, 861–866 (2002). https://doi.org/10.1016/S0167-2738(02)00386-7

    Article  Google Scholar 

  207. Hashmi, S.A., Upadhyaya, H.M.: Polypyrrole and poly(3-methyl thiophene)-based solid state redox supercapacitors using ion conducting polymer electrolyte. Solid State Ionics 152–153, 883–889 (2002). https://doi.org/10.1016/S0167-2738(02)00390-9

    Article  Google Scholar 

  208. Naoi, K., Suematsu, S., Manago, A.: Electrochemistry of poly(1,5-diaminoanthraquinone) and its application in electrochemical capacitor materials. J. Electrochem. Soc. 147, 420–426 (2000). https://doi.org/10.1149/1.1393212

    Article  CAS  Google Scholar 

  209. Sivaraman, P., Thakur, A., Kushwaha, R.K., et al.: Poly(3-methyl thiophene)-activated carbon hybrid supercapacitor based on gel polymer electrolyte. Electrochem. Solid-State Lett. 9, A435 (2006). https://doi.org/10.1149/1.2213357

    Article  CAS  Google Scholar 

  210. Wang, K., Huang, J., Wei, Z.: Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C 114, 8062–8067 (2010). https://doi.org/10.1021/jp9113255

    Article  CAS  Google Scholar 

  211. Shi, Y., Pan, L., Liu, B., et al.: Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J. Mater. Chem. A 2, 6086–6091 (2014). https://doi.org/10.1039/C4TA00484A

    Article  CAS  Google Scholar 

  212. Gnanakan, S.R.P., Rajasekhar, M., Subramania, A.: Synthesis of polythiophene nanoparticles by surfactant—assisted dilute polymerization method for high performance redox supercapacitors. Int. J. Electrochem. Sci. 4, 1289–1301 (2009)

    CAS  Google Scholar 

  213. Frackowiak, E., Khomenko, V., Jurewicz, K., et al.: Supercapacitors based on conducting polymers/nanotubes composites. J. Power Sources 153, 413–418 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.030

    Article  CAS  Google Scholar 

  214. Zhou, Y., Qin, Z.Y., Li, L., et al.: Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials. Electrochim. Acta 55, 3904–3908 (2010). https://doi.org/10.1016/j.electacta.2010.02.022

    Article  CAS  Google Scholar 

  215. Ates, M., Eren, N., Osken, I., et al.: Poly(2,6-di(thiophene-2-yl)-3,5bis(4-(thiophene-2-yl)phenyl)dithieno [3,2-b;2′,3′-d]thiophene)/carbon nanotube composite for capacitor applications. J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.40061

    Article  Google Scholar 

  216. Park, J.H., Ko, J.M., Park, O.O., et al.: Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber. J. Power Sources 105, 20–25 (2002)

    Article  CAS  Google Scholar 

  217. Park, J.H., Park, O.O., Shin, K.H., et al.: An electrochemical capacitor based on a Ni(OH)(2)/activated carbon composite electrode. Electrochem. Solid-State Lett. 5, H7–H10 (2002). https://doi.org/10.1149/1.1432245

    Article  CAS  Google Scholar 

  218. Zhou, Y.K., He, B.L., Zhou, W.J., et al.: Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites. Electrochim. Acta 49, 257–262 (2004). https://doi.org/10.1016/j.electacta.2003.08.007

    Article  CAS  Google Scholar 

  219. Zhang, H., Hu, Z., Li, M., et al.: A high-performance supercapacitor based on a polythiophene/multiwalled carbon nanotube composite by electropolymerization in an ionic liquid microemulsion. J. Mater. Chem. A 2, 17024–17030 (2014). https://doi.org/10.1039/C4TA03369H

    Article  CAS  Google Scholar 

  220. Li, J., Zhao, W., Huang, F., et al.: Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes. Nanoscale 3, 5103 (2011). https://doi.org/10.1039/c1nr10802f

    Article  CAS  Google Scholar 

  221. Fu, G.R., Hu, Z.A., Xie, L.J., et al.: Electrodeposition of nickel hydroxide films on nickel foil and its electrochemical performances for supercapacitor. Int. J. Electrochem. Sci. 4, 1052–1062 (2009)

    CAS  Google Scholar 

  222. Yang, G.W., Xu, C.L., Li, H.L.: Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun. 2, 6537 (2008). https://doi.org/10.1039/b815647f

    Article  CAS  Google Scholar 

  223. Fu, X.M.: The Influence of the hydrothermal temperature on the morphologies of β-Ni(OH)2 nanospheres and nanoflakes. Appl. Mech. Mater. 159, 376–379 (2012). https://doi.org/10.4028/www.scientific.net/AMM.159.376

    Article  CAS  Google Scholar 

  224. Zhu, S., Zhang, H., Chen, P., et al.: Self-assembled three-dimensional hierarchical graphene hybrid hydrogels with ultrathin β-MnO2 nanobelts for high performance supercapacitors. J. Mater. Chem. A 3, 1540–1548 (2015). https://doi.org/10.1039/C4TA04921G

    Article  CAS  Google Scholar 

  225. Gould, R.D.: Structure and electrical conduction properties of phthalocyanine thin films. Coord. Chem. Rev. 156, 237–274 (1996)

    Article  CAS  Google Scholar 

  226. Khallaf, H., Chai, G., Lupan, O., et al.: Investigation of chemical bath deposition of ZnO thin films using six different complexing agents. J. Phys. D Appl. Phys. (2009). https://doi.org/10.1088/0022-3727/42/13/135304

    Article  Google Scholar 

  227. Nagayama, H., Honda, H., Kawahara, H.: A new process for silica coating. J. Electrochem. Soc. 135, 2013–2015 (1988). https://doi.org/10.1149/1.2096198

    Article  CAS  Google Scholar 

  228. Mane, R.S., Lokhande, C.D.: Chemical deposition method for metal chalcogenide thin films. Mater. Chem. Phys. 65, 1–31 (2000). https://doi.org/10.1016/S0254-0584(00)00217-0

    Article  CAS  Google Scholar 

  229. Patil, U.M., Gurav, K.V., Kim, J.H., et al.: Bath temperature impact on morphological evolution of Ni(OH)2 thin films and their supercapacitive behaviour. Bull. Mater. Sci. 37, 27–33 (2014). https://doi.org/10.1007/s12034-014-0617-x

    Article  CAS  Google Scholar 

  230. Gurav, K.V., Patil, U.M., Shin, S.W., et al.: Room temperature chemical synthesis of Cu(OH)2 thin films for supercapacitor application. J. Alloys Compd. 573, 27–31 (2013). https://doi.org/10.1016/j.jallcom.2013.03.193

    Article  CAS  Google Scholar 

  231. Hench, L.L., West, J.K.: The sol-gel process. Chem. Rev. 90, 33–72 (1990). https://doi.org/10.1021/cr00099a003

    Article  CAS  Google Scholar 

  232. Brinker, C.J., Frye, G.C., Hurd, A.J., et al.: Fundamentals of sol–gel dip coating. Thin Solid Films 201, 97–108 (1991). https://doi.org/10.1016/0040-6090(91)90158-T

    Article  CAS  Google Scholar 

  233. Brinker, C.J., Scherer, G.W.: Sol-gel science: the physics and chemistry of sol-gel processing, Academic Press (ed) San Diego, pp. 787–837 (1990)

  234. Lin, C.K., Chuang, K.H., Lin, C.Y., et al.: Manganese oxide films prepared by sol–gel process for supercapacitor application. Surf. Coat. Technol. 202, 1272–1276 (2007). https://doi.org/10.1016/j.surfcoat.2007.07.049

    Article  CAS  Google Scholar 

  235. Jeyalakshmi, K., Purushothaman, K.K., Muralidharan, G.: Thickness dependent supercapacitor behaviour of sol–gel spin coated nanostructured vanadium pentoxide thin films. Philos. Mag. 93, 1490–1499 (2013). https://doi.org/10.1080/14786435.2012.745654

    Article  CAS  Google Scholar 

  236. Zhang, H., Feng, J., Zhang, M.: Preparation of flower-like CuO by a simple chemical precipitation method and their application as electrode materials for capacitor. Mater. Res. Bull. 43, 3221–3226 (2008). https://doi.org/10.1016/j.materresbull.2008.03.003

    Article  CAS  Google Scholar 

  237. Lang, J.W., Kong, L.B., Wu, W.J., et al.: Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem. Commun. 35, 4213–4215 (2008). https://doi.org/10.1039/b800264a

    Article  CAS  Google Scholar 

  238. Wieczorek-Ciurowa, K., Gamrat, K.: Some aspects of mechanochemical reactions. Paper Presented at the 1st Workshop on Synthesis and Analysis of Nanomaterials and Nanostructures/3rd Czech-Silesian Saxony Mechanics Colloquium. Wroclaw, Poland, 21–22 November 2005

  239. Marx, W.: Mechanochemical synthesis of nanoparticles. J. Mater. Sci. 39, 5143–5146 (2004). https://doi.org/10.1023/B:JMSC.0000039199.56155.f9

    Article  Google Scholar 

  240. Liu, X., Yu, L.: Synthesis of nanosized nickel hydroxide by solid-state reaction at room temperature. Mater. Lett. 58, 1327–1330 (2004). https://doi.org/10.1016/j.matlet.2003.09.054

    Article  CAS  Google Scholar 

  241. Sun, Z., Lu, X.: A solid-state reaction route to anchoring Ni (OH)2 nanoparticles on reduced graphene oxide sheets for supercapacitors. Ind. Eng. Chem. Res. 51, 9973–9979 (2012). https://doi.org/10.1021/ie202706h

    Article  CAS  Google Scholar 

  242. Zhong, C., Deng, Y., Hu, W., et al.: A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015). https://doi.org/10.1039/C5CS00303B

    Article  CAS  PubMed  Google Scholar 

  243. Al-Ghamdi, A.F., Messali, M., Ahmed, S.A.: Electrochemical studies of new pyridazinium-based ionic liquid and its determination in different detergents. J. Mater. Environ. Sci. 2, 215–224 (2011). https://doi.org/10.4161/onci.22244

    Article  CAS  Google Scholar 

  244. Zhao, D., Wu, M., Kou, Y., et al.: Ionic liquids: applications in catalysis. Catal. Today 74, 157–189 (2002). https://doi.org/10.1016/S0920-5861(01)00541-7

    Article  CAS  Google Scholar 

  245. Kowsari, E.: High-performance supercapacitors based on ionic liquids and a graphene nanostructure. In: Pesek, K. (ed.) Ionic Liquids—Current State of the Art, pp. 75–100. Rijeka, InTech (2015)

    Google Scholar 

  246. Galiński, M., Lewandowski, A., Stepniak, I.: Ionic liquids as electrolytes. Electrochim. Acta 51, 5567–5580 (2006). https://doi.org/10.1016/j.electacta.2006.03.016

    Article  CAS  Google Scholar 

  247. Brandt, A., Pohlmann, S., Varzi, A., et al.: Ionic liquids in supercapacitors. MRS Bull. 38, 554–559 (2013). https://doi.org/10.1557/mrs.2013.151

    Article  CAS  Google Scholar 

  248. Armand, M., Endres, F., MacFarlane, D.R., et al.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009). https://doi.org/10.1038/nmat2448

    Article  CAS  PubMed  Google Scholar 

  249. Hall, P.J., Mirzaeian, M., Fletcher, S.I., et al.: Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 3, 1238 (2010). https://doi.org/10.1039/c0ee00004c

    Article  CAS  Google Scholar 

  250. Choudhury, N.A., Sampath, S., Shukla, A.K.: Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy Environ. Sci. 2, 55–67 (2009). https://doi.org/10.1039/B811217G

    Article  CAS  Google Scholar 

  251. Łatoszyńska, A.A., Zukowska, G.Z., Rutkowska, I.A., et al.: Non-aqueous gel polymer electrolyte with phosphoric acid ester and its application for quasi solid-state supercapacitors. J. Power Sources 274, 1147–1154 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.094

    Article  CAS  Google Scholar 

  252. Fan, L.Q., Zhong, J., Wu, J.H., et al.: Improving the energy density of quasi-solid-state electric double-layer capacitors by introducing redox additives into gel polymer electrolytes. J. Mater. Chem. A 2, 9011 (2014). https://doi.org/10.1039/c4ta01408a

    Article  CAS  Google Scholar 

  253. Ulihin, A.S., Mateyshina, Y.G., Uvarov, N.F.: All-solid-state asymmetric supercapacitors with solid composite electrolytes. Solid State Ionics 251, 62–65 (2013). https://doi.org/10.1016/j.ssi.2013.03.014

    Article  CAS  Google Scholar 

  254. Francisco, B.E., Jones, C.M., Lee, S.H., et al.: Nanostructured all-solid-state supercapacitor based on Li2SP2S5 glass-ceramic electrolyte. Appl. Phys. Lett. 100, 103902 (2012). https://doi.org/10.1063/1.3693521

    Article  CAS  Google Scholar 

  255. Frackowiak, E., Fic, K., Meller, M., et al.: Electrochemistry serving people and nature: high-energy ecocapacitors based on redox-active electrolytes. Chemsuschem 5, 1181–1185 (2012). https://doi.org/10.1002/cssc.201200227

    Article  CAS  PubMed  Google Scholar 

  256. Fic, K., Frackowiak, E., Béguin, F.: Unusual energy enhancement in carbon-based electrochemical capacitors. J. Mater. Chem. 22, 24213 (2012). https://doi.org/10.1039/c2jm35711a

    Article  CAS  Google Scholar 

  257. Lota, G., Frackowiak, E.: Striking capacitance of carbon/iodide interface. Electrochem. Commun. 11, 87–90 (2009). https://doi.org/10.1016/j.elecom.2008.10.026

    Article  CAS  Google Scholar 

  258. Roldán, S., Blanco, C., Granda, M., et al.: Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew. Chem. Int. Ed. 50, 1699–1701 (2011). https://doi.org/10.1002/anie.201006811

    Article  CAS  Google Scholar 

  259. Liu, C., Yu, Z., Neff, D., et al.: Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010). https://doi.org/10.1021/nl102661q

    Article  CAS  PubMed  Google Scholar 

  260. Oliva, P., Leonardi, J., Laurent, J.F., et al.: Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. J. Power Sources 8, 229–255 (1982). https://doi.org/10.1016/0378-7753(82)80057-8

    Article  CAS  Google Scholar 

  261. Dubal, D.P., Gund, G.S., Lokhande, C.D., et al.: CuO cauliflowers for supercapacitor application: novel potentiodynamic deposition. Mater. Res. Bull. 48, 923–928 (2013). https://doi.org/10.1016/j.materresbull.2012.11.081

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. C. D. Lokhande and Dr. Ram Dayal for their valuable guidance during the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad Eknath Lokhande.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokhande, P.E., Chavan, U.S. & Pandey, A. Materials and Fabrication Methods for Electrochemical Supercapacitors: Overview. Electrochem. Energ. Rev. 3, 155–186 (2020). https://doi.org/10.1007/s41918-019-00057-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-019-00057-z

Keywords

Navigation