Skip to main content
Log in

Stable ultrahigh specific capacitance of NiO nanorod arrays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Previously reported examples of electrochemical pseudocapacitors based on cheap metal oxides have suffered from the need to compromise between specific capacitance, rate capacitance, and reversibility. Here we show that NiO nanorod arrays on Ni foam have a combination of ultrahigh specific capacitance (2018 F/g at 2.27 A/g), high power density (1536 F/g at 22.7 A/g), and good cycling stability (only 8% of capacitance was lost in the first 100 cycles with no further change in the subsequent 400 cycles). This resulted in an improvement in the reversible capacitance record for NiO by 50% or more, reaching 80% of the theoretical value, and demonstrated that a three-dimensional regular porous array structure can afford all of these virtues in a supercapacitor. The excellent performance can be attributed to the slim (< 20 nm) rod morphology, high crystallinity, regularly aligned array structure and strong bonding of the nanorods to the metallic Ni substrate, as revealed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezesinski, K.; Wang, J.; Haetge, J.; Reitz, C.; Steinmueller, S. O.; Tolbert, S. H.; Smarsly, B. M.; Dunn, B.; Brezesinski, T. Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. J. Am. Chem. Soc. 2010, 132, 6982–6990.

    Article  CAS  Google Scholar 

  2. Pandolfo, A. G.; Hollenkamp, A. F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11–27.

    Article  CAS  Google Scholar 

  3. Dillon, A. C. Carbon nanotubes for photoconversion and electrical energy storage. Chem. Rev. 2010, 110, 6856–6872.

    Article  CAS  Google Scholar 

  4. Zhang, H.; Cao, G.; Yang, Y. Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ. Sci. 2009, 2, 932–943.

    Article  CAS  Google Scholar 

  5. Liu, R.; Duay, J.; Lee, S. B. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. ACS Nano 2010, 4, 4299–4307.

    Article  CAS  Google Scholar 

  6. Xiao, X.; Wang, L.; Wang, D.; He, X.; Peng, Q.; Li, Y. Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res. 2009, 2, 923–930.

    Article  CAS  Google Scholar 

  7. Liu, C.; Li, F.; Ma, L.; Cheng, H. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

    Article  CAS  Google Scholar 

  8. Hu, C. C.; Chang, K. H.; Lin, M. C.; Wu, Y. T. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 2006, 6, 2690–2695.

    Article  CAS  Google Scholar 

  9. Hsieh, Y.; Lee, K.; Lin, Y.; Wu, N.; Donne, S. Investigation on capacity fading of aqueous MnOn H2O electrochemical capacitor. J. Power Sources 2008, 177, 660–664.

    Article  CAS  Google Scholar 

  10. Cheng, H.; Lu, Z.; Deng, J.; Chung, C.; Zhang, K.; Li, Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 2010, 3, 895–901.

    Article  CAS  Google Scholar 

  11. Lang, J. W.; Kong, L. B.; Wu, W. J.; Luo, Y. C.; Kang, L. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem. Commun. 2008, 4213–4215.

  12. Wang, D.; Ni, W.; Pang, H.; Lu, Q.; Huang, Z.; Zhao, J. Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors. Electrochim. Acta 2010, 55, 6830–6835.

    Google Scholar 

  13. Liu, K.; Anderson, M. Porous nickel oxide/nickel films for electrochemical capacitors. J. Electrochem. Soc. 1996, 143, 124–130.

    Article  CAS  Google Scholar 

  14. Yuan, C. Z.; Zhang, X. G.; Su, L. H.; Gao, B.; Shen, L. F. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem. 2009, 19, 5772–5777.

    Article  CAS  Google Scholar 

  15. Xing, W.; Li, F.; Yan, Z. F.; Lu, G. Q. Synthesis and electrochemical properties of mesoporous nickel oxide. J. Power Sources 2004, 134, 324–330.

    Article  CAS  Google Scholar 

  16. Liu, X. M.; Zhang, X. G.; Fu, S. Y. Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors. Mater. Res. Bull. 2006, 41, 620–627.

    Article  CAS  Google Scholar 

  17. Zhang, X. J.; Shi, W. H.; Zhu, J. X.; Zhao, W. Y.; Ma, J.; Mhaisalkar, S.; Maria, T. L.; Yang, Y. H.; Zhang, H.; Hng, H. H.; Yan, Q. Y. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res. 2010, 3, 643–652.

    Article  CAS  Google Scholar 

  18. Wang, H. L.; Robinson, J.; Diankov, G.; Dai, H. J. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010, 132, 3270–3271.

    Article  CAS  Google Scholar 

  19. Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electro-chemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477.

    Article  CAS  Google Scholar 

  20. Yang, G.; Xu, C.; Li, H. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun. 2008, 6537–6539.

  21. Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv. Mater. 2010, 22, 347–351.

    Article  CAS  Google Scholar 

  22. Fu, G. R.; Hu, Z. A.; Xie, L. J.; Jin, X. Q.; Xie, Y. L.; Wang, Y. X.; Zhang, Z. Y.; Yang, Y. Y.; Wu, H. Y. Electro-deposition of nickel hydroxide films on nickel foil and its electrochemical performances for supercapacitor. Int. J. Electrochem. Sci. 2009, 4, 1052–1062.

    CAS  Google Scholar 

  23. Cui, L. F.; Ruffo, R.; Chan, C. K.; Peng, H. L.; Cui, Y. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491–495.

    Article  CAS  Google Scholar 

  24. Mai, L. Q.; Dong, Y. J.; Xu, L.; Han, C. H. Single nanowire electrochemical devices. Nano Lett. 2010, 10, 4273–4278.

    Article  CAS  Google Scholar 

  25. Chan, C.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.; Huggins, R.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2007, 3, 31–35.

    Article  Google Scholar 

  26. Kim, J. H.; Zhu, K.; Yan, Y. F.; Perkins, C. L.; Frank, A. J. Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. Nano Lett. 2010, 10, 4099–4104.

    Article  CAS  Google Scholar 

  27. Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872–1876.

    Article  CAS  Google Scholar 

  28. Yan, J. A.; Khoo, E.; Sumboja, A.; Lee, P. S. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 2010, 4, 4247–4255.

    Article  CAS  Google Scholar 

  29. Zhang, H.; Cao, G. P.; Wang, Z. Y.; Yang, Y. S.; Shi, Z. J.; Gu, Z. N. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 2008, 8, 2664–2668.

    Article  CAS  Google Scholar 

  30. Lee, S. W.; Kim, J.; Chen, S.; Hammond, P. T.; Shao-Horn, Y. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 2010, 4, 3889–3896.

    Article  CAS  Google Scholar 

  31. Yuan, Y.; Xia, X.; Wu, J.; Yang, J.; Chen, Y.; Guo, S. Nickel foam-supported porous Ni(OH)2/NiOOH composite film as advanced pseudocapacitor material. Electrochim. Acta 2010.

  32. Wang, J.; Song, Y.; Li, Z.; Liu, Q.; Zhou, J.; Jing, X.; Zhang, M.; Jiang, Z. In situ 0 Ni/Al layered double hydroxide and its electrochemical capacitance performance. Energy Fuels 2010, 24, 2878–2887.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Z., Chang, Z., Liu, J. et al. Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano Res. 4, 658–665 (2011). https://doi.org/10.1007/s12274-011-0121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0121-1

Keywords

Navigation