Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Having power and energy characteristics between batteries and conventional capacitors, electrochemical capacitors offer new opportunities in electrical engineering and a fertile ground for the development and refinement of new electrode materials. This chapter will begin by introducing the fundamentals of electrochemical double-layer capacitors and pseudocapacitors (Sect. 17.1). It will go on to describe the most commonly used methods (Sect. 17.2) for assessing the capacitance, energy, and power of electrochemical capacitors:

  • Constant current discharge (Sect. 17.2.1)

  • Cyclic voltammetry (Sect. 17.2.2)

  • Impedance spectroscopy (Sect. 17.2.3).

Electrode configurations and cell designs will be considered in Sect. 17.2.3, as well as practical concerns such as the electrolyte, the separator, and the current collectors, and common experimental pitfalls will be pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AQ:

anthraquinone

BET:

Brunauer–Emmett–Teller

BJH:

Barrett, Joyner, and Halenda theory

CNT:

carbon nanotube

CPE:

constant phase element

CV:

cyclic voltammetry

EC:

electrochemical capacitor

EDLC:

electrochemical double-layer capacitor

EDR:

electrolyte distributed resistance

EIS:

electrochemical impedance spectroscopy

ESR:

equivalent serial resistance

MWCNT:

multiwall carbon nanotube

NiMH:

nickel metal hydride

OCP:

open circuit potential

PANI:

polyaniline

PC:

pseudocapacitance

PEDOT:

poly(3,4-ethylenedioxythiophene)

PTFE:

poly(tetrafluoroethylene)

RMS:

root mean square

TLM-PSD:

transmission line model-pore size distribution

TLM:

transmission line model

XPS:

x-ray photoelectron spectroscopy

XRD:

x-ray diffraction

References

  1. P. Simon, Y. Gogotsi: Materials for electrochemical capacitors, Nat. Mater. 7(11), 845–854 (2008)

    Article  Google Scholar 

  2. B.E. Conway, W.G. Pell: Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices, J. Solid State Electrochem. 7, 637–644 (2003)

    Article  Google Scholar 

  3. L.L. Zhang, X.S. Zhao: Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38(9), 2520–2531 (2009)

    Article  Google Scholar 

  4. IEC 62391-1: Fixed Electric Double-Layer Capacitors for use in Electronic Equipment (International Electrotechnical Commission, Geneva 2015)

    Google Scholar 

  5. M.D. Stoller, R.S. Ruoff: Best practice methods for determining an electrode material’s performance for ultracapacitors, Energy Environ. Sci. 3(9), 1294–1301 (2010)

    Article  Google Scholar 

  6. V. Khomenkoa, E. Frackowiak, F. Béguin: Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations, Electrochimica Acta 50, 2499–2506 (2005)

    Article  Google Scholar 

  7. B.E. Conway: Electrochemical Supercapacitors (Kluwer Academic, Dordrecht 1999)

    Book  Google Scholar 

  8. A.J. Bard, L.R. Faulkner: Electrochemical Methods: Fundamentals and Applications (Wiley, New York 2001)

    Google Scholar 

  9. A.G. Pandolfo, A.F. Hollenkamp: Carbon properties and their role in supercapacitors, J. Power Sources 157(1), 11–27 (2006)

    Article  Google Scholar 

  10. E. Frackowiak, F. Beguin: Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39(6), 937–950 (2001)

    Article  Google Scholar 

  11. R. Kötz, M. Carlen: Principles and applications of electrochemical capacitors, Electrochimica Acta 45(15–16), 2483–2498 (2000)

    Article  Google Scholar 

  12. A. Burke: Ultracapacitors: Why, how, and where is the technology?, J. Power Sources 91, 37–50 (2000)

    Article  Google Scholar 

  13. B.E. Conway: Transition from supercapacitor to battery behavior in electrochemical energy storage, J. Electrochem. Soc. 138, 1539–1548 (1991)

    Article  Google Scholar 

  14. C.C. Hu, W.C. Chen, K.H. Chang: How to achieve maximum utilization of hydrons ruthenium oxide for supercapacitors, J. Electrochem. Soc. 151, A281–A290 (2004)

    Article  Google Scholar 

  15. X. Liu, P.G. Pickup: Ru oxide/carbon fabric composites for supercapacitors, J. Solid State Electrochem. 14, 231–240 (2009)

    Article  Google Scholar 

  16. C. Hu, W. Chen: Effects of substrates on the capacitive performance of RuO x ·nH2O and activated carbon--RuO x electrodes for supercapacitors, Electrochimica Acta 49, 3469–3477 (2004)

    Article  Google Scholar 

  17. Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai: Carbon materials for chemical capacitive energy storage, Adv. Mater. 23(42), 4828–4850 (2011)

    Article  Google Scholar 

  18. C. Xu, F. Kang, B. Li, H. Du: Recent progress on manganese dioxide based supercapacitors, J. Mater. Res. 25(8), 1421–1432 (2010)

    Article  Google Scholar 

  19. W. Wei, X. Cui, W. Chen, D.G. Ivey: Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev. 40(3), 1697–1721 (2011)

    Article  Google Scholar 

  20. H. Kim, B.N. Popov: Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method, J. Power Sources 104, 52–61 (2002)

    Article  Google Scholar 

  21. T. Bordjiba, D. Bélanger: Direct redox deposition of manganese oxide on multiscaled carbon nanotube/microfiber carbon electrode for electrochemical supercapacitor, J. Electrochem. Soc. 156, A378–A384 (2009)

    Article  Google Scholar 

  22. K. Kalinathan, D.P. DesRoches, X. Liu, P.G. Pickup: Anthraquinone modified carbon fabric supercapacitors with improved energy and power densities, J. Power Sources 181, 182–185 (2008)

    Article  Google Scholar 

  23. Z. Algharaibeh, X. Liu, P.G. Pickup: An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor, J. Power Sources 187, 640–643 (2009)

    Article  Google Scholar 

  24. Z. Algharaibeh, P.G. Pickup: An asymmetric supercapacitor with anthraquinone and dihydroxybenzene modified carbon fabric electrodes, Electrochem. Commun. 13, 147–149 (2011)

    Article  Google Scholar 

  25. G.A. Snook, P. Kao, A.S. Best: Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources 196, 1–12 (2011)

    Article  Google Scholar 

  26. K. Lota, V. Khomenko, E. Frackowiak: Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites, J. Phys. Chem. Solids 65, 295–301 (2004)

    Article  Google Scholar 

  27. B. Conway, E. Gileadi: Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage, Trans. Faraday. Soc. 58, 2493–2509 (1962)

    Article  Google Scholar 

  28. B.Z. Fang, L. Binder: Influence of hydrophobisation of carbon surface on electrochemical capacitor performance, J. Electroanal. Chem. 609, 99–104 (2007)

    Article  Google Scholar 

  29. H. Talbi, P. Just, L. Dao: Electropolymerization of aniline on carbonized polyacrylonitrile aerogel electrodes: Applications for supercapacitors, J. Appl. Electrochem. 33, 465–473 (2003)

    Article  Google Scholar 

  30. J.A. Fernandez, M. Arulepp, J. Leis, F. Stoeckli, T.A. Centeno: EDLC performance of carbide-derived carbons in aprotic and acidic electrolytes, Electrochimica Acta 53, 7111–7116 (2008)

    Article  Google Scholar 

  31. J. Gamby, P. Taberna, P. Simon, J. Fauvarque, M. Chesneau: Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources 101(1), 109–116 (2001)

    Article  Google Scholar 

  32. A. Janes, E. Lust: Organic carbonate-organic ester-based non-aqueous electrolytes for electrical double layer capacitors, Electrochem. Commun. 7(5), 510–514 (2005)

    Article  Google Scholar 

  33. J. Zheng, T. Jow: The effect of salt concentration in electrolytes on the maximum energy storage for double layer capacitors, J. Electrochem. Soc. 144(7), 2417–2420 (1997)

    Article  Google Scholar 

  34. W. Pell, B. Conway, N. Marincic: Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations, J. Electroanal. Chem. 491(1–2), 9–21 (2000)

    Article  Google Scholar 

  35. S. Mayer, R. Pekala, J. Kaschmitter: The aerocapacitor: An electrochemical double-layer energy-storage device, J. Electrochem. Soc. 140, 446–451 (1993)

    Article  Google Scholar 

  36. F. Beck, M. Dolata, E. Grivei, N. Probst: Electrochemical supercapacitors based on industrial carbon blacks in aqueous H2SO4, J. Appl. Electrochem. 31, 845–853 (2001)

    Article  Google Scholar 

  37. J. Jang, S. Han, T. Hyeon, S. Oh: Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes, J. Power Sources 123(1), 79–85 (2003)

    Article  Google Scholar 

  38. A. Janes, L. Permann, M. Arulepp, E. Lust: Electrochemical characteristics of nanoporous carbide-derived carbon materials in non-aqueous electrolyte solutions, Electrochem. Commun. 6(3), 313–318 (2004)

    Article  Google Scholar 

  39. H. Song, Y. Jung, K. Lee, L. Dao: Electrochemical impedance spectroscopy of porous electrodes: The effect of pore size distribution, Electrochimica Acta 44(20), 3513–3519 (1999)

    Article  Google Scholar 

  40. P.L. Taberna, P. Simon, J.F. Fauvarque: Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors, J. Electrochem. Soc. 150, A292–A300 (2003)

    Article  Google Scholar 

  41. C. Portet, P. Taberna, P. Simon, C. Laberty-Robert: Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications, Electrochimica Acta 49(6), 905–912 (2004)

    Article  Google Scholar 

  42. J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi: Effect of pore size and surface area of carbide derived carbons on specific capacitance, J. Power Sources 158(1), 765–772 (2006)

    Article  Google Scholar 

  43. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang: Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett. 10, 4863–4868 (2010)

    Article  Google Scholar 

  44. X. Andrieu, G. Crépy, L. Josset: High power density electrodes for carbon supercapacitor applications, Proc. 3rd Int. Semin. Double Layer Capacit. Similar Energy Storage Devices, Deerfield Beach (1993) pp. 3–5

    Google Scholar 

  45. C.G. Cameron: Cold temperature optimization of supercapacitors, ECS Trans. 41, 121–132 (2012)

    Article  Google Scholar 

  46. J. Black, H.A. Andreas: Effects of charge redistribution on self-discharge of electrochemical capacitors, Electrochimica Acta 54, 3568–3574 (2009)

    Article  Google Scholar 

  47. J.R. Miller, A.F. Burke: Electric Vehicle Capacitor Test Procedures Manual (U.S. Department of Energy, Idaho Falls 1994)

    Google Scholar 

  48. G.M. Suppes, C.G. Cameron, M.S. Freund: A polypyrrole/phosphomolybdic acid|poly(3,4-ethylenedioxythiophene)/phosphotungstic acid asymmetric supercapacitor, J. Electrochem. Soc. 157, A1030–A1034 (2010)

    Article  Google Scholar 

  49. S.A. Kazaryan, S.N. Razumov, S.V. Litvinenko, G.G. Kharisov, V.I. Kogan: Mathematical model of heterogeneous electrochemical capacitors and calculation of their parameters, J. Electrochem. Soc. 153, A1655–A1671 (2006)

    Article  Google Scholar 

  50. M.D. Stoller, S.A. Stoller, N. Quarles, J.W. Suk, S. Murali, Y. Zhu, X. Zhu, R.S. Ruoff: Using coin cells for ultracapacitor electrode material testing, J. Appl. Electrochem. 41(6), 681–686 (2011)

    Article  Google Scholar 

  51. G. Gourdin, A. Meehan, T. Jiang, P. Smith, D. Qu: Investigation of the impact of stacking pressure on a double-layer supercapacitor, J. Power Sources 196, 523–529 (2011)

    Article  Google Scholar 

  52. Enesite Corp., Coral Springs, FL; http://www.enerize.com/superCap.php

  53. L.B. Hu, J.W. Choi, Y. Yang, S. Jeong, F.L. Mantia, L.F. Cui, Y. Cui: Highly Conductive Paper for Energy-Storage Devices, Proc. Natl. Acad. Sci., U.S., Vol. 106 (2009) pp. 21490–21494

    Google Scholar 

  54. D. Fan, R. White: A mathematical-model of a sealed nickel-cadmium battery, J. Electrochem. Soc. 138(1), 17–25 (1991)

    Article  Google Scholar 

  55. L. Bonnefoi, P. Simon, J. Fauvarque, C. Sarrazin, A. Dugast: Electrode optimisation for carbon power supercapacitors, J. Power Sources 79(1), 37–42 (1999)

    Article  Google Scholar 

  56. E. Fitzer, K.-H. Köchling, H. Boehm, H. Marsh: Recommended terminology for the description of carbon as a solid (IUPAC Recommendations 1995), Pure Appl. Chem. 67, 473 (1995)

    Article  Google Scholar 

  57. M. Inagaki, L. Radovic: Nanocarbons, Carbon 40, 2279–2282 (2002)

    Article  Google Scholar 

  58. X.Q. Wang, J.S. Lee, C. Tsouris, D.W. DePaoli, S. Dai: Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions, J. Mater. Chem. 20, 4602–4608 (2010)

    Article  Google Scholar 

  59. K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, T. Siemieniewska: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porocity (Recommendations 1984), Pure Appl. Chem. 57, 603–619 (1985)

    Article  Google Scholar 

  60. H. Shi: Activated carbons and double layer capacitance, Electrochimica Acta 41(10), 1633–1639 (1996)

    Article  Google Scholar 

  61. D. Qu, H. Shi: Studies of activated carbons used in double-layer capacitors, J. Power Sources 74(1), 99–107 (1998)

    Article  Google Scholar 

  62. D. Qu: Studies of the activated carbons used in double-layer supercapacitors, J. Power Sources 109(2), 403–411 (2002)

    Article  MathSciNet  Google Scholar 

  63. J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, Y. Gogotsi: Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory, Angew. Chem.-Int. Edit. 47(18), 3392–3395 (2008)

    Article  Google Scholar 

  64. P.M. Ajayan: Nanotubes from carbon, Chem. Rev. 99, 1787 (1999)

    Article  Google Scholar 

  65. M. Pumera, B. Smid, K. Veltruska: Influence of nitric acid treatment of carbon nanotubes on their physico-chemical properties, J. Nanosci. Nanotechnol. 9, 2671 (2009)

    Article  Google Scholar 

  66. M. Pumera: Graphene-based nanomaterials for energy storage, Energy Environ. Sci. 4(3), 668–674 (2011)

    Article  Google Scholar 

  67. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen: Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113, 13103–13107 (2009)

    Article  Google Scholar 

  68. Y. Cheng: Assessments of energy capacity and energy losses of supercapacitors in fast charging–discharging cycles, IEEE Trans. Energy Convers. 25, 253–261 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cameron, C.G. (2017). Electrochemical Capacitors. In: Breitkopf, C., Swider-Lyons, K. (eds) Springer Handbook of Electrochemical Energy. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46657-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46657-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46656-8

  • Online ISBN: 978-3-662-46657-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics