Skip to main content
Log in

A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Loose-packed nickel hydroxides were successfully synthesized by a facile chemical precipitation method. Structure characterizations indicate that a nanoflake structure with low crystallinity for the nickel hydroxide samples was obtained. Electrochemical studies were carried out using cyclic voltammetry, chronopotentiometry technology, and alternating current impedance spectroscopy, respectively. A maximum specific capacitance of 2,055F/g could be achieved in 2M aqueous KOH with the potential range of 0 to 0.4V (vs. the saturated calomel electrode) in a half-cell setup configuration for the nanoflake Ni(OH)2 electrode, suggesting its potential application in the electrode material for electrochemical capacitors. Furthermore, the effect of annealing temperatures on the electrochemical capacitance characteristics has also been systemically explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Winter M, Brodd RJ (2004) Chem Rev 104:4245

    Article  CAS  Google Scholar 

  2. Conway BE (1999) Electrochemical supercapacitors. Scientific fundamentals and technological applications. Plenum, New York

    Google Scholar 

  3. Liang YY, Bao SJ, Li HL (2007) J Solid State Electrochem 11:571

    Article  CAS  Google Scholar 

  4. Wang YG, Li HQ, Xia YY (2006) Adv Mater 18:2619

    Article  CAS  Google Scholar 

  5. Prasad KR, Miura N (2004) Electrochem Commun 6:1004

    Article  CAS  Google Scholar 

  6. Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444

    Article  CAS  Google Scholar 

  7. Tilak BV, Chen CP (1996) J Electrochem Soc 143:3791

    Article  Google Scholar 

  8. Lin C, Ritter JA, Popov BN (1998) J Electrochem Soc 145:4097

    Article  CAS  Google Scholar 

  9. Wu MQ, Gao JH, Zhang SR, Chen A (2006) J Porous Mater 13:407

    Article  CAS  Google Scholar 

  10. Zhao DD, Bao SJ, Zhou WJ, Li HL (2007) Electrochem Commun 9:869

    Article  CAS  Google Scholar 

  11. Yang DN, Wang RM, He MS, Zhang J, Liu ZF (2005) J Phys Chem B 109:7654

    Article  CAS  Google Scholar 

  12. Park JH, Kim S, Park OO, Ko JM (2006) Appl Phys A 82:593

    Article  CAS  Google Scholar 

  13. Hosono E, Fujihara S, Honma I, Ichihara M, Zhou H (2006) J Power Sources 158:779

    Article  CAS  Google Scholar 

  14. Christoskova SG, Stoyanova M, Georgieva M, Mehandjiev D (1999) Mater Chem Phys 60:39

    Article  CAS  Google Scholar 

  15. Cao L, Lu M, Li HL (2005) J Electrochem Soc 152:A871

    Article  CAS  Google Scholar 

  16. Gupta V, Kusahara T, Toyama H, Gupta S, Miura N (2007) Electrochem Commun 9:2315

    Article  CAS  Google Scholar 

  17. Broughton JN, Brett MJ (2005) Electrochim Acta 50:4814

    Article  CAS  Google Scholar 

  18. Djurfors B, Broughton JN, Brett MJ, Ivey DG (2005) Acta Mater 53:957

    Article  CAS  Google Scholar 

  19. Ma SB, Nam KW, Yoon WS, Yang XQ, Ahn KY, Oh KH, Kim KB (2007) Electrochem Commun 9:2807

    Article  CAS  Google Scholar 

  20. Wang DB, Song CX, Hu ZS, Fu X (2005) J Phys Chem B 109:1125

    Article  CAS  Google Scholar 

  21. Song QS, Li YY, Chen SLI (2005) J Appl Electrochem 35:157

    Article  CAS  Google Scholar 

  22. Wu MS, Hsieh HH (2008) Electrochim Acta 53:3427

    CAS  Google Scholar 

  23. Srinivasan V, Weidner JW (1997) J Electrochem Soc 144:L210

    Article  CAS  Google Scholar 

  24. Liu KC, Anderson MA (1996) J Electrochem Soc 143:124

    Article  CAS  Google Scholar 

  25. Cao L, Kong LB, Liang YY, Li HL (2004) Chem Commun 14:1646

    Article  CAS  Google Scholar 

  26. Toupin M, Brousse T, Belanger D (2002) Chem Mater 14:3946

    Article  CAS  Google Scholar 

  27. Xing W, Li F, Yan ZF, Lu GQ (2004) J Power Sources 134:324

    Article  CAS  Google Scholar 

  28. Jayashree RS, Kamath PV (2001) J Appl Electrochem 31:1315

    Article  CAS  Google Scholar 

  29. Wang RN, Li QY, Wang ZH, Wei Q, Nie ZR (2008) Chem J Chin Univ 29:18

    Google Scholar 

  30. Kötz R, Carlen M (2000) Electrochim Acta 45:2483

    Article  Google Scholar 

  31. Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142:2699

    Article  CAS  Google Scholar 

  32. Xu MW, Zhao DD, Bao SJ, Li HL (2007) J Solid State Electrochem 11:1101

    Article  CAS  Google Scholar 

  33. Zhang SS, Xu K, Jow TR (2004) Electrochim Acta 49:1057

    Article  CAS  Google Scholar 

  34. Kamath PV, Dixit M, Indira L, Shukla AK, Kumar VG, Munichanduaiah N (1994) J Electrochem Soc 141:2956

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support by the National Natural Science Foundation of China (no. 50602020) and the National Basic Research Program of China (no. 2007CB216408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Bin Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, JW., Kong, LB., Wu, WJ. et al. A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. J Solid State Electrochem 13, 333–340 (2009). https://doi.org/10.1007/s10008-008-0560-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0560-0

Keywords

Navigation