Skip to main content

Advertisement

Log in

Facile synthesis of high-performance Ni(OH)2/expanded graphite electrodes for asymmetric supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cost-effective commercial expanded graphite (EG) was used as a raw material, and a facile in-situ electrodeposition method was adopted to synthesize a layered Ni(OH)2/EG composite electrode in an N,N-dimethylformamide-water system. Scanning electron microscopy images show that expanded graphite sheets, Ni(OH)2 nanoparticles and carbon nanotubes construct a layered structure, which not only effectively restrains restacking of EG sheets but also prevents aggregation of nickel hydroxide particles. The electrode delivers a satisfactory initial specific capacitance of 1719.5 F/g at 1 A/g with a total mass loading of 5.0 mg/cm2. Even at 10 A/g, the capacitance only decreases to 1181.3 F/g, showing a remarkable rate capability. Moreover, an optimized asymmetric supercapacitor (ASC) device was fabricated, in which the Ni(OH)2/EG electrode was used as a positive electrode and commercial activated carbon (AC) was used as a negative electrode. The ASC device can deliver a prominent energy density of 32.3 Wh/kg at power density 504.7 W/kg, and long cycling life with 79% original capacitance after 1000 cycles at 5 A/g, which can be prospective to be applied in practical devices for energy storage and conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.-H. Lai, M.-Y. Lu, L.-J. Chen, J. Mater. Chem. 22, 19–30 (2012)

    Article  Google Scholar 

  2. N.S. Lewis, Science 315, 798–801 (2007)

    Article  Google Scholar 

  3. Y.-G. Guo, J.-S. Hu, L.-J. Wan, Adv. Mater. 20, 2878–2887 (2008)

    Article  Google Scholar 

  4. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845–854 (2008)

    Article  Google Scholar 

  5. M. Winter, R.J. Brodd, Chem. Rev. 104, 4245–4270 (2004)

    Article  Google Scholar 

  6. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)

    Article  Google Scholar 

  7. Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 45, 5925–5950 (2016)

    Article  Google Scholar 

  8. D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Chem. Soc. Rev. 44, 1777–1790 (2015)

    Article  Google Scholar 

  9. T. Ramesh, R. Jayashree, P.V. Kamath, S. Rodrigues, A. Shukla, J. Power Sources 104, 295–298 (2002)

    Article  Google Scholar 

  10. J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Adv. Funct. Mater. 22, 2632–2641 (2012)

    Article  Google Scholar 

  11. J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, ACS Nano 7, 6237–6243 (2013)

    Article  Google Scholar 

  12. X. Ma, Y. Li, Z. Wen, F. Gao, C. Liang, R. Che, ACS Appl. Mater. Interfaces 7, 974–979 (2015)

    Article  Google Scholar 

  13. J.H. Park, O.O. Park, K.H. Shin, C.S. Jin, J.H. Kim, Electrochem. Solid State Lett. 5, H7-H10 (2002)

    Article  Google Scholar 

  14. Q. Huang, X. Wang, J. Li, C. Dai, S. Gamboa, P. Sebastian, J. Power Sources 164, 425–429 (2007)

    Article  Google Scholar 

  15. M.-H. Kim, J.-W. Lee, S.-M. Park, K.C. Roh, J. Ceram. Process Res. 13, 265–269 (2012)

    Google Scholar 

  16. V.V. Obreja, Phys. E, 40 (2008) 2596–2605

    Article  Google Scholar 

  17. Z. Tang, C.h.. Tang, H. Gong, Adv. Funct. Mater. 22, 1272–1278 (2012)

    Article  Google Scholar 

  18. L.L. Zhang, Z. Xiong, X. Zhao, J. Power Sources 222, 326–332 (2013)

    Article  Google Scholar 

  19. R.R. Salunkhe, J. Lin, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Nano Energy 11, 211–218 (2015)

    Article  Google Scholar 

  20. H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H. Dai, Nano Res. 4, 729–736 (2011)

    Article  Google Scholar 

  21. Y. Liu, R. Wang, X. Yan, Sci. Rep. 5, 11095–11106 (2015)

    Article  Google Scholar 

  22. L. Mao, C. Guan, X. Huang, Q. Ke, Y. Zhang, J. Wang, Electrochim. Acta 196, 653–660 (2016)

    Article  Google Scholar 

  23. L. Wang, X. Li, T. Guo, X. Yan, B.K. Tay, Int. J. Hydrogen Energy 39, 7876–7884 (2014)

    Article  Google Scholar 

  24. H. Wang, H.S. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 132, 7472–7477 (2010)

    Article  Google Scholar 

  25. J. Kim, Y. Kim, S.-J. Park, Y. Jung, S. Kim, J. Ind. Eng. Chem. 36, 139–146 (2016)

    Article  Google Scholar 

  26. J. Xu, X. Gu, J. Cao, W. Wang, Z. Chen, J. Solid State Electrochem. 16, 2667–2674 (2012)

    Article  Google Scholar 

  27. L. Sui, S. Tang, Z. Dai, Z. Zhu, H. Huangfu, X. Qin, Y. Deng, G.M. Haarberg, New J. Chem. 39, 9363–9371 (2015)

    Article  Google Scholar 

  28. X. Wang, J. Liu, Y. Wang, C. Zhao, W. Zheng, Mater. Res. Bull. 52, 89–95 (2014)

    Article  Google Scholar 

  29. L. Sui, S. Tang, Y. Chen, Z. Dai, H. Huangfu, Z. Zhu, X. Qin, Y. Deng, G.M. Haarberg, Electrochim. Acta 182, 1159–1165 (2015)

    Article  Google Scholar 

  30. Y. Bai, W. Wang, R. Wang, J. Sun, L. Gao, J. Mater. Chem. A 3, 12530–12538 (2015)

    Article  Google Scholar 

  31. B.H. Ka, S.M. Oh, J. Electrochem. Soc 155, A685 (2008)

    Article  Google Scholar 

  32. C. Guo, C. Wang, Compos. Sci. Technol. 67, 1747–1750 (2007)

    Article  Google Scholar 

  33. G. Helen, Annal Therese, P. Vishnu Kamath, Chem. Mater. 12, 1195–1204 (2000)

    Article  Google Scholar 

  34. M. Taibi, S. Ammar, N. Jouini, F. Fiévet, P. Molinié, M. Drillon, J. Mater. Chem. 12, 3238–3244 (2002)

    Article  Google Scholar 

  35. Y. Ren, L. Gao, J. Am. Ceram. Soc. 93, 3560–3564 (2010)

    Article  Google Scholar 

  36. Y. Li, J. Yao, Y. Zhu, Z. Zou, H. Wang, J. Power Sources 203, 177–183 (2012)

    Article  Google Scholar 

  37. L. Zhang, Q. Ding, Y. Huang, H. Gu, Y.E. Miao, T. Liu, ACS Appl. Mater. Interfaces 7, 22669–22677 (2015)

    Article  Google Scholar 

  38. H. Ma, J. He, D.B. Xiong, J. Wu, Q. Li, V. Dravid, Y. Zhao, ACS Appl. Mater. Interfaces 8, 1992–2000 (2016)

    Article  Google Scholar 

  39. Y. Xu, L. Wang, P. Cao, C. Cai, Y. Fu, X. Ma, J. Power Sources 306, 742–752 (2016)

    Article  Google Scholar 

  40. Y. Zhao, L. Hu, S. Zhao, L. Wu, Adv. Funct. Mater. 26, 4085–4093 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The support received from the Open Project from State Key Lab of Catalysis (N-14-1), International Technology Collaboration of Chengdu Science and Technology Bureau, Scientific Research Foundation for Returned Scholars, Ministry of Education of China, Innovative Research Team of Southwest Petroleum University (2012XJZT002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuihua Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Tang, S., Zhu, Z. et al. Facile synthesis of high-performance Ni(OH)2/expanded graphite electrodes for asymmetric supercapacitors. J Mater Sci: Mater Electron 28, 18022–18030 (2017). https://doi.org/10.1007/s10854-017-7745-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7745-1

Navigation