Skip to main content

Advertisement

Log in

Engineering Graphenes from the Nano- to the Macroscale for Electrochemical Energy Storage

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Carbon is a key component in current electrochemical energy storage (EES) devices and plays a crucial role in the improvement in energy and power densities for the future EES devices. As the simplest carbon and the basic unit of all sp2 carbons, graphene is widely used in EES devices because of its fascinating and outstanding physicochemical properties; however, when assembled in the macroscale, graphene-derived materials do not demonstrate their excellence as individual sheets mostly because of unavoidable stacking. This review proposal shows to engineer graphene nanosheets from the nano- to the macroscale in a well-designed and controllable way and discusses how the performance of the graphene-derived carbons depends on the individual graphene sheets, nanostructures, and macrotextures. Graphene-derived carbons in EES applications are comprehensively reviewed with three representative devices, supercapacitors, lithium-ion batteries, and lithium–sulfur batteries. The review concludes with a comment on the opportunities and challenges for graphene-derived carbons in the rapidly growing EES research area.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. Choi, J.W., Aurbach, D.: Promise and reality of post-lithium–ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016)

    Article  CAS  Google Scholar 

  3. Larcher, D., Tarascon, J.M.: Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. Yu, Z.N., Tetard, L., Zhai, L., et al.: Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702–730 (2015)

    Article  CAS  Google Scholar 

  5. Zhang, C., Lv, W., Tao, Y., et al.: Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 8, 1390–1403 (2015)

    Article  CAS  Google Scholar 

  6. Titirici, M.M., White, R.J., Brun, N., et al.: Sustainable carbon materials. Chem. Soc. Rev. 44, 250–290 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. Ji, X.L., Lee, K.T., Nazar, L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. Hou, J.H., Cao, C.B., Idrees, F., et al.: Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9, 2556–2564 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. Novoselov, K.S., Fal’ko, V.I., Colombo, L., et al.: A roadmap for graphene. Nature 490, 192–200 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. Lv, W., Li, Z., Deng, Y., et al.: Graphene-based materials for electrochemical energy storage devices: opportunities and challenges. Energy Storage Mater. 2, 107–138 (2016)

    Article  Google Scholar 

  11. Raccichini, R., Varzi, A., Passerini, S., et al.: The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. Xu, B., Wang, H., Zhu, Q., et al.: Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Mater. 12, 128–136 (2018)

    Article  Google Scholar 

  13. Whitby, R.L.D.: Chemical control of graphene architecture: tailoring shape and properties. ACS Nano 8, 9733–9754 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Mo, R.W., Rooney, D., Sun, K.N., et al.: 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li–ion battery. Nat. Commun. 8, 13949 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kong, D.B., He, H.Y., Song, Q., et al.: Rational design of MoS2@graphene nanocables: towards high performance electrode materials for Lithium ion batteries. Energy Environ. Sci. 7, 3320–3325 (2014)

    Article  CAS  Google Scholar 

  16. Yang, X., Cheng, C., Wang, Y., et al.: Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. Chabot, V., Higgins, D., Yu, A.P., et al.: A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7, 1564–1596 (2014)

    Article  CAS  Google Scholar 

  18. Zhou, G., Wang, D.W., Yin, L.C., et al.: Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6, 3214–3223 (2012)

    Article  CAS  PubMed  Google Scholar 

  19. Li, Z.J., Wu, S.D., Lv, W., et al.: Graphene emerges as a versatile template for materials preparation. Small 12, 2674–2688 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. Quan, Q., Lin, X., Zhang, N., et al.: Graphene and its derivatives as versatile templates for materials synthesis and functional applications. Nanoscale 9, 2398–2416 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. Dreyer, D.R., Todd, A.D., Bielawski, C.W.: Harnessing the chemistry of graphene oxide. Chem. Soc. Rev. 43, 5288–5301 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. Pei, S., Cheng, H.M.: The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)

    Article  CAS  Google Scholar 

  23. Byon, H.R., Gallant, B.M., Lee, S.W., et al.: Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries. Adv. Funct. Mater. 23, 1037–1045 (2013)

    Article  CAS  Google Scholar 

  24. Jang, B.Z., Liu, C., Neff, D., et al.: Graphene surface-enabled lithium ion-exchanging cells: next-generation high-power energy storage devices. Nano Lett. 11, 3785–3791 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. Wu, Z.S., Ren, W.C., Xu, L., et al.: Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5, 5463–5471 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. Wen, Z.H., Wang, X.C., Mao, S., et al.: Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv. Mater. 24, 5610–5616 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. Song, J.X., Yu, Z.X., Gordin, M.L., et al.: Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium–sulfur batteries. Nano Lett. 16, 864–870 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, Y., Murali, S., Stoller, M.D., et al.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. Chen, X.C., Wei, W., Lv, W., et al.: A graphene-based nanostructure with expanded ion transport channels for high rate Li–ion batteries. Chem. Commun. 48, 5904–5906 (2012)

    Article  CAS  Google Scholar 

  30. Tao, Y., Kong, D.B., Zhang, C., et al.: Monolithic carbons with spheroidal and hierarchical pores produced by the linkage of functionalized graphene sheets. Carbon 69, 169–177 (2014)

    Article  CAS  Google Scholar 

  31. Wu, Z.S., Winter, A., Chen, L., et al.: Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv. Mater. 24, 5130–5135 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. Mo, R.W., Tung, S.O., Lei, Z.Y., et al.: Pushing the limits: 3D layer-by-layer-assembled composites for cathodes with 160 C discharge rates. ACS Nano 9, 5009–5017 (2015)

    Article  CAS  PubMed  Google Scholar 

  33. Li, Y.R., Chen, J., Huang, L., et al.: Highly compressible macroporous graphene monoliths via an improved hydrothermal process. Adv. Mater. 26, 4789–4793 (2014)

    Article  CAS  PubMed  Google Scholar 

  34. Qiu, B.C., Xing, M.Y., Zhang, J.L.: Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium–ion batteries. J. Am. Chem. Soc. 136, 5852–5855 (2014)

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, Y.T., Shen, Q., Hou, J.W., et al.: Shear-aligned graphene oxide laminate/Pebax ultrathin composite hollow fiber membranes using a facile dip-coating approach. J. Mater. Chem. A 5, 7732–7737 (2017)

    Article  CAS  Google Scholar 

  36. Zhu, C., Han, T.Y.J., Duoss, E.B., et al.: Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. Chen, Z.P., Ren, W.C., Gao, L.B., et al.: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. Shao, J.J., Lv, W., Yang, Q.H.: Self-assembly of graphene oxide at interfaces. Adv. Mater. 26, 5586–5612 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. Shen, J.F., Hu, Y.Z., Li, C., et al.: Layer-by-layer self-assembly of graphene nanoplatelets. Langmuir 25, 6122–6128 (2009)

    Article  CAS  PubMed  Google Scholar 

  40. Lv, W., Zhang, C., Li, Z.J., et al.: Self-assembled 3D graphene monolith from solution. J. Phys. Chem. Lett. 6, 658–668 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. Cong, H.P., Ren, X.C., Wang, P., et al.: Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6, 2693–2703 (2012)

    Article  CAS  PubMed  Google Scholar 

  42. Meng, Y., Zhao, Y., Hu, C., et al.: All-graphene core–sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25, 2326–2331 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. Li, X., Zhao, T., Wang, K., et al.: Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 27, 12164–12171 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. Qu, G.X., Cheng, J.L., Li, X.D., et al.: A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 28, 3646–3652 (2016)

    Article  CAS  PubMed  Google Scholar 

  45. Li, Y., Sheng, K., Yuan, W., et al.: A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. Chem. Commun. 49, 291–293 (2013)

    Article  Google Scholar 

  46. Cheng, H., Dong, Z., Hu, C., et al.: Textile electrodes woven by carbon nanotube–graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale 5, 3428–3434 (2013)

    Article  CAS  PubMed  Google Scholar 

  47. Chen, Q., Meng, Y., Hu, C., et al.: MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J. Power Sources 247, 32–39 (2014)

    Article  CAS  Google Scholar 

  48. Li, X., Zang, X., Li, Z., et al.: Large-area flexible core–shell graphene/porous carbon woven fabric films for fiber supercapacitor electrodes. Adv. Funct. Mater. 23, 4862–4869 (2013)

    CAS  Google Scholar 

  49. Yu, A.P., Roes, I., Davies, A., et al.: Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl. Phys. Lett. 96, 253105 (2010)

    Article  CAS  Google Scholar 

  50. Zhu, J., Cheng, C., Yang, X., et al.: Dynamic electrosorption analysis as an effective means to characterise the structure of bulk graphene assemblies. Chem. Eur. J. 19, 3082–3089 (2013)

    Article  CAS  PubMed  Google Scholar 

  51. Niu, Z., Zhang, L., Liu, L., et al.: All-solid-state flexible ultrathin micro-supercapacitors based on graphene. Adv. Mater. 25, 4035–4042 (2013)

    Article  CAS  PubMed  Google Scholar 

  52. Beidaghi, M., Wang, Z., Gu, L., et al.: Electrostatic spray deposition of graphene nanoplatelets for high-power thin-film supercapacitor electrodes. J. Solid State Electr. 16, 3341–3348 (2012)

    Article  CAS  Google Scholar 

  53. Yoo, J.J., Balakrishnan, K., Huang, J., et al.: Ultrathin planar graphene supercapacitors. Nano Lett. 11, 1423–1427 (2011)

    Article  CAS  PubMed  Google Scholar 

  54. Yoon, Y., Lee, K., Kwon, S., et al.: Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 8, 4580–4590 (2014)

    Article  CAS  PubMed  Google Scholar 

  55. Weng, Z., Su, Y., Wang, D.W., et al.: Graphene–cellulose paper flexible supercapacitors. Adv. Energy Mater. 1, 917–922 (2011)

    Article  CAS  Google Scholar 

  56. Xiong, Z.Y., Liao, C.L., Han, W.H., et al.: Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv. Mater. 27, 4469–4475 (2015)

    Article  CAS  PubMed  Google Scholar 

  57. Lv, W., Li, Z., Zhou, G., et al.: Tailoring microstructure of graphene-based membrane by controlled removal of trapped water inspired by the phase diagram. Adv. Funct. Mater. 24, 3456–3463 (2014)

    Article  CAS  Google Scholar 

  58. Chen, C.M., Zhang, Q., Huang, C.H., et al.: Macroporous ‘bubble’ graphene film via template-directed ordered-assembly for high rate supercapacitors. Chem. Commun. 48, 7149–7151 (2012)

    Article  CAS  Google Scholar 

  59. Sun, D., Yan, X., Lang, J., et al.: High performance supercapacitor electrode based on graphene paper via flame-induced reduction of graphene oxide paper. J. Power Sources 222, 52–58 (2013)

    Article  CAS  Google Scholar 

  60. Zhang, L.L., Zhao, X., Stoller, M.D., et al.: Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12, 1806–1812 (2012)

    Article  CAS  PubMed  Google Scholar 

  61. Xu, Y.X., Lin, Z.Y., Zhong, X., et al.: Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014)

    Article  CAS  PubMed  Google Scholar 

  62. Xu, Y.X., Chen, C.Y., Zhao, Z.P., et al.: Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 15, 4605–4610 (2015)

    Article  CAS  PubMed  Google Scholar 

  63. Yang, X., Zhu, J., Qiu, L., et al.: Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv. Mater. 23, 2833–2838 (2011)

    Article  CAS  PubMed  Google Scholar 

  64. She, Z., Ghosh, D., Pope, M.A.: Decorating graphene oxide with ionic liquid nanodroplets: an approach leading to energy-dense, high-voltage supercapacitors. ACS Nano 11, 10077–10087 (2017)

    Article  CAS  PubMed  Google Scholar 

  65. Lu, X., Dou, H., Gao, B., et al.: A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochim. Acta 56, 5115–5121 (2011)

    Article  CAS  Google Scholar 

  66. Jiang, L.L., Sheng, L.Z., Long, C.L., et al.: Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy 11, 471–480 (2015)

    Article  CAS  Google Scholar 

  67. Peng, L., Peng, X., Liu, B., et al.: Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 13, 2151–2157 (2013)

    Article  CAS  PubMed  Google Scholar 

  68. Wu, Z.S., Parvez, K., Li, S., et al.: Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors. Adv. Mater. 27, 4054–4061 (2015)

    Article  CAS  PubMed  Google Scholar 

  69. Wu, Z.S., Zheng, Y.J., Zheng, S.H., et al.: Stacked-layer heterostructure films of 2D thiophene nanosheets and graphene for high-rate all-solid-state pseudocapacitors with enhanced volumetric capacitance. Adv. Mater. 29, 1602960 (2017)

    Article  CAS  Google Scholar 

  70. Zhang, L., Shi, G.: Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J. Phys. Chem. C 115, 17206–17212 (2011)

    Article  CAS  Google Scholar 

  71. Van Hoang, L., Huynh Ngoc, T., Le Thuy, H., et al.: Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor. J. Mater. Chem. A 1, 208–211 (2013)

    Article  Google Scholar 

  72. Wu, Q., Sun, Y., Bai, H., et al.: High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties. Phys. Chem. Chem. Phys. 13, 11193–11198 (2011)

    Article  CAS  PubMed  Google Scholar 

  73. Xu, Y., Lin, Z., Huang, X., et al.: Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7, 4042–4049 (2013)

    Article  CAS  PubMed  Google Scholar 

  74. Qin, Y., Yuan, J., Li, J., et al.: Crosslinking graphene oxide into robust 3D porous n-doped graphene. Adv. Mater. 27, 5171–5175 (2015)

    Article  CAS  PubMed  Google Scholar 

  75. Xie, X., Zhang, C., Wu, M.B., et al.: Porous MnO2 for use in a high performance supercapacitor: replication of a 3D graphene network as a reactive template. Chem. Commun. 49, 11092–11094 (2013)

    Article  CAS  Google Scholar 

  76. Chen, S., Duan, J., Tang, Y., et al.: Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chem. Eur. J. 19, 7118–7124 (2013)

    Article  CAS  PubMed  Google Scholar 

  77. Wu, Z.S., Sun, Y., Tan, Y.Z., et al.: Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 134, 19532–19535 (2012)

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, L., Zhang, F., Yang, X., et al.: Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci. Rep. 3, 1408 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, H., Tao, Y., Zheng, X.Y., et al.: Compressed porous graphene particles for use as supercapacitor electrodes with excellent volumetric performance. Nanoscale 7, 18459–18463 (2015)

    Article  CAS  PubMed  Google Scholar 

  80. Li, H., Tao, Y., Zheng, X.Y., et al.: Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci. 9, 3135–3142 (2016)

    Article  CAS  Google Scholar 

  81. Zhao, Y., Hu, C., Hu, Y., et al.: A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. Int. Edit. 51, 11371–11375 (2012)

    Article  CAS  Google Scholar 

  82. Cao, X., Shi, Y., Shi, W., et al.: Preparation of novel 3D graphene networks for supercapacitor applications. Small 7, 3163–3168 (2011)

    Article  CAS  PubMed  Google Scholar 

  83. Liu, J., Lv, W., Wei, W., et al.: A three-dimensional graphene skeleton as a fast electron and ion transport network for electrochemical applications. J. Mater. Chem. A 2, 3031–3037 (2014)

    Article  CAS  Google Scholar 

  84. Xu, Y., Tao, Y., Li, H., et al.: Dual electronic-ionic conductivity of pseudo-capacitive filler enables high volumetric capacitance from dense graphene micro-particles. Nano Energy 36, 349–355 (2017)

    Article  CAS  Google Scholar 

  85. Xu, Y., Tao, Y., Zheng, X.Y., et al.: A metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm−3. Adv. Mater. 27, 8082–8087 (2015)

    Article  CAS  PubMed  Google Scholar 

  86. Pedros, J., Bosca, A., Martinez, J., et al.: Polyaniline nanofiber sponge filled graphene foam as high gravimetric and volumetric capacitance electrode. J. Power Sources 317, 35–42 (2016)

    Article  CAS  Google Scholar 

  87. Ma, H.Y., Kong, D.B., Xu, Y., et al.: Disassembly-reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 13, 1701026 (2017)

    Article  CAS  Google Scholar 

  88. Chiang, Y.M.: Building a better battery. Science 330, 1485–1486 (2010)

    Article  CAS  PubMed  Google Scholar 

  89. Liu, C.F., Neale, Z.G., Cao, G.Z.: Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19, 109–123 (2016)

    Article  CAS  Google Scholar 

  90. Su, F.Y., You, C.H., He, Y.B., et al.: Flexible and planar graphene conductive additives for lithium–ion batteries. J. Mater. Chem. 20, 9644–9650 (2010)

    Article  CAS  Google Scholar 

  91. Zhu, J., Wang, T., Fan, F.R., et al.: Atomic-scale control of silicon expansion space as ultrastable battery anodes. ACS Nano 10, 8243–8251 (2016)

    Article  CAS  PubMed  Google Scholar 

  92. Freunberger, S.A.: True performance metrics in beyond-intercalation batteries. Nat. Energy 2, 17091 (2017)

    Article  Google Scholar 

  93. Son, I.H., Park, J.H., Kwon, S., et al.: Silicon carbide-free graphene growth on silicon for lithium–ion battery with high volumetric energy density. Nat. Commun. 6, 7393 (2015)

    Article  CAS  PubMed  Google Scholar 

  94. Li, Y.Z., Yan, K., Lee, H.W., et al.: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016)

    Article  CAS  Google Scholar 

  95. Wang, C., Li, D., Too, C.O., et al.: Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem. Mater. 21, 2604–2606 (2009)

    Article  CAS  Google Scholar 

  96. Abouimrane, A., Compton, O.C., Amine, K., et al.: Non-annealed graphene paper as a binder-free anode for lithium–ion batteries. J. Phys. Chem. C 114, 12800–12804 (2010)

    Article  CAS  Google Scholar 

  97. Hu, Y., Li, X., Geng, D., et al.: Influence of paper thickness on the electrochemical performances of graphene papers as an anode for lithium–ion batteries. Electrochim. Acta 91, 227–233 (2013)

    Article  CAS  Google Scholar 

  98. Ning, G., Xu, C., Cao, Y., et al.: Chemical vapor deposition derived flexible graphene paper and its application as high performance anodes for lithium rechargeable batteries. J. Mater. Chem. A 1, 408–414 (2013)

    Article  CAS  Google Scholar 

  99. Yang, X.W., He, Y.S., Liao, X.Z., et al.: Improved graphene film by reducing restacking for lithium–ion battery applications. Acta Phys. Chim. Sin. 27, 2583–2586 (2011)

    CAS  Google Scholar 

  100. Lee, J.K., Smith, K.B., Hayner, C.M., et al.: Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun. 46, 2025–2027 (2010)

    Article  CAS  Google Scholar 

  101. Yun, Q.B., Qin, X.Y., Lv, W., et al.: “Concrete’’ inspired construction of a silicon/carbon hybrid electrode for high performance lithium–ion battery. Carbon 93, 59–67 (2015)

    Article  CAS  Google Scholar 

  102. Agyeman, D.A., Song, K., Lee, G.H., et al.: Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li–ion battery. Adv. Energy Mater. 6, 1600904 (2016)

    Article  CAS  Google Scholar 

  103. Li, Z.J., Lv, W., Zhang, C., et al.: Nanospace-confined formation of flattened Sn sheets in pre-seeded graphenes for lithium ion batteries. Nanoscale 6, 9554–9558 (2014)

    Article  CAS  PubMed  Google Scholar 

  104. Wang, R., Xu, C., Sun, J., et al.: Flexible free-standing hollow Fe3O4/graphene hybrid films for lithium–ion batteries. J. Mater. Chem. A 1, 1794–1800 (2013)

    Article  CAS  Google Scholar 

  105. Miao, C., Liu, M., He, Y.B., et al.: Monodispersed SnO2 nanospheres embedded in framework of graphene and porous carbon as anode for lithium ion batteries. Energy Storage Mater. 3, 98–105 (2016)

    Article  Google Scholar 

  106. Zhao, K.N., Zhang, L., Xia, R., et al.: SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium–ion batteries. Small 12, 588–594 (2016)

    Article  CAS  PubMed  Google Scholar 

  107. Ren, H.M., Ding, Y.H., Chang, F.H., et al.: Flexible free-standing TiO2/graphene/PVDF films as anode materials for lithium–ion batteries. Appl. Surf. Sci. 263, 54–57 (2012)

    Article  CAS  Google Scholar 

  108. Wang, J.G., Jin, D.D., Zhou, R., et al.: Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for Li–ion batteries. ACS Nano 10, 6227–6234 (2016)

    Article  CAS  PubMed  Google Scholar 

  109. Wang, Z.L., Xu, D., Wang, H.G., et al.: In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 7, 2422–2430 (2013)

    Article  CAS  PubMed  Google Scholar 

  110. Xu, Y.X., Lin, Z.Y., Zhong, X., et al.: Solvated graphene frameworks as high-performance anodes for lithium–ion batteries. Angew. Chem. Int. Edit. 54, 5345–5350 (2015)

    Article  CAS  Google Scholar 

  111. Wang, X.P., Lv, L.X., Cheng, Z.H., et al.: High-density monolith of N-doped holey graphene for ultrahigh volumetric capacity of Li–ion batteries. Adv. Energy Mater. 6, 1502100 (2016)

    Article  CAS  Google Scholar 

  112. Jiang, T.C., Bu, F.X., Feng, X.X., et al.: Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium–ion battery. ACS Nano 11, 5140–5147 (2017)

    Article  CAS  PubMed  Google Scholar 

  113. Huang, Y., Wu, D., Han, S., et al.: Assembly of tin oxide/graphene nanosheets into 3D hierarchical frameworks for high-performance lithium storage. Chemsuschem 6, 1510–1515 (2013)

    Article  CAS  PubMed  Google Scholar 

  114. Wei, W., Yang, S., Zhou, H., et al.: 3D Graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 25, 2909–2914 (2013)

    Article  CAS  PubMed  Google Scholar 

  115. Sun, H.T., Mei, L., Liang, J.F., et al.: Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017)

    Article  CAS  PubMed  Google Scholar 

  116. Han, J., Kong, D., Lv, W., et al.: Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nat. Commun. 9, 402 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li, N., Chen, Z.P., Ren, W.C., et al.: Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. U.S.A. 109, 17360–17365 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ji, H., Zhang, L., Pettes, M.T., et al.: Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. Nano Lett. 12, 2446–2451 (2012)

    Article  CAS  PubMed  Google Scholar 

  119. Wang, D.W., Zeng, Q., Zhou, G., et al.: Carbon-sulfur composites for Li–S batteries: status and prospects. J. Mater. Chem. A 1, 9382–9394 (2013)

    Article  CAS  Google Scholar 

  120. Hou, T.Z., Chen, X., Peng, H.J., et al.: Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries. Small 12, 3283–3291 (2016)

    Article  CAS  PubMed  Google Scholar 

  121. Wang, H., Yang, Y., Liang, Y., et al.: Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–2647 (2011)

    Article  CAS  PubMed  Google Scholar 

  122. Ji, L., Rao, M., Zheng, H., et al.: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133, 18522–18525 (2011)

    Article  CAS  PubMed  Google Scholar 

  123. Jin, J., Wen, Z., Ma, G., et al.: Flexible self-supporting graphene–sulfur paper for lithium–sulfur batteries. RSC Adv. 3, 2558–2560 (2013)

    Article  CAS  Google Scholar 

  124. Huang, X., Sun, B., Li, K., et al.: Mesoporous graphene paper immobilised sulfur as a flexible electrode for lithium–sulfur batteries. J. Mater. Chem. A 1, 13484–13489 (2013)

    Article  CAS  Google Scholar 

  125. Wang, X., Wang, Z., Chen, L.: Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium–sulfur battery. J. Power Sources 242, 65–69 (2013)

    Article  CAS  Google Scholar 

  126. Zhou, G., Pei, S., Li, L., et al.: A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv. Mater. 26, 625–631 (2014)

    Article  CAS  PubMed  Google Scholar 

  127. Liu, W., Jiang, J.B., Yang, K.R., et al.: Ultrathin dendrimer–graphene oxide composite film for stable cycling lithium–sulfur batteries. Proc. Natl. Acad. Sci. U.S.A. 114, 3578–3583 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhao, Y., Liu, M., Lv, W., et al.: Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium–sulfur battery. Nano Energy 30, 1–8 (2016)

    Article  CAS  Google Scholar 

  129. Zhou, T.H., Lv, W., Li, J., et al.: Twinborn TiO2–TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ. Sci. 10, 1694–1703 (2017)

    Article  CAS  Google Scholar 

  130. Zhou, T.H., Zhao, Y., Zhou, G.M., et al.: An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement. Nano Energy 39, 291–296 (2017)

    Article  CAS  Google Scholar 

  131. Zhao, M.Q., Liu, X.F., Zhang, Q., et al.: Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li–S batteries. ACS Nano 6, 10759–10769 (2012)

    Article  CAS  PubMed  Google Scholar 

  132. He, G., Evers, S., Liang, X., et al.: Tailoring porosity in carbon nanospheres for lithium–sulfur battery cathodes. ACS Nano 7, 10920–10930 (2013)

    Article  CAS  PubMed  Google Scholar 

  133. Wang, D.W., Zhou, G.M., Li, F., et al.: A microporous–mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries. Phys. Chem. Chem. Phys. 14, 8703–8710 (2012)

    Article  CAS  PubMed  Google Scholar 

  134. Jia, X.L., Zhang, C., Liu, J.J., et al.: Evolution of the effect of sulfur confinement in graphene-based porous carbons for use in Li–S batteries. Nanoscale 8, 4447–4451 (2016)

    Article  CAS  PubMed  Google Scholar 

  135. Zhang, C., Liu, D.H., Lv, W., et al.: A high-density graphene-sulfur assembly: a promising cathode for compact Li–S batteries. Nanoscale 7, 5592–5597 (2015)

    Article  CAS  PubMed  Google Scholar 

  136. Zhou, G., Yin, L.C., Wang, D.W., et al.: Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 7, 5367–5375 (2013)

    Article  CAS  PubMed  Google Scholar 

  137. Zhou, G.M., Paek, E., Hwang, G.S., et al.: Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 6, 7760 (2015)

    Article  CAS  PubMed  Google Scholar 

  138. Liu, D.H., Zhang, C., Zhou, G.M., et al.: Catalytic effects in lithium–sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5, 1700270 (2018)

    Article  CAS  Google Scholar 

  139. Zhou, G.M., Tian, H.Z., Jin, Y., et al.: Catalytic oxidation of Li2S on the surface of metal sulfides for Li–S batteries. Proc. Natl. Acad. Sci. U.S.A. 114, 840–845 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zheng, C., Niu, S., Lv, W., et al.: Propelling polysulfides transformation for high-rate and long-life lithium–sulfur batteries. Nano Energy 33, 306–312 (2017)

    Article  CAS  Google Scholar 

  141. Sun, Z.H., Zhang, J.Q., Yin, L.C., et al.: Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium–sulfur batteries. Nat. Commun. 8, 14627 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hu, G., Xu, C., Sun, Z., et al.: 3D graphene-foam–reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li–S batteries. Adv. Mater. 28, 1603–1609 (2016)

    Article  CAS  PubMed  Google Scholar 

  143. Lukatskaya, M.R., Mashtalir, O., Ren, C.E., et al.: Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013)

    Article  CAS  PubMed  Google Scholar 

  144. Li, Z., Kong, D., Zhou, G., et al.: Twin-functional graphene oxide: compacting with Fe2O3 into a high volumetric capacity anode for lithium ion battery. Energy Storage Mater. 6, 98–103 (2017)

    Article  CAS  Google Scholar 

  145. Zhang, C., Yang, Q.H.: Packing sulfur into carbon framework for high volumetric performance lithium–sulfur batteries. Sci. China Mater. 58, 349–354 (2015)

    Article  CAS  Google Scholar 

  146. Jung, N., Kwon, S., Lee, D., et al.: Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors. Adv. Mater. 25, 6854–6858 (2013)

    Article  CAS  PubMed  Google Scholar 

  147. Tao, Y., Xie, X., Lv, W., et al.: Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 3, 2975 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U1710109, 51772164, 51525204 and 21506212), Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2017B030306006) and Shenzhen Basic Research Projects (Nos. JCYJ20150529164918734, JCYJ20170412171630020 and JCYJ20170412171359175).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Lv or Quan-Hong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Wei, W., Zhang, C. et al. Engineering Graphenes from the Nano- to the Macroscale for Electrochemical Energy Storage. Electrochem. Energ. Rev. 1, 139–168 (2018). https://doi.org/10.1007/s41918-018-0006-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-0006-z

Keywords

PACS

Navigation