Skip to main content

Recent Trends and Research Challenges on Supercapacitor

  • Chapter
  • First Online:
Advances in Nanostructured Materials

Abstract

Supercapacitors (SCs), also known as ultracapacitors, are energy-storing devices that are proposed to be the most potent option in the upcoming generation of energy-storing devices that will eventually boost or replace batteries in several applications. Many research has already shown interest in SCs to develop energy storage having high performance. This will enhance the rapid growth in several sectors of low-power electronics. It will cover a huge market. But for commercialization and widespread utilization, their energy density still needs to be enhanced and costs need to be reduced. Many research challenges still need to be identified and overcome. In this paper, a comparison of supercapacitor and other energy-storing devices and the current trend toward the development of SCs were discussed. Different classifications of supercapacitors were also presented. Some promising materials such as activated carbon, carbon nanotube, graphene, conducting polymer, polyaniline, polypyrrole, metal oxides, transition metal-sulfides for preparing electrodes, and types of electrolytes were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chu S, Cui Y, Liu N (2017) The path towards sustainable energy. Nat Mater 16:16–22

    Article  Google Scholar 

  2. Raza W, Ali F, Raza N, Luo Y, Yang J, Kumar S, Mehmood A, Kim K-H (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473. https://doi.org/10.1016/j.nanoen.2018.08.013

    Article  CAS  Google Scholar 

  3. Hollenkamp AF, Howlett PC, MacFarlane DR, Forsyth SA, Forsyth M (2009) Energy storage devices, Google Patents

    Google Scholar 

  4. Tasnin W, Saikia L (2018) Performance comparison of several energy storage devices in Ddregulated AGC of a multi area system incorporating geothermal power plant. IET Renew, Power Gener 12:761–772

    Article  Google Scholar 

  5. Shifei, Huang, Zhu, Xianglin, Sarkar, Samrat, Zhao, Yufeng (2019) Challenges and opportunities for supercapacitors. APL Materials 7:100901. DOI: https://doi.org/10.1063/1.5116146

  6. Huang J, Sumpter BG, Meunier V (2008) A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chem Eur J 14:6614–6626

    Article  CAS  Google Scholar 

  7. Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903

    Article  CAS  Google Scholar 

  8. Betrián BR (2015) Trends and research challenges in supercapacitors. Bol Grupo Espanol Cabon 37:9–13

    Google Scholar 

  9. Zhao Y, Ran W, He J, Song Y, Zhang C, Xiong D-B, Gao F, Wu J, Xia Y (2015) Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Appl Mate Inter 7:1132–1139

    Article  CAS  Google Scholar 

  10. Zhao Y, Zhang Z, Ren Y, Ran W, Chen X, Wu J, Gao F (2015) J Power Sources 286:1–9

    Article  CAS  Google Scholar 

  11. Cai L-F, Xu J, Huang J-Y, Xu H-J, Xu F, Liang Y-R (2018) Structure control of powdery carbon aerogels and their use in high-voltage aqueous supercapacitors. Carbon 130:847

    Google Scholar 

  12. Largeot C, Portet C, Chmiola J, Taberna P-L, Gogotsi Y, Simon P (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130:2730–2031

    Article  CAS  Google Scholar 

  13. Hashemi M, Rahmanifar MS, El-Kady MF, Noori A, Mousavi MF, Kaner RB (2018) The use of an electrocatalytic redox electrolyte for pushing the energy density boundary of a flexible polyaniline electrode to a new limit. Nano Energy 44:489–498

    Article  CAS  Google Scholar 

  14. Shown I, Ganguly A, Chen LC, Chen KH (2015) Conducting polymer-based flexible supercapacitor. Energy Sci Eng 3:2–26

    Article  CAS  Google Scholar 

  15. Luo Y, Hong W, Xiao Z, Bai H (2018) A high-performance electrochemical supercapacitor based on a polyaniline/reduced graphene oxide electrode and a copper (ii) ion active electrolyte. Phys Chem Chem Phys 20:131–136

    Article  CAS  Google Scholar 

  16. Liu W, Zhang S, Dar SU, Zhao Y, Akram R, Zhang X et al (2018) Polyphosphazene derived heteroatoms-doped carbon materials for supercapacitor electrodes. Carbon 129:420–427

    Article  CAS  Google Scholar 

  17. Cakici M, Kakarla RR, Alonso-Marroquin F (2017) Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO 2 structured electrode. Chem Eng J 309:151–158

    Article  CAS  Google Scholar 

  18. Jayaseelan SS, Radhakrishnan S, Saravanakumar B, Seo M-K, Khil M-S, Kim HY, Jayaseelan SS (2018) Mesoporous 3D NiCo2O4/MWCNT nanocomposite aerogels prepared by a supercritical CO2 drying method for high performance hybrid supercapacitor electrodes. Colloids Surf A Physicochem Eng Asp 538:451–459

    Google Scholar 

  19. Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M et al (2007) Highperformance carbon nanotube fiber. Science 318:1892–1895

    Article  CAS  Google Scholar 

  20. Andres V, Kyoung Ryu Y, Alberto B, Antonio Lardron-de-Guevara, Elijah H, Jinghan Z, Jorge P, Fernando C, Javier M (2021) Recent trends in graphene supercapacitors: from large area to microsupercapacitors. RSC Sustain Energy Fuels 5:1225−1586

    Google Scholar 

  21. Zhang H, Chhowalla M, Liu Z (2018) 2D nanomaterials: graphene and transition metal dichalcogenides. Chem Soc Rev 47:3015–3017

    Article  CAS  Google Scholar 

  22. PM (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146–4157

    Google Scholar 

  23. GY (2017) Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res Lett 12:387

    Google Scholar 

  24. Zhang H, Li C, Wang K, Sun X, Ma Y, Zhang X (2014) Recent advances in porous graphene materials for supercapacitor applications. RSC Adv 4:45862–45884

    Article  CAS  Google Scholar 

  25. Yang X, Cheng C, Wang Y, Qiu L, Li D (2013) Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341:534–537

    Article  CAS  Google Scholar 

  26. Barbieri O, Hahn M, Herzog A, Kötz R (2005) Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43:1303–1310

    Article  CAS  Google Scholar 

  27. Li X, Yang L, Lei Y, Gu L, Xiao D (2014) Microwave-assisted chemical-vapor-induced in situ polymerization of polyaniline nanofibers on graphite electrode for highperformance supercapacitor. ACS Appl Mater Interf 6:19978–19989

    Article  CAS  Google Scholar 

  28. Fan L-Z, Maier J (2006) High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem Commun 8:937–940

    Article  CAS  Google Scholar 

  29. Wang W, Guo J, Wang T, Shao J, Wang D, Yang Y-W (2015) Mesoporous transition metal oxides for supercapacitors. Nanomaterials 5:1667–1689

    Article  CAS  Google Scholar 

  30. Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88

    Article  CAS  Google Scholar 

  31. MIA Adbel M, Ramy AF, Ahmed ES, M.Abd E, Olojede SO, Ahmed IO, Charlie F, Ala'a HAM, Awed AS, Ashour AH, David WR (2021) Advanced materials and technologies for supercapacitors used in energy conversion and storage. Environ Chem Lett 19:375–439

    Google Scholar 

  32. Masala O, Seshadri R (2004) Synthesis routes for large volumes of nanoparticles. Annu Rev Mater Res 34:41–81

    Google Scholar 

  33. Elkholy AE et al (2017) Nanostructured spinel manganese cobalt ferrite for high-performance supercapacitors. RSC Adv 7:51888–51895

    Google Scholar 

  34. Liang G et al (2020) Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects. J Mater Chem 8:15373–15398

    Google Scholar 

  35. Zhang Q et al (2020) Intercalation and exfoliation chemistries of transition metal dichalcogenides. J Mater Chem A 8:15417–15444

    Google Scholar 

  36. Geng P et al (2018) Transition metal sulfides based on graphene for electrochemical energy storage. Adv Energy Mater 8:1703259

    Google Scholar 

  37. Yu XY, David Lou XW (2018) Mixed metal sulfides for electrochemical energy storage and conversion. Adv Energy Mater 8:1701592

    Google Scholar 

  38. Benjamin Raj et al (2020) Review-futuristic direction for R&D challenges to develop 2D advanced materials based supercapacitors. J Electrochem Soc 167:136501

    Google Scholar 

  39. Ratha S, Marri SR, Behera J, Rout CS (2016) High-energy-density supercapacitors based on patronite/single-walled carbon nanotubes/reduced graphene oxide hybrids. Eur J Inorg Chem 2016:259–265

    Article  CAS  Google Scholar 

  40. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672

    Article  CAS  Google Scholar 

  41. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539

    Article  CAS  Google Scholar 

  42. Xu Q, Wei C, Fan L, Rao W, Xu W, Liang H, Xu J (2018) Polypyrrole/titania-coated cotton fabrics for flexible supercapacitor electrodes. Appl Surf Sci 460:84–91

    Article  CAS  Google Scholar 

  43. He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E (2012) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:174–182

    Article  Google Scholar 

  44. Shi Y, Pan L, Liu B, Wang Y, Cui Y, Bao Z, Yu G (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2:6086–6091

    Article  CAS  Google Scholar 

  45. Huang P, Lethien C, Pinaud S, Brousse K, Laloo R, Turq V, Respaud M, Demortiere A, Daffos B, Taberna P-L (2016) On chip and freestanding elastic carbon films for micro-supercapaccitors. Science 351:691–695

    Article  CAS  Google Scholar 

  46. Beidaghi M, Gogotsi Y (2014) Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci 7:867–884

    Article  CAS  Google Scholar 

  47. Tie D, Huang S, Wang J, Zhao Y, Ma J, Zhang J (2018) Energy Storage Mater 21:22–40. https://doi.org/doi.org/10.1016/j.ensm.2018.12.018

  48. Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J (2017) Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci 4:1600539

    Article  Google Scholar 

  49. Chen Z, Xiong D-B, Zhang X, Ma H, Xia M, Zhao Y (2016) Construction of a novel hierarchical structured NH4-Co-Ni phosphate toward an ultrastable aqueous hybrid capacitor. Nanoscale 8:6636–6645

    Google Scholar 

  50. Vivekchand S, Rout CS, Subrahmanyam K, Govindaraj A, Rao C (2008) Graphene based electrochemical supercapacitors. J Chem Sci 120:9–13

    Article  CAS  Google Scholar 

  51. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pukhrambam Sushma Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devi, P.S., Swain, B.P. (2022). Recent Trends and Research Challenges on Supercapacitor. In: Swain, B.P. (eds) Advances in Nanostructured Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-8391-6_7

Download citation

Publish with us

Policies and ethics