Skip to main content
Log in

Materials for Indian Space Program: An Overview

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Materials are the backbone of any engineering structure and aerospace materials technologies are therefore closely guarded, in view of their dual use. Indian national space programmes such as the development of Polar and Geosynchronous satellite launch vehicles, communication and remote sensing satellites, recoverable space capsule, interplanetary missions such as Chandrayaan and Mangalyaan are symbols of the country’s pride and owe their success largely to the dedicated efforts of material scientists towards development and indigenization of performance critical aerospace materials and products, over the years. The well-planned initiatives taken by ISRO in the early 1970s for the indigenous production of many of the structural and functional materials for the satellite launch vehicle programme were the earliest seeds sown which have yielded remarkable results in meeting the strategic material requirements of the present day, not only for space sector, but also in atomic energy and defense programs of India. Technology denials have in a way indirectly helped the country achieve self-reliance and in establishing large scale facilities required for meeting the materials demands of these strategic sectors. It is an undeniable fact that successfully meeting the critical requirements of all materials for Indian space programmes indigenously has been made possible through the dedicated efforts of teams which overcame several hurdles and challenges. This overview on the materials for Indian space program provides a glimpse of the efforts put to realize structural, thermo-structural and functional materials that are being used for various types of space missions. It presents the efforts in producing aerospace quality metallic materials like ultra-high strength maraging steels, aluminium, magnesium, titanium alloys, stainless steels, superalloys, powder metallurgical products and functional materials like electronic materials and thermal protection systems, in the past five decades. The overview culminates with discussion on the recent advances and future directions in aerospace materials and manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:

Similar content being viewed by others

References

  1. Suresh BN, Sivan K (2015) Integrated design for space transportation system. Springer Nature, Berlin

    Book  Google Scholar 

  2. Suseelan-Nair K, Sinha PP (2009) Evolution of materials research for Indian space programmes. ISRO Head quarters, Bangalore

    Google Scholar 

  3. Shukla AK, Sharma VMJ, Narayana-Murty SVS, Ramesh-Narayanan P, Sharma SC (2014) Integrity of structural and thermo-structural materials for indian space programme. Procedia Eng 86:8–17

    Article  Google Scholar 

  4. Gupta RN, Raja VS, Mukherjee MK, Narayana-Murty SVS (2017) On improving the quality of gas tungsten arc welded 18Ni 250 maraging steel rocket motor casings. Metall Mater Trans A 48:4655–4666

    Article  CAS  Google Scholar 

  5. Chakravarthi KVA, Koundinya NTBN, Sarkar A, Narayana-Murty SVS, Nageswara-Rao B (2018) Optimization of hot workability and control of microstructure in 18Ni (M250 Grade) maraging steel using processing maps. ASTM Mater Perform Character 7:547–561

    CAS  Google Scholar 

  6. Sundaresan S, Manirajan M, Rao BN (2010) On the fracture toughness evaluation in weldments of a maraging steel rocket motor case. Mater Des 31:4921–4926

    Article  CAS  Google Scholar 

  7. Singaravelu J, Sundaresan S, Rao BN (2013) Application of fracture mechanics to specify the proof load factor for clamp band systems of launch vehicles. J Mater Eng Perform 22:926–935

    Article  CAS  Google Scholar 

  8. Ghosh BR, Murthy MSP, Sharma SC, Mittal MC, Nagarajan KV (1987) TIG welding Technology of 7mm thick 18 Ni 250 grade maraging steel plates for space applications. Trans Indian Inst Metals 40:227–234

    CAS  Google Scholar 

  9. Chakravarthi KVA, Koundinya N, Narayana-Murty SVS, Sivakumar D, Nageswara-Rao B (2018) Optimization of hot workability and control of microstructure in CF250 grade cobalt-free maraging steel: an approach using processing maps. Metallogr Microstruct Anal 7:35–47

    Article  CAS  Google Scholar 

  10. Narayana-Murty SVS, Sreekumar K, Natarajan A, Sinha PP (1997) Metallographic investigations on the appearance of streaks in radiographic inspection of maraging steel forged ring-plate weldments. In: Proceedings of the international conference on advanced metallurgical processes, New Age International Pvt. Limited, pp 1399–1404

  11. Narayana-Murty SVS, Sudarsana-Rao G, Venugopal A, Ramesh-Narayanan P, Sharma SC, George KM (2014) Metallurgical analysis of defects in the weld joints of large-sized maraging steel rocket motor casing. Metallogr Microstruct Anal 3:433–447

    Article  CAS  Google Scholar 

  12. Nageswara-Rao M, Narayana-Murty SVS (2020) Hot deformation of 18% Ni maraging steels: a review. Mater Perform Character 8:742–765

    Google Scholar 

  13. Ramesh-Narayanan P, Sreekumar K, Natarajan A, Sinha PP (1990) Metallographic investigations of the heat-affected zone II/parent metal interface cracking in 18Ni maraging steel welded structures. J Mater Sci 25:4587–4591

    Article  Google Scholar 

  14. Manwatkar SK, Narayana-Murty SVS, Narayanan PR, Sharma SC, Venkitakrishnan PV (2016) Stress corrosion cracking of a maraging steel shear bolt used in the interstage structure of a satellite launch vehicle. Metallogr Microstruct Anal 5:411–420

    Article  CAS  Google Scholar 

  15. Beena AP, Sundaresan MK, Rao BN (1995) Destructive tests of 15CDV6 steel rocket motor cases and their application to lightweight design. Int J Press Vessels Pip 62:313–320

    Article  CAS  Google Scholar 

  16. Ghosh R, Venugopal A, Karthikeyan MK, Narayanan PR, Pant B, Cherian RM (2018) Corrosion and nanomechanical behavior of high strength low alloy steels. Mater Corros 69:926–932

    Article  CAS  Google Scholar 

  17. Manikandan S, Mishra AK, Nayak G, Narayana-Murty SVS, Rao GS, Narayanan PR, Ram-Kumar P, Venkitakrishnan PV (2018) Residual strength and fracture toughness of 0.3 C-CrMoV (ESR) ultrahigh-strength steel used for solid booster motor cases. Mater Perform Character 7:365–375

    CAS  Google Scholar 

  18. Ramkumar P, Gupta RK, Anil-Kumar V, Muthupandi V (2021) Effect of pre- and post weld heat treatment on microstructure development and mechanical properties of 0.3%C-CrMoV (ESR) high-strength low-alloy steel. J Mater Eng Perform. https://doi.org/10.1007/s11665-021-05929-4

    Article  Google Scholar 

  19. Ramkumar P, Anil-Kumar V, Gupta RK, Karthikeyan MK, Narahari-Prasad S, Gino-Prakash F, Chakravarthi KVA, Maruthi-Prasad Y, Venkitakrishnan PV (2017) Melting and thermomechanical processing of high strength 0.3%C–CrMoV (ESR) steel. Trans Ind Inst Met 71:1475–1485. https://doi.org/10.1007/s12666-018-1283-2

    Article  CAS  Google Scholar 

  20. Narayana-Murty SVS, Manwatkar SK, Ramesh-Narayanan P (2015) Role of metallographic analysis in the identification of location of crack initiation in a burst tested AA 2219 propellant tank. Metallogr Microstruct Anal 4:392–402

    Article  CAS  Google Scholar 

  21. Jha AK, Narayana-Murty SVS, Divakar V, Sreekumar K (2003) Metallurgical analysis of cracking in the weldment of propellant tank. Eng Fail Anal 10:265–273

    Article  CAS  Google Scholar 

  22. Ghosh R, Venugopal A, Sankaravelayudham P, Panda R, Sharma SC, George KM, Raja VS (2015) Effect of thermomechanical treatment on the environmentally induced cracking behavior of AA7075 alloy. J Mater Eng Perform 24:545–555

    Article  CAS  Google Scholar 

  23. Venugopal A, Sreekumar K, Raja VS (2010) Effect of repair welding on electrochemical corrosion and stress corrosion cracking behaviour of TIG welded AA2219 aluminum alloy in 3.5% NaCl solution. Meatll Mater Trans A 41:3151–3160

    Article  CAS  Google Scholar 

  24. Sarkar A, Saravanan K, Nayan N, Narayana-Murty SVS, Ramesh-Narayanan P, Venkitakrishnan PV, Mukhopadhyay J (2017) Microstructure and mechanical properties of cryorolled aluminum alloy AA2219 in different thermomechanical processing conditions. Metall Mater Trans A 48:321–341

    Article  CAS  Google Scholar 

  25. Manwatkar SK, Sunil M, Prabhu A, Narayana-Murty SVS, Joseph R, Narayanan PR (2019) Effect of grain size on the mechanical properties of aluminum alloy AA2219 parent and weldments at ambient and cryogenic temperature. Trans Indian Inst Met 72:1515–1519

    Article  CAS  Google Scholar 

  26. Manikandan P, Prabhu TA, Manwatkar SK, Rao GS, Narayana-Murty SVS, Sivakumar D, Pant B, Mohan M (2021) Tensile and fracture properties of aluminium alloy AA2219-T87 friction stir weld joints for aerospace applications. Metall Mater Trans A. https://doi.org/10.1007/s11661-021-06337-y

    Article  Google Scholar 

  27. Nayan N, Narayana-Murty SVS, Jha AK, Pant B, Sharma SC, George KM, Sastry GVS (2013) Processing and characterization of Al-Cu-Li alloy AA2195 undergoing scale up production through vacuum induction melting technique. Mater Sci Eng A 576:21–28

    Article  CAS  Google Scholar 

  28. Nayan N, Narayana-Murty SVS, Jha AK, Pant B, Sharma SC (2014) Koshy M George, “Mechanical properties of aluminium–copper–lithium alloy AA2195 at cryogenic temperatures.” Mater Des 58:445–450

    Article  CAS  Google Scholar 

  29. Nayan N, Narayan-Murty SVS, Chhangani S, Prakash A, Prasad MJNV, Samajdar I (2017) Effect of temperature and strain rate on hot deformation behavior and microstructure of Al-Cu-Li alloy. J Alloy Compd 723:548–558

    Article  CAS  Google Scholar 

  30. Nayan N, Mishra S, Prakash A, Sarkar R, Narayana-Murty SVS, Yadava M, Prasad MJNV, Samajdar I (2019) Origin of through-thickness serrated tensile flow behavior in Al–Cu–Li (AA2195) alloy: effect of microstructure and texture. Materialia 5:100180

    Article  CAS  Google Scholar 

  31. Nayan N, Mishra S, Prakash A, Narayana-Murty SVS, Prasad M, Samajdar I (2019) Effect of cross-rolling on microstructure and texture evolution and tensile behavior of aluminium-copper-lithium (AA2195) alloy. Mater Sci Eng, A 740:252–261

    Article  CAS  Google Scholar 

  32. Nayan N, Yadava M, Gurao NP, Narayana-Murty SVS, Mahesh S, Prasad MJNV (2020) Sub-zero temperature dependence of tensile response of friction stir welded Al-Cu-Li (AA2198) alloy. Metall Mater Trans A 51:1173–1182

    Article  CAS  Google Scholar 

  33. Nayan N, Narayana-Murty SVS, Sarkar R, Mukhopadhyay AK, Ahlawat S, Prasad MJNV, Samajdar I (2019) The anisotropy of serrated flow behavior of Al-Cu-Li (AA2198) alloy. Metall Mater Trans A 50:5066–5078

    Article  CAS  Google Scholar 

  34. Nayan N, Mukhopadhyay AK, Narayana-Murty SVS, Yadava M, Sarkar R, Prasad MJNV, Samajdar I (2020) Effect of Cu and Li contents on the serrated flow behavior of Al-Cu-Li based alloys. Metall Mater Trans A 51:1457–1462

    Article  CAS  Google Scholar 

  35. Nayan N, Narayana-Murty SVS, Mukhopadhyay AK, Prasad KS, Jha AK, Pant B, Sharma SC, George KM (2013) Ambient and cryogenic tensile properties of AA2195T87 sheets with pre-aging cold work by a combination of cold rolling and stretching. Mater Sci Eng A 58:475–479

    Article  CAS  Google Scholar 

  36. Kumar VA, Gupta RK, Prasad M, Narayana-Murty SVS (2021) Recent advances in processing of titanium alloys and titanium aluminides for space applications: a review. J Mater Res 36:689–716

    Article  CAS  Google Scholar 

  37. Gupta RK, Anil-Kumar V, Chhangani S (2016) Study on variants of solution treatment and aging cycle of titanium alloy Ti6Al4V. J Mater Eng Perform 25:1492–1501

    Article  CAS  Google Scholar 

  38. Manikandan P, Rao GS, Muneshwar P, Narayana-Murty SVS, Narayanan PR (2019) Tensile and fracture properties of commercially pure titanium (CP-70) hemispherical forgings. Trans Indian Inst Met 72:1469–1473

    Article  CAS  Google Scholar 

  39. Gupta RK, Anil-Kumar V, Roshan-Xavier X (2018) Mechanical behavior of commercially pure titanium weldments at lower temperatures. J Mater Eng Perform 27:2192–2204. https://doi.org/10.1007/s11665-018-3307-9

    Article  CAS  Google Scholar 

  40. Gupta RK, Anil-Kumar V, Ram-Kumar P (2016) Effect of multiple step thermo-mechanical working and recrystallization annealing on mechanical properties and microstructure in titanium alloy Ti6Al4V closed die forgings. J Mater Eng Perform 25:2551–2562

    Article  CAS  Google Scholar 

  41. Kumar VA, Sarkar A, Gupta RK, Prasad M, Narayana-Murty SVS (2021) Microstructure evolution during high-temperature deformation of Ti-5Al-5V-2Mo-1Cr-1Fe alloy under compression. J Mater Eng Perform 30:3258–3272

    Article  CAS  Google Scholar 

  42. Anil-Kumar V, Narayana-Murty SVS, Gupta RK, Babu RR, Prasad M (2015) Melting and microstructure analysis of β-Ti Alloy Ti–5Al–5Mo–5V–1Cr–1Fe with and without boron. Trans Indian Inst Met 68:207–215

    Article  Google Scholar 

  43. Gupta RK, Narayana-Murty SVS, Pant B, Agarwala V, Sinha PP (2012) Hot workability of γ+α2 titanium aluminide: development of processing map and constitutive equations. Mater Sci Eng A 551:169–186

    Article  CAS  Google Scholar 

  44. Gupta RK, Anil-Kumar V, Ramesh-Babu R, Gourav-Rao A (2017) Development of ductile γ + α2 Titanium Aluminide Ti-Al-Cr-Nb-B alloy through ingot metallurgy route and its characterization. Mater Sci Eng A 703:124–136

    Article  CAS  Google Scholar 

  45. Anoop CR, Singh RK, Kumar RR, Jayalakshmi M, Antony-Prabhu T, Thomas-Tharian K, Narayana-Murty SVS (2021) A review on steels for cryogenic applications. Perform Character 10:16–88

    CAS  Google Scholar 

  46. Anoop CR, Singh RK, Kumar RR, Jayalakshmi M, Narayana-Murty SVS, Tharian KT (2020) Development and validation of processing maps for hot deformation of modified AISI 321 austenitic stainless steel. Mater Perform Character 9:150–169

    CAS  Google Scholar 

  47. Anoop CR, Prakash A, Narayana-Murty SVS, Samajdar I (2018) Origin of low temperature toughness in a 12Cr-10Ni martensitic precipitation hardenable stainless steel. Mater Sci Eng, A 709:1–8

    Article  CAS  Google Scholar 

  48. Anoop CR, Prakash A, Narayana-Murty SVS, Samajdar I (2018) Effect of zener-holloman parameter on the prior austenite grain size in a 12Cr-10Ni precipitation-hardenable stainless steel. J Mater Eng Perform 27:3559–3565

    Article  CAS  Google Scholar 

  49. Anoop CR, Prakash A, Giri SK, Narayana-Murty SVS, Samajdar I (2018) Optimization of hot workability and microstructure control in a 12Cr-10Ni precipitation hardenable stainless steel: an approach using processing maps. Mater Charact 141:97–107

    Article  CAS  Google Scholar 

  50. Manikandan P, Rao GS, Saravanan K, Chakravadhanula VSK, Amruth M, Narayana-Murty SVS, Sharma VMJ, Ramesh-Narayanan P (2019) High temperature tensile behavior of a nickel-based superalloy 55Ni-17Cr-12Fe-9Mo-2Nb-1.5 Al used in launch vehicle applications. J Mater Eng Perform 29:377–390

    Article  CAS  Google Scholar 

  51. Gupta RK, Anil-Kumar V, Sukumaran A, Kumar V (2018) High-temperature tensile behavior of base metal and electron beam-welded joints of Ni-20Cr-9Mo-4Nb superalloy. Metall Mater Trans A 49:2654–2672. https://doi.org/10.1007/s11661-018-4652-x

    Article  CAS  Google Scholar 

  52. Jalaja K, Chakravadhanula VSK, Manwatkar SK, Narayana-Murty SVS (2021) Microstructural characterization of XH 67 nickel-based superalloy under different heat treatment conditions. Metallogr Microstruct Anal 10:257–265

    Article  CAS  Google Scholar 

  53. Saravanan K, Chakravadhanula VSK, Manwatkar SK, Narayana-Murty SVS, Ramesh-Narayanan P (2020) Dynamic strain aging and embrittlement behavior of IN718 during high-temperature deformation. Metall Mater Trans A 51:5691–5703

    Article  CAS  Google Scholar 

  54. Krishna SC, Rao GS, Singh SK, Narayana-Murty SVS, Venkatanarayana G, Jha AK, Pant B, Venkitakrishnan PV (2016) Processing and characterization of sub-delta solvus forged hemispherical forgings of inconel. J Mater Eng Perform 25:5477–5485

    Article  CAS  Google Scholar 

  55. Krishna SC, Agilan M, Sudarasana-Rao G, Singh SK, Narayana-Murty SVS, Narayana GV, Beena AP, Rajesh L, Jha AK, Pant B (2017) Design, development and testing of inconel alloy IN718 spherical gas bottle for oxygen storage. J Mater Eng Perform 26:5355–5365

    Article  CAS  Google Scholar 

  56. Prasad KS, Panda SK, Kar SK, Narayana-Murty SVS, Sharma SC (2018) Prediction of fracture and deep drawing behavior of solution treated Inconel-718 sheets: numerical modeling and experimental validation. Mater Sci Eng A 733:393–407

    Article  CAS  Google Scholar 

  57. Prasad KS, Panda SK, Kar SK, Narayana-Murty SVS, Sharma SC (2018) Effect of solution treatment on deep drawability of IN718 sheets: experimental analysis and metallurgical characterization. Mater Sci Eng, A 727:97–112

    Article  CAS  Google Scholar 

  58. Prasad KS, Panda SK, Kar SK, Sen M, Narayana-Murty SVS, Sharma SC (2017) Microstructures, forming limit and failure analysis of inconel 718 sheets for fabrication of aerospace components. J Mater Eng Perform 26:1513–1530

    Article  CAS  Google Scholar 

  59. Anil-Kumar V, Gupta RK, Narayana-Murty SVS, Prasad AD (2016) Hot workability and microstructure control in Co20Cr15W10Ni cobalt-based super alloy. J Alloy Compd 676:527–541

    Article  CAS  Google Scholar 

  60. Gupta RK, Anil-Kumar V (2017) Studies on similar and dissimilar metal EBW joints of Fe-31Ni-5Co and Co-20Cr-15W-10Ni alloys. J Mater Eng Perform 26:2963–2973

    Article  CAS  Google Scholar 

  61. Sarkar A, Narayana-Murty SVS, Prasad MJNV (2020) Dynamic recrystallization in Cu-Cr-Zr-Ti alloy under large plane strain conditions. Metall and Mater Trans A 51:4742–4752

    Article  CAS  Google Scholar 

  62. Sudarsana-Rao G, Srinath J, Raman SGS, Sharma VMJ, Narayana-Murty SVS, Ramesh-Narayanan P, Venkitakrishnan PV (2017) Effect of temperature on low cycle fatigue behavior of annealed Cu-Cr-Zr-Ti alloy in argon atmosphere. Mater Sci Eng-A 692:156–167

    Article  CAS  Google Scholar 

  63. Sarkar A, Prasad MJNV, Narayana-Murty SVS (2020) Effect of initial grain size on hot deformation behaviour of Cu-Cr-Zr-Ti alloy. Mater Charact 160:110112

    Article  CAS  Google Scholar 

  64. Narayana-Murty SVS, Manwatkar SK, George M, Narayanan PR (2016) Microstructural analysis of a failed Cu-Cr-Ti-Zr thrust chamber liner of a cryogenic engine. Mater Perform Character 5:648–663

    Google Scholar 

  65. Shukla AK, Narayana-Murty SVS, Suresh-Kumar R, Mondal K (2013) Effect of powder milling on mechanical properties of hot-pressed and hot-rolled Cu–Cr–Nb alloy. J Alloy Compd 580:427–434

    Article  CAS  Google Scholar 

  66. Shukla AK, Samuel MG, Suresh-Kumar R, Narayana-Murty SVS, Mondal K (2013) Effect of powder oxidation on densification and properties of vacuum hot pressed Cu–Cr–Nb alloy. Mater Sci Eng A 561:452–459

    Article  CAS  Google Scholar 

  67. Shukla AK, Narayana-Murty SVS, Sharma SC, Mondal K (2014) “Aging behavior and microstructural stability of a Cu-8Cr-4Nb alloy. J Alloy Compd 590:514–525

    Article  CAS  Google Scholar 

  68. Shukla AK, Narayana-Murty SVS, Suresh-Kumar R, Mondal K (2013) “Effect of hot-rolling on the enhancement of mechanical properties of low density Cu-Cr-Nb sintered alloy. Mater Des 43:125–133

    Article  CAS  Google Scholar 

  69. Shukla AK, Narayana-Murty SVS, Suresh Kumar R, Mondal K (2013) Enhancement of high temperature ductility of hot-pressed Cu–Cr–Nb alloy by hot rolling. Mater Sci Eng, A 577:36–42

    Article  CAS  Google Scholar 

  70. Shukla K, Narayana Murty SVS, Suresh-Kumar R, Mondal K (2013) Spark Plasma sintering of dispersion hardened Cu-Cr-Nb alloy powders. J Alloy Compd 577:70–78

    Article  CAS  Google Scholar 

  71. Doiphode RL, Narayana Murty SVS, Kashyap BP (2019) Hot Deformation characteristics of magnesium alloys in magnesium and its alloys: technology and applications. In: Leszec AD, Menachem B, George ET (eds) Magnesium and its alloys. CRC Press, Hoboken, pp 57–89

  72. Nayan N, Gurao NP, Narayana-Murty SVS, Venkitakrishanan PV (2021) Plane strain compression of Nb-10Hf-1Ti alloy: effect on microstructure and micro-texture. Trans Indian Inst Met 74:957–968

    Article  CAS  Google Scholar 

  73. Gupta RK, Anil-Kumar V, Karthikeyan MK, Ramkumar P, Ramesh-Narayanan P, Sinha PP (2010) Investigation of cracks generated in columbium alloy (C-103) sheets during deep drawing operation. J Fail Anal Prevent 10:228–232

    Article  Google Scholar 

  74. Acharya SM, Govind AA, Sharma SC, Sreekumar K, Sinha PP (2012) Study of shell cracking behavior and its remedies in investment casting process using quick cast rapid prototype polymer patterns. Mater Sci Forum 710:214–219

    Article  CAS  Google Scholar 

  75. Nimbalkar VM, Bhanushali B, Mohape M, Pandav SG, Deshmukh VP, Dineshraj S, Acharya M, Agarwal-Govind A, Sharma SC (2015) Development of thin walled A-356 components by new rheocasting semi-solid metal processing technology (NRC). Mater Sci Forum 830–831:27–29

    Article  Google Scholar 

  76. Dineshraj S, Acharya M, Agarwal A, Girikumar S, Sharma GSC, George KM (2015) Development of hot isostatic pressing technology for investment cast products. Mater Sci Forum 830–831:19–22

    Article  Google Scholar 

  77. Saravanan TT, Kamaraj M, Sharma SC, Kumaran S, Chakravadhanula VSK, Ravikanth KV, Kumar KV, Sreemoolanadhan H (2020) On characteristic eutectic free microstructural evolution in hyper electric Al-Si processed through spark plasma sintering. J. Materials Letters 275:128150

    Article  CAS  Google Scholar 

  78. Paidpilli M, Upadhyay A, Khanra GP, Sharma SC (2018) Investigation of sintered properties on infiltrated tungsten-copper composite along the infiltration direction. Can Metall Q 57:120–128

    Article  CAS  Google Scholar 

  79. Shukla AK, Nayan N, Murty SVSN, Sharma SC, Chandran P, Bakshi SR, George KM (2013) Processing of copper-carbon nanotube composites by vacuum hot pressing technique. Mater Sci Eng A 560:365–371

    Article  CAS  Google Scholar 

  80. Shukla AK, Nayan N, Murty SVSN, Mondal K, Sharma SC, George KM, Bakshi SR (2013) Processing copper–carbon nanotube composite powders by high energy milling. Mater Character 84:58–66

    Article  CAS  Google Scholar 

  81. Mishra DK, Saravanan TT, Khanra GP, Giri-Kumar S, Sharma SC, Sreekumar K, Sinha PP (2010) Studies on the processing of nickel base porous wicks for capillary pumped loop for thermal management of space crafts. Adv Powder Technol 21:658–662

    Article  CAS  Google Scholar 

  82. Sreemoolanadhan H, Masin B, Mathew M, Sharma SC (2015) Development of patch antenna substrate in BaO-4.TiO2 system. Mater Sci Forum 830–831:425–428

    Article  Google Scholar 

  83. George J, Aanandan C, Mohanan P, Nair KD, Sreemoolanathan H, Sebastian M (1998) Dielectric resonator loaded microstrip antenna for enhanced impedence bandwidth and efficiency. Microw Opt Technol Lett 17:205–207

    Article  Google Scholar 

  84. Venkateswaran C, Sreemoolanadhan H, Sharma SC, Pant B, Chauhan VS, Vaish R (2020) Processing of Li2O-Al2O3-SiO2 (LAS) glass ceramic with and without P2O5 through bulk and sintering routes. J Non-Cryst Solids 550:120289

    Article  CAS  Google Scholar 

  85. Venkateswaran C, Sharma SC, Pant B, Chauhan VS, Vaish R (2019) Crystallisation studies on site saturated lithium aluminosilicate (LAS) glass. Thermochim Acta 679:178311

    Article  CAS  Google Scholar 

  86. Venkateswaran C, Sharma SC, Chauhan VS, Vaish R (2018) Near-zero thermal expansion transparent lithium aluminosilicate glass ceramic by microwave hybrid treatment. J Am Ceram Soc 101:140–150

    Article  CAS  Google Scholar 

  87. Venkateswaran C, Padala A, Sreemoolanadhan H, Ajith MR, Mathew M, Sharma SC (2015) Development of machinable glass-ceramic without nucleating agents. Mater Sci Forum 830–831:436–439

    Article  Google Scholar 

  88. Ajith MR (2005) Synthesis and characterization of silica-silica porous composites and calcium strontium zirconium phosphate ceramics for thermal protection applications, Ph.D. thesis, Indian Institute of Science, Bangalore

  89. Hasan MA, Dey A, Esther ACM, Maiti P, Mukhopadhyay AK, Rajendra A (2020) Structural, out-gassing and nanomechanical properties of super hydrophobic transparent silica aerogels developed by ambient pressure drying for space application. Bull Mater Sci 43:287

    Article  CAS  Google Scholar 

  90. Hasan M, Sangashetty A, Esther R, Sharanabasappa ACM, Baburao BP, Arjun-Dey NS (2017) Prospect of thermal insulation by silica aerogel: a brief review. J Inst Eng India Ser D 98:297–304

    Article  CAS  Google Scholar 

  91. Nagapriya S, Ajith MR, Sreemoolanadhan H, Sree-Nageswari VK, Simon-Wesley C, Sharma SC (2012) Hollow silica granules by microwave processing. Adv Mat Res 585:87–91

    CAS  Google Scholar 

  92. Sharma SC, Naidu NKR, Mittal MC, Lakshmanan TS, Sinha PP, Vaidyan VK (2009) Tailoring of density in carbon foams. I J Eng Mat Sci 16:56–60

    CAS  Google Scholar 

  93. Devasia R, Painuly A, Devapal D, Krishnan R (2021) Continuous fiber reinforced ceramic matrix composites in Fiber reinforced composites constituents, compatibility, perspectives and applications. Woodhead Publ Ser Compos Sci Eng 2021:669–751

    Google Scholar 

  94. Sasikala TS, Thomas D, Devapal D (2015) Studies on evolution of nano SiC ceramics from allyborosiloxane. Ceram Int 42:1618–1626

    Article  CAS  Google Scholar 

  95. Nithin-Chandran BS, Devapal D, Prabhakaran PV (2019) Synthesis of zirconium diboride based ultra high temperature ceramics via pre-ceramic route. Ceram Int 45:25092–25096

    Article  CAS  Google Scholar 

  96. Suresh-Kumar R, Shukla AK, Babu S, Sivakumar D, Gandhi AS (2011) Densification of silicon carbide using oxy-nitride additives for space-based telescope mirror applications. Optical Eng 50:070504

    Article  CAS  Google Scholar 

  97. Pradeep PI, Akhilesh AM, Anil Kumar V, Manikandan P, Naresh Kumar K, Venkateswaran T, Sahu A, Singh SK (2021) Characterization of titanium alloy Ti6Al4V-ELI components made by laser powder bed fusion route for space applications. Trans INAE. https://doi.org/10.1007/s41403-021-00254-7

    Article  Google Scholar 

  98. Jinoop AN, Paul CP, Ganesh Kumar J, Anil Kumar V, Singh R, Rao S, Bindra KS (2021) Influence of heat treatment on the microstructure evolution and elevated temperature mechanical properties of hastelloy-x processed by laser directed energy deposition. J Alloys Compd 868:159207

    Article  CAS  Google Scholar 

  99. Pradeep PI, Anil-Kumar V, Sriranganath A, Singh SK, Sahu A, Sasi-Kumar T, Ramesh-Narayanan P, Arumugam M, Mohan M (2020) Characterization and qualification of LPBF additively manufactured AISI-316L stainless steel brackets for aerospace application. Trans INAE. https://doi.org/10.1007/s41403-020-00159-x

    Article  Google Scholar 

Download references

Acknowledgements

Authors sincerely wish to thank their colleagues at Vikram Sarabhai Space Centre, Trivandrum for their incredible commitment in realizing space materials and making India self-reliant in a number of material systems for space applications. They wholeheartedly acknowledge each and every researcher, who has contributed to the success of materials development. They thank Director, VSSC for his kind permission for publishing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. S. Narayana Murty.

Ethics declarations

Conflict of interest

The authors of this manuscript certify that they have NO affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayana Murty, S.V.S., Sharma, S.C. Materials for Indian Space Program: An Overview. J Indian Inst Sci 102, 513–559 (2022). https://doi.org/10.1007/s41745-021-00284-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-021-00284-8

Keywords

Navigation