Skip to main content
Log in

High Temperature Tensile Behavior of a Nickel-Based Superalloy 55Ni-17Cr-12Fe-9Mo-2Nb-1.5Al Used in Launch Vehicle Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

55Ni-17Cr-12Fe-9Mo-2Nb-1.5Al alloy is a nickel-based superalloy (Russian designation is XH55MбЮ or KhN55MBYu, XH55) without any equivalent in American/European alloy designation. It is used in cryogenic engine of satellite launch vehicles application in two different heat-treated conditions: (1) standard aged (STA) at 730 °C/15 h + 650 °C/10 h and (2) STA + BC (brazing cycle) treatment carried out in vacuum at 1030 °C with holding time of 30 min. Due to the braze cycle adopted for manufacturing, it is essential to study the deterioration in mechanical properties, if any. Hence, the present work is carried out to understand the material behavior in tensile mode (25, 425, 575, 700 and 900 °C) for XH55 alloy in STA condition and STA + BC conditions, compared with corresponding microstructural analysis, morphology and composition using microscopy at various length scales. The tensile stress–strain curve shows characteristic sudden drops in stress with respect to strain, attributed to dynamic strain aging at different temperatures for both STA and STA + BC conditions. In STA condition, the yield strength of the material decreased with increase in temperature. In STA + BC condition, the yield strength decreased up to 425 °C, increased up to 700 °C as the material was subjected to artificial aging during testing and finally decreased at 900 °C. Marginal deterioration in mechanical properties have been observed due to the braze cycle adopted against STA condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Pender, INCONEL Alloy 706, Electric Power Research Institute, Charlotte, NC, 2007. http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.205.6864

  2. S.N. Rosenwasser, and W.R. Johnson, Gas-Turbine HTGR Materials Screening Test Program, General Atomic Project 3227, GA-A14122, UC-77, USA, Sept 30, 1976, p 15

  3. J.R. Davis, Ed., ASM Specialty Handbook: Heat-Resistant Materials, ASM International, Cleveland, 1997

    Google Scholar 

  4. F.A.Harf, Properties and Microstructures for Dual Alloy Combinations of Three Superalloys with Alloy 901, NASA-TM-86987, 1985. https://www.osti.gov/biblio/5090312

  5. R.E. Schafrik, D.D. Ward, and J.R. Groh, Application of Alloy 718 in GE Aircraft Engines: Past, Present and Next Five Years, Superalloys 718, 625, 706 and Various Derivatives, The Minerals, Metals & Materials Society, 2001, p 1–11. https://doi.org/10.7449/2001/superalloys_2001_1_11

  6. Haynes 25 Alloy, Haynes International Brochure H-3057G, USA. http://haynesintl.com/docs/default-source/pdfs/new-alloy-brochures/high-temperature-alloys/brochures/25-brochure.pdf?sfvrsn=26

  7. K.J. Ducki, Analysis of the Precipitation and Growth Processes of the Intermetallic Phases in an Fe-Ni Superalloy, InTech open science, 2015, p 111–137. https://doi.org/10.5772/61159

    Google Scholar 

  8. B. Max, B. Viguier, E. Andrieu, and J. Marc Cloue, A Re-examination of the Portevin-Le Chatelier Effect in Alloy 718 in Connection with Oxidation-Assisted Intergranular Cracking, Metall. Mater. Trans. A, 2014, 45, p 5431–5441. https://doi.org/10.1007/s11661-014-2508-6

    Article  CAS  Google Scholar 

  9. G.M. Sayeed Ahmeda, M.V. Mohiuddin, H. Salma Sultana, V. Krishnamurthy Dora, and D. Singh, Microstructure Analysis and Evaluation of Mechanical Properties of Nickel Based Super Alloy CCA617, Mater. Today Proc., 2015, 2, p 1260–1269. https://doi.org/10.1016/j.matpr.2015.07.041

    Article  Google Scholar 

  10. A.D. Ivanov, S.B. Nikitina, and A.G. Ukhlinov, Phase Transformations in Alloys of the Ni-Cr-Fe-Mo-Nb-Al-Ti System, Met. Sci. Heat Treat., 1993, 35(5), p 290–293. https://doi.org/10.1007/BF00780599

    Article  Google Scholar 

  11. V.I. Tkachov, L.M. Ivas’kevych, and O.M. Voznychak, Effect of Hydrogen on the Mechanical Properties of Welded Joints of 03Kh12N10MT Steel and KhN55MBYu Alloy, Mater. Sci., 2004, 40(6), p 772–780. https://doi.org/10.1007/s11003-005-0114-x

    Article  CAS  Google Scholar 

  12. K. Gopinath, A.K. Gogia, S.V. Kamat, and U. Ramamurty, Dynamic Strain Ageing in Ni-Base Superalloy 720Li, Acta Mater., 2009, 57, p 1243–1253. https://doi.org/10.1016/j.actamat.2008.11.005

    Article  CAS  Google Scholar 

  13. C. Marsh and D. Kaoumi, Serrated Tensile Flow in Inconel X750 Sheets: Effect of Heat Treatment, Mater. Sci. & Eng. A., 2017, 707, p 136–147. https://doi.org/10.1016/j.msea.2017.08.093

    Article  CAS  Google Scholar 

  14. Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, ASTM E 21, Annual book of ASTM standards, part 3, ASTM 2009, www.astm.org

  15. P. Rodriguez, Serrated Plastic Flow, Bull. Mater. Sci., 1984, 6(4), p 653–663. https://doi.org/10.1007/BF02743993

    Article  Google Scholar 

  16. S. Nalawade, S. Mahadevan, J.B. Singh, K. Ramaswamy, and A. Verma, Serrated Yielding in Alloy 718, 7th International Symposium on Super alloy 718 and Derivatives, E.A. Ott, J.R. Groh, A. Banik, I. Dempster, T.P. Grabb, R. Helmix, X. Liu, A. Mitchell, G.P. Sjoberg, and A. Wusatowska-sarnek, Ed., The Minerals, Metals & Materials Society, 2010, p 809–823. https://doi.org/10.7449/2010/superalloys_2010_809_823

  17. R.A. Mulford and U.F. Kocks, New Observations on the Mechanisms of Dynamic Strain Aging and of Jerky Flow, Acta Metall., 1979, 27, p 1125–1134. https://doi.org/10.1016/0001-6160(79)90130-5

    Article  CAS  Google Scholar 

  18. A. Kimura and H.K. Birnbaum, Anomalous Strain Rate Dependence of the Serrated Flow in NiH and NiCH Alloys, Acta Metall. Mater., 1990, 38, p 1343–1348. https://doi.org/10.1016/0956-7151(90)90206-V

    Article  CAS  Google Scholar 

  19. U.F. Kocks, R.E. Cook, and R.A. Mulford, Strain Aging and Strain Hardening in NiC Alloys, Acta Metall., 1985, 33, p 623–638. https://doi.org/10.1016/0001-6160(85)90026-4

    Article  CAS  Google Scholar 

  20. Y. Nakada and A.S. Keh, Serrated Flow in Ni-C Alloys, Acta Metall., 1970, 18, p 437–443. https://doi.org/10.1016/0001-6160(70)90129-X

    Article  CAS  Google Scholar 

  21. A. Portevin and F. Le Chatelier, Sur un phénomène observe lors de l’essai de traction d’alliages en corns de trans formation, Comptes Rendus Acad. Sci. Paris., 1923, 176, p 507–510

    CAS  Google Scholar 

  22. L.H. de Almeida, P.R.O. Emygdio, and I. Le May, Activation Energy Calculation and Dynamic Strain Aging in Austenitic Stainless Steel, Scr. Metall. Mater., 1994, 31(5), p 505–510. https://doi.org/10.1016/0956-716X(94)90134-1

    Article  Google Scholar 

  23. L.H. de Almeida, I. Le May, and P.R.O. Emygdio, Mechanistic Modeling of Dynamic Strain Aging in Austenitic Stainless Steels, Mater. Charact., 1998, 41(4), p 137–150. https://doi.org/10.1016/S1044-5803(98)00031-X

    Article  Google Scholar 

  24. L. Fournier, D. Delafosse, and T. Magnin, Oxidation Induced Intergranular Cracking and Portevin–Le Chatelier Effect in Nickel Base Superalloy 718, Mater. Sci. Eng. A, 2001, 316, p 166–173. https://doi.org/10.1016/S0921-5093(01)01224-2

    Article  Google Scholar 

  25. C.L. Hale, W.S. Rollings, and M.L. Weaver, Activation Energy Calculations for Discontinuous Yielding in Inconel 718SPF, Mater. Sci. Eng., A, 2001, 300, p 153–164. https://doi.org/10.1016/S0921-5093(00)01470-2

    Article  Google Scholar 

  26. S.A. Nalawade, M. Sundararaman, R. Kishore, and J.G. Shah, The Influence of Aging on the Serrated Yielding Phenomena in a Nickel-Base Superalloy, Scr. Mater., 2008, 59, p 991–994. https://doi.org/10.1016/j.scriptamat.2008.07.004

    Article  CAS  Google Scholar 

  27. M.L. Weaver and C.S. Hale, Effects of Precipitation on Serrated Yielding in Inconel 718, Superalloys 718, 625, 706 and Various Derivatives.,E.A.Loria, Ed., The Minerals, Metals & Materials Society, 2001, p 421–432. https://doi.org/10.7449/2001/superalloys_2001_421_432

  28. H. Hänninen, M. Ivanchenko, Y. Yagodzinskyy, V. Nevdacha, U. Ehrnstén, and P. Aaltonen, Dynamic strain aging of Ni-base alloys Inconel 600 and 690, Proc. 12th Int. Conf. Environ. Degrad. Mater. Nucl. Power Syst, (Water React)., T.R. Allen, P.J. King and L. Nelson, Ed., The Minerals, Metals & Materials Society, Salt Lake City, Utah, USA, 2005, p 1423–1430. http://lib.tkk.fi/Diss/2010/isbn9789526034454/article5.pdf.

  29. R.B. Frank, C.G. Roberts, and J. Zhang, Effect of Nickel Content on Delta Solvus Temperature and Mechanical Properties of Alloy 718, 7th International Symposium on Super alloy 718 and Derivatives, E.A.Ott, J.R.Groh, A.Banik, I. Dempster, T.P. Grabb, R. Helmix, X. Liu, A. Mitchell, G.P. Sjoberg, and A. Wusatowska-sarnek, Ed., The Minerals, Metals & Materials Society, 2010, p 725–736. https://doi.org/10.1002/9781118495223.ch56.

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors are great full to Dr. Sivakumar, Head, HWMD for extending heat treatment facility to carry out this work. The authors also acknowledge the support of Mr. Chenna Krishna S, MPD toward DSC experiments and Dr. Jalaja K, MCD for XRD data analysis. Authors wish to thank GD, MMG and DD, MME for encouragement and support provided and also thank Director, VSSC for his continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Manikandan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Microstructure of specimen prepared from gauge portions near the fractured edge of sample in STA + BC condition tested at 700 °C showing (a) STEM image showing fine precipitates within the grains (b) and (c) STEM image and BFTEM image showing grain boundary triple junction and precipitates distributed along the grain boundaries, respectively (TIFF 493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, P., Sudarshan Rao, G., Saravanan, K. et al. High Temperature Tensile Behavior of a Nickel-Based Superalloy 55Ni-17Cr-12Fe-9Mo-2Nb-1.5Al Used in Launch Vehicle Applications. J. of Materi Eng and Perform 29, 377–390 (2020). https://doi.org/10.1007/s11665-019-04525-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04525-x

Keywords

Navigation