Skip to main content
Log in

Melting and Microstructure Analysis of β-Ti Alloy Ti–5Al–5Mo–5V–1Cr–1Fe With and Without Boron

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

β-Titanium alloys form one of the most versatile classes of structural materials due to their high specific strength, good hardenability, crack propagation resistance and substantial ductility. β-Titanium alloy with a composition (in wt%) of Ti–5Al–5Mo–5V–1Cr–1Fe was processed by double vacuum arc remelting route. In the present work, the effect of boron addition (up to 0.12 wt%) on the as-cast microstructure and β-transus (Tβ) of the alloy was studied using characterization tools like optical microscopy, electron back scattered diffraction, scanning electron microscopy, differential scanning calorimetry (DSC) and dilatometry. It was observed that boron addition has resulted in refinement of the as-cast microstructure due to precipitation of titanium boride whiskers along the grain boundaries. The DSC and dilatometry studies on the as-cast alloy revealed significant effect of boron addition on thermal stability of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ivasishin O M, Markovsky P E, Matviychuk Yu V, and Semiatin S L, Metall Mater Trans A 34A (2003) 147.

    Article  Google Scholar 

  2. Ivasishin O M, Markovsky P E, Semiatin S L, and Ward C H, Mater Sci and Eng A 405 (2005) 296.

    Article  Google Scholar 

  3. Tamirisakandala S, Bhat R, Tiley J, and Miracle D B, J Mater Eng and Perform 14-6 (2005) 241.

    Google Scholar 

  4. Tamirisakandala S, Bhat R, Tiley J, and Miracle D B, Scripta Mater 53 (2005) 1421.

    Article  Google Scholar 

  5. Euh K, Lee J, Lee S, Koo Y, and Kim N, Scripta Mater 45 (2001) 1.

    Article  Google Scholar 

  6. Tamirisakandala S, Miracle D B, Srinivasan R, and Gunasekera J S, Adv Mater Proc 12 (2006) 41.

    Google Scholar 

  7. Sastry S M L, Peng T C, and Lederich R J, Metal Soc AIME (1986) 207.

  8. Ranganath S J, Mater Sci 32 (1997) 1.

    Google Scholar 

  9. Boehlert C J, Tamirisakandala S, and Miracle D B, in Titanium Science and Technology, (eds) Ninomi M, Akiyama S, Ikeda M, Hagiwara M, and Maruyama M, The Japan Inst of Met, Tokyo (2007).

    Google Scholar 

  10. Chen W, and Boehlert C J, Metall Mater Trans A 40A (2009) 1568.

    Article  Google Scholar 

  11. Boehlert C J, Mater Sci Eng A, 510 (2009), 434.

    Article  Google Scholar 

  12. Boehlert C J, Tamirisakandala S, Curtin W A, and Miracle D B, Scripta Mater 61(2009) 245.

    Article  Google Scholar 

  13. Chandravanshi V K, Sarkar R, Kamat S V, and Nandy T K, Metall Mater Trans A 44A (2013) 201.

    Article  Google Scholar 

  14. Tamirisakandala S, Bhat R B, Miracle D B, Boddapati S, Bordia R, Vanover R, and Vasudevan V K, Scripta Mater 53 (2005) 217.

    Article  Google Scholar 

  15. Chandravanshi V K, Sarkar R, Ghosal P, Kamat S V, and Nandy T K, Metall Mater Trans A 41A (2010) 936.

    Article  Google Scholar 

  16. Sen I, Gopinath K, Ranjan D, and Ramamurthy U, Acta Mater 58 (2010) 6799.

    Article  Google Scholar 

  17. Sen I, Kottada R S, and Ramamurthy U, Mater Sci Eng A 527 (2010) 6157.

    Article  Google Scholar 

  18. Sen I, Tamirisakandala S, Miracle D B, and Ramamurthy U, Acta Mater 55 (2007) 4983.

    Article  Google Scholar 

  19. Bermingham M J, McDonald S D, Nogita K, St John D H, and Dargusch M S, Scripta Mater 59 (2008) 538.

    Article  Google Scholar 

  20. Atri R R, Ravichandran K S, and Jha S K, Mater Sci Eng A 271(1999) 150.

    Article  Google Scholar 

  21. Atri R R, and Ravichandran K S, University of Utah, Salt Lake City (Unpublished Research) (1999).

  22. Li D X, Ping D H, Lu Y X, and Ye H Q, Mater Lett 16 (1993) 322.

    Article  Google Scholar 

  23. Philiber J A, Dary F C, Zok F W, and Levi C G, in Titanium’95 Sci. and Technol., (eds) Blenkinsop P A, Evans W J, and Flower H M, The Inst of Mater, London 3 (1996) p 2714.

    Google Scholar 

  24. Hyman M E, McCulloaugh C, Valencia J J, Levi, and Mehrabian R, Metall Trans A 22A (1991) 1647.

    Article  Google Scholar 

  25. Panda K B, and Ravichandran K, Metal and Mater Trans A 34 (2003) 1371.

    Article  Google Scholar 

  26. Marray J L, Liao P K, and Spear K E, in Binary Alloy Phase Diagrams, (ed) Baker H, ASM International, Materials Park (1992) p 2.85.

    Google Scholar 

  27. Boyer R R, Mater Sci Eng A 213 (1996) 103.

    Article  Google Scholar 

  28. Warchomicka F, Stockinger M, and Degischer H P, J Mater Process Technol 177 (2006) 473.

    Article  Google Scholar 

  29. Warchomicka F, Poletti C, and Stockinger M, Mater Sci Eng A 528 (2011) 8277.

    Article  Google Scholar 

  30. Tsybanev G V, Ageev M A, and Titarenko R V, Strength Mater 40 (2008) 458.

    Article  Google Scholar 

  31. Yu L L, Mao X N, Zhao Y Q, Zhang P S, and Yuan S C, Rare Met Mater Eng 36 (2007) 505.

    Google Scholar 

  32. Bhat R B, Tamirisakandala S, and Miracle D B, J Mater Eng Perform 13-6 (2004) 653.

    Article  Google Scholar 

  33. Gupta R K, Bhanu P, Vijaya A, Agarwala R C, and Sinha P P, Trans Ind Inst Met 62-1(2009) 21.

  34. Yeh C L, and Su S H, J Alloys Comp, 407 (2006) 150.

    Article  Google Scholar 

  35. Gupta R K, Pant B, Agarwala V, and Sinha P P, Mater Chem Phys 137 (2012) 483.

  36. Shah A K, Kulkarni G J, Gopinathan Y, and Krishnan R, Scripta Metall 32-9 (1995) 1353.

    Article  Google Scholar 

  37. Wang Y H, Kou H, Chang H, Zhu ZS, Su XF, Jinshan L, and Lian Z, J Alloys Comp, 472 (2009) 252.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Director, VSSC, India and Chairman & Managing Director, M/s. Midhani, India for granting permission to publish this work. The authors express their sincere thanks to the management of MME, VSSC for the support and encouragement provided during this work. The authors are also grateful to the support extended by Titanium shop and Development teams of M/s. Midhani, Hyderabad MCD, VSSC, RE/RQS-HWC,VSSC and OIM lab team at IIT Bombay. The authors would also like to acknowledge the support received from Centre of Excellence for Steel Technology (CoEST), IIT Bombay for carrying out dilatometry studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Anil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anil Kumar, V., Murty, S.V.S.N., Gupta, R.K. et al. Melting and Microstructure Analysis of β-Ti Alloy Ti–5Al–5Mo–5V–1Cr–1Fe With and Without Boron. Trans Indian Inst Met 68 (Suppl 2), 207–215 (2015). https://doi.org/10.1007/s12666-015-0561-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0561-5

Keywords

Navigation