Skip to main content
Log in

Effect of Zener–Holloman Parameter on the Prior Austenite Grain size in a 12Cr-10Ni Precipitation-Hardenable Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot isothermal plane strain compression (PSC) tests were carried out on a 12Cr-10Ni martensitic precipitation-hardenable (PH) stainless steel, in the temperature range of 750-1050 °C, to study microstructural evolution during large strain deformation. The nature of stress–strain curves varies with Zener–Holloman parameter (Z) with specimens deformed at high Z showing steady-state behavior and those deformed at lower Z showing flow softening. Prior austenite grain size (PAGS), d, exhibited a strong correlation to Z showing a bilinear behavior represented as: d = (1803.9)Z−0.094 for high Z deformation and d = (1456.2)Z−0.058 for low Z deformation. Based on the above study, it is recommended to thermomechanically process 12Cr-10Ni steel at Z ≥ 1022 for obtaining products with good strength–toughness balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.K. Wilson, Ed., Maraging Steels: Recent Developments and Applications, The Minerals Metals & Materials Society, Pittsburgh, 1998, p 1–39

    Google Scholar 

  2. M.F. McGuire, Stainless Steels for Design Engineers, ASM International, Almere, 2008, p 137–146

    Google Scholar 

  3. Y.V.R.K. Prasad and S. Sasidhara, Hot Working Guide, ASM International, Almere, 2015, p 1–24

    Google Scholar 

  4. Y.V.R.K. Prasad and T. Seshacharyalu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258

    Article  Google Scholar 

  5. S.V.S. Narayana Murty, B. Nageswara Rao, and B.P. Kashyap, Instability Criteria for Hot Deformation of Materials, Int. Mater. Rev., 2000, 45, p 15–26

    Article  Google Scholar 

  6. G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, Ed., Handbook of Workability and Process Design, ASM International, Almere, 2003

    Google Scholar 

  7. G.E. Dieter, Mechanical Metallurgy, McGraw Hill, New York, 1986

    Google Scholar 

  8. S. Morito, H. Saito, T. Ogawa, T. Furuhara, and T. Maki, Effect of Austenite Grain size on the Morphology and Crystallography of Lath Martensite in Low Carbon Steels, ISIJ Int., 2005, 45, p 91–94

    Article  Google Scholar 

  9. M. Pietrzyk, J.G. Lenard, and G.M. Dalton, A Study of Plane Strain Compression Test, Ann. CIRP, 1993, 42, p 331–334

    Article  Google Scholar 

  10. S.V.S. Narayana Murty, S. Torizuka, and K. Nagai, Microstructural Evolution During Simple Heavy Warm Compression of a Low Carbon Steel: Development of a Processing Map, Mater. Sci. Eng. A, 2005, 410–411, p 319–323

    Article  Google Scholar 

  11. N. Nayan, N.P. Gurao, S.V.S. Narayana Murty, A.K. Jha, B. Pant, and K.M. George, Microstructure and Microtexture Evolution During Larges Strain Deformation of Inconel Alloy IN718, Mater. Charact., 2010, 110, p 236–241

    Article  Google Scholar 

  12. N. Nayan, N.P. Gurao, S.V.S. Narayana Murty, A.K. Jha, B. Pant, and S.C. Sharma, Microstructure and Microtexture Evolution During Larges Strain Deformation of an Aluminium-Copper-Lithium Alloy AA2195, Mater. Des., 2015, 65, p 862–868

    Article  Google Scholar 

  13. C. Boldetti, C. Pinna, and I.C. Howard, Measurement and Prediction of Deformation in Plane Strain Compression Tests of AA5182, Mater. Sci. Technol., 2006, 22, p 1380–1386

    Article  Google Scholar 

  14. S.A. Aksenov, J. Kliber, Y.A. Puzino, and S.A. Bober, Processing of Plane Strain Compression Test Results for Investigation of AISI, 304 Stainless Steel Constitutive Behaviour, J. Chem. Technol. Metall., 2015, 50(6), p 644–650

    Google Scholar 

  15. K. Pawlak, B. Białobrzeska, and Ł. Konat, The Influence of Austenitizing Temperature on Prior Austenite Grain Size and Resistance to Abrasion Wear of Selected Low-Alloy Boron Steel, Arch. Civ. Mech. Eng., 2016, 16, p 913–926

    Article  Google Scholar 

  16. J.W. Morris, Jr., C. Kinney, K. Ptylweski, and Y. Adachi, Microstructure and Cleavage in Lath Martensitic Steels, Sci. Technol. Adv. Mater., 2013, 14, p 1–9

    Article  Google Scholar 

  17. J.W. Morris, Jr., On Ductile–Brittle Transition in Lath Martensitic Steels, ISIJ Int., 2011, 51, p 1569–1575

    Article  Google Scholar 

  18. C.R. Anoop, A. Prakash, S.V.S. Narayana Murty, and I. Samajdar, Optimization of Hot Workability and Microstructure Control in a 12Cr-10Ni Precipitation Hardenable Stainless Steel: An Approach Using Processing Maps, (Submitted to Materials Characterisation, under revision)

  19. C.R. Anoop, A. Prakash, S.V.S. Narayana Murty, and I. Samajdar, Origin of Low Temperature Toughness in a 12Cr-10Ni Martensitic Precipitation Hardenable Stainless Steel, Mater. Sci. Eng. A, 2018, 709, p 1–8

    Article  Google Scholar 

  20. R.D. Doherthy, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQuen, and A.D. Rollet, Current Issues in Recrystallisation: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274

    Article  Google Scholar 

  21. Y.V.R.K. Prasad and N. Ravichandran, Effect of SFE on the Dynamic Recrystallisation During Hot Working of FCC Metals: A Study Using Processing Maps, Bull. Mater. Sci., 1991, 14(5), p 1241–1248

    Article  Google Scholar 

  22. H. Mirzadeh and A. Najafizadeh, Hot Deformation and Dynamic Recrystallisation of 17-4 PH Stainless Steel, ISIJ Int., 2013, 53, p 680–689

    Article  Google Scholar 

  23. ASM International, ASM Handbook, Vol 14A, ASM International, Almere, 2010, p 261–268

    Google Scholar 

  24. I. Salvatori, T. Inoue, and K. Nagai, Ultra Fin Grain Structure Through Dynamic Recrystallisation for Type 304 Stainless Steel, ISIJ Int., 2002, 42, p 744–750

    Article  Google Scholar 

  25. T. Simm, L. Sun, S. McAdam, P. Hill, M. Rawson, and K. Perkins, The Influence of Lath, Block and Prior Austenite Grain (PAG) Size on the Tensile, Creep and Fatigue Properties of Novel Maraging Steel, Materials, 2017, 10, p 730

    Article  Google Scholar 

  26. P.P. Sinha, Influence of Heat Treatment on Microstructure and Mechanical Properties of 18Ni Co-free (T-250 Grade) Maraging Steel, Ph.D. thesis, Banaras Hindu University (BHU), 1993

  27. H.J. Rack, Age Hardening-Grainsize Relationship in 18Ni Maraging Steels, Mater. Sci. Eng., 1978, 34, p 263–270

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. S. Narayana Murty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anoop, C.R., Prakash, A., Narayana Murty, S.V.S. et al. Effect of Zener–Holloman Parameter on the Prior Austenite Grain size in a 12Cr-10Ni Precipitation-Hardenable Stainless Steel. J. of Materi Eng and Perform 27, 3559–3565 (2018). https://doi.org/10.1007/s11665-018-3431-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3431-6

Keywords

Navigation