Skip to main content

Advertisement

Log in

In vitro plant regeneration and transformation studies in millets: current status and future prospects

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Millets are a group of small seeded cereals and forage grasses grown in arid and semi-arid regions of Asia and Africa, where majority of cereals cannot be relied upon to provide sustainable yield. While major cereals such as wheat, rice and maize provide only food security, millets provide multiple securities, viz., food, fodder, health, nutrition, livelihood and ecological. Each of the millets is a reservoir of several nutrients in large quantity. They are nutritionally rich in minerals, dietary fiber, phenolics, vitamins, and are gluten-free. In the present review recent advances in tissue culture and genetic transformation studies conducted in millets to date have been summarized. Although there is a vast amount of literature available on millet tissue culture, only a limited number of transformation experiments have been conducted so far. Millets have been transformed primarily by particle bombardment, whereas Agrobacterium-mediated transformation is still lagging behind. Efforts need to be made to genetically improve millets by incorporating certain agronomically important traits, such as resistance to biotic and abiotic stresses, resistance to lodging, increased seed size and palatability along with softness of grain to make these crops more desirable for consumer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almerei, A., Lane, S., & Fuller, M. P. (2014). Genetic transformation of immature zygotic embryos of maize genotypes via Agrobacterium tumefaciens. Life Science Journal, 11, 966–975.

    Google Scholar 

  • Amali, P., Kingsley, S. J., & Ignacimuthu, S. (2014). Enhanced plant regeneration involving somatic embryogenesis from shoot tip explants of Sorghum bicolor (L. Moench). Asian Journal of Plant Science and Research, 4, 26–34.

    Google Scholar 

  • Anjaneyulu, E., Hemalatha, S., Raj, S. B., & Balaji, M. (2011). Callus induction and plant regeneration in finger millet (Eleusine coracana L.). Libyan Agriculture Research Center Journal International, 2, 57–61.

    Google Scholar 

  • Anju, C., Rabindran, R., Velazhahan, R., & Ravikesavan, R. (2016). Callusing and regeneration in finger millet [Eleusine coracana (L.) Gaertn.]. Research Journal of Agricultural Sciences, 7, 324–329.

    Google Scholar 

  • Avila, P. O., Nava-Cedillo, A., Jofre-Garfias, A. E., & Cabrera-Ponce, J. L. (1995). Plant regeneration from shoot apex explants of foxtail millet. Plant Cell, Tissue and Organ Culture, 40, 33–35.

    Article  Google Scholar 

  • Bekele, E., Klock, G., & Zimmermann, U. (1995). Somatic embryogenesis and plant regeneration from leaf and root explants and from seeds of Eragrostis tef (Gramineae). Hereditas, 123, 183–189.

    Article  Google Scholar 

  • Benson, E. E. (2000). In vitro plant recalcitrance: An introduction. In Vitro Cellular and Developmental Biology-Plant, 36, 141–148.

    Article  Google Scholar 

  • Bhaskaran, S., & Smith, R. H. (1990). Regeneration in cereal tissue culture: A review. Crop Science, 30, 1328–1336.

    Article  CAS  Google Scholar 

  • Bregitzer, P., Dahleen, L. S., & Campbell, R. D. (1998). Enhancement of plant regeneration from embryogenic callus of commercial barley cultivars. Plant Cell Report, 17, 941–945.

    Article  CAS  Google Scholar 

  • Campos, J. M. S., Davide, L. C., Salgado, C. C., Santos, F. C., Costa, P. N., Silva, P. S., et al. (2009). In vitro induction of hexaploid plants from triploid hybrids of Pennisetum purpureum and Pennisetum glaucum. Plant Breeding, Berlin, 128, 101–104.

    Article  CAS  Google Scholar 

  • Ceasar, S. A., & Ignacimuthu, S. (2008). Efficient somatic embryogenesis and plant regeneration from shoot apex explants of different Indian genotypes of finger millet (Eleusine coracana (L) Gaertn). In Vitro Cellular and Developmental Biology-Plant, 44, 427–435.

    Article  CAS  Google Scholar 

  • Ceasar, S. A., & Ignacimuthu, S. (2010). Effects of cytokinins, carbohydrates and amino acids on induction and maturation of somatic embryos in kodo millet (Paspalum scorbiculatum Linn.). Plant Cell, Tissue and Organ Culture, 102, 153–162.

    Article  CAS  Google Scholar 

  • Ceasar, S. A., & Ignacimuthu, S. (2011). Agrobacterium mediated transformation of Finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants. Plant Cell Report, 30, 1759–1770.

    Article  CAS  Google Scholar 

  • Chauhan, M., & Kothari, S. L. (2004). Optimization of nutrient levels in the medium increases the efficiency of callus induction and plant regeneration in recalcitrant Indian barley (Hordeum vulgare L.) in vitro. In Vitro Cellular and Developmental Biology-Plant, 40, 520–527.

    Article  CAS  Google Scholar 

  • Dahleen, L. S. (1995). Improved plant regeneration from barley callus cultures by increased copper levels. Plant Cell, Tissue and Organ Culture, 43, 267–269.

    CAS  Google Scholar 

  • Devi, P., & Sticklen, M. (2002). Culturing shoot-tip clumps of pearl millet (Pennisetum glaucum (L.) R. Br.) and optimal microprojectile bombardment parameters for transient expression. Euphytica, 125, 45–50.

    Article  CAS  Google Scholar 

  • Devi, P., Zhong, H., & Sticklen, M. B. (2000). In vitro morphogenesis of pearl millet (Pennisetum glaucum (L.) R.Br.): Efficient production of multiple shoots and inflorescences from shoot apices. Plant Cell Report, 19, 546–550.

    Article  CAS  Google Scholar 

  • Dhillon, N. K., & Gosal, S. S. (2013). Analysis of maize inbred lines for their response to somatic embryogenesis. Journal of Cell and Tissue Research, 13, 3557–3563.

    CAS  Google Scholar 

  • Dosad, S., & Chawla, H. S. (2015a). In vitro plant regeneration from mature seeds of finger millet (Eleusine coracana) through somatic embryogenesis. Indian Journal of Plant Physiology, 20, 360–367.

    Article  CAS  Google Scholar 

  • Dosad, S., & Chawla, H. S. (2015b). Optimization of different doses of growth regulators for in vitro regeneration of Echinochloa frumentacea Roxb. from caryopsis. Indian Journal of Plant Physiology, 20, 339–344.

    Article  CAS  Google Scholar 

  • Eapen, S., & George, L. (1990). Influence of phytohormones, carbohydrates, aminoacids, growth supplements and antibiotics on somatic embryogenesis and plant differentiation in finger millet. Plant Cell, Tissue and Organ Culture, 22, 87–93.

    Article  CAS  Google Scholar 

  • Enriquez-Obregon, G. A., Prieto-Samsonov, D. L., de la Riva, G. A., Perez, M., Selman-Housein, G., & Vazquez-Padron, R. I. (1999). Agrobacterium-mediated Japonica rice transformation: A procedure assisted by an antinecrotic treatment. Plant Cell, Tissue and Organ Culture, 59, 159–168.

    Article  CAS  Google Scholar 

  • Faleiro, F. G., Kannan, B., & Altpeter, F. (2016). Regeneration of fertile, hexaploid, interspecific hybrids of elephantgrass and pearl millet following treatment of embryogenic calli with antimitotic agents. Plant Cell, Tissue and Organ Culture, 124, 57–67.

    Article  CAS  Google Scholar 

  • Fang, F. Q., Qian, Z., Guang, M. A. & Jing, J. Y. (2007). Co-suppression of Si401, a maize pollen speciWc Zm401 homologous gene, results in aberrant anther development in foxtail millet. Euphytica, 163, 103–111.

    Google Scholar 

  • Fernandez, S., Michaux-Ferriere, N., & Coumans, M. (1999). The embryogenic response of immature embryo cultures of durum wheat (Triticum durum): Histology and improvement by AgNO3. Plant Growth Regulation, 28, 147–155.

    Article  CAS  Google Scholar 

  • George, L., & Eapen, S. (1990). High frequency plant regeneration through direct shoot development and somatic embryogenesis from immature inflorescence cultures of finger millet (Eleusine coracana Gaertn.). Euphytica, 48, 269–274.

    Article  Google Scholar 

  • Ghobeishavi, H., Uliaie, E. D., Alavikia, S. S., & Valizadeh, M. (2015). Study of factors influencing somatic embryogenesis in rice (Oryza Sativa L.). International Journal of Advanced Biological and Biomedical Research, 3, 43–50.

    CAS  Google Scholar 

  • Girgi, M., O’Kennedy, M. M., Morgenstern, A., Mayer, G., Lorz, H., & Oldach, K. H. (2002). Transgenic and herbicide resistant pearl millet (Pennisetum glaucum L.) R.Br. via microprojectile bombardment of scutellar tissue. Molecular Breeding, 10, 243–252.

    Article  CAS  Google Scholar 

  • Goldman, J. J., Hanna, W. W., Fleming, G., & Ozias-Akins, P. (2003). Fertile transgenic pearl millet (Pennisetum glaucum (L.) R. Br.) plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem-, inflorescence and immature embryo derived embryogenic tissues. Plant Cell Report, 21, 999–1009.

    Article  CAS  Google Scholar 

  • Gorji, A. H., Zolnoori, M., Jamasbi, A., & Zolnoori, Z. (2011). In vitro plant generation of tropical maize genotypes. International Conference on Environmental, Biomedical and Biotechnology, 16, 52–59.

    Google Scholar 

  • Grando, M. F., Varnier, M. L., Silva, M. R., Emydio, B. M., Pereira, L. R., & Suzin, M. (2013). Immature tassels as alternative explants in somatic embryogenesis and plant regeneration in south Brazilian maize genotypes. Acta Scientiarum, 35, 39–47.

    Google Scholar 

  • Gupta, P., Raghuvanshi, S., & Tyagi, A. K. (2001). Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotechnology, 18, 275–282.

    Article  CAS  Google Scholar 

  • Haque, M., Siddique, A. B., & Islam, S. M. S. (2015). Effect of silver nitrate and amino acids on high frequency plants regeneration in Barley (Hordeum vulgare L.). Plant Tissue Culture and Biotechnology, 25, 37–50.

    Article  Google Scholar 

  • Hauptmann, R. M., Ozias-Akins, P., Vasil, V., Tabaeizadeh, Z., Rogers, S. G., Horsch, R. B., et al. (1987). Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Reports, 6, 265–270.

    Article  CAS  PubMed  Google Scholar 

  • Hema, R., Vemanna, R. S., Sreeramulu, S., Reddy, C. P., Kumar, M. S., & Udayakumar, M. (2014). Stable expression of mtlD gene imparts multiple stress tolerance in Finger millet. PLoS One. doi:10.1371/journal.pone.0099110.

    PubMed  PubMed Central  Google Scholar 

  • Ignacimuthu, S., & Ceasar, S. A. (2012). Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. Journal of Biosciences, 37, 135–147.

    Article  CAS  PubMed  Google Scholar 

  • Ignacimuthu, S., & Kannan, P. (2013). Agrobacterium-mediated transformation of pearl millet (Pennisetum typhoides (L.) R. Br.) for fungal rust. Asian Journal of Plant Sciences, 112, 97–108.

    Article  CAS  Google Scholar 

  • Jagga-Chugh, S., Kachhwaha, S., Sharma, M., Kothari-Chajer, A., & Kothari, S. L. (2012). Optimization of factors influencing microprojectile bombardment-mediated genetic transformation of seed-derived callus and regeneration of transgenic plants in Eleusine coracana (L.) Gaertn. Plant Cell Tissue and Organ Culture. doi:10.1007/s1124001101047.

    Google Scholar 

  • Jalaja, N., Maheshwari, P., Naidu, K. R., & Kavikishor, P. B. (2016). In vitro regeneration and optimization of conditions for transformation methods in Pearl millet, Pennisetum glaucum (L.). International Journal of Clinical and Biological Sciences, 1, 34–52.

    Google Scholar 

  • Jayasudha, B. G., Sushma, A. M., Prashantkumar, H. S., & Sashidhar, V. R. (2014). An efficient in vitro agrobacterium –mediated transformation protocol for raising salinity tolerant transgenic plants in fingermillet [Eleusine coracana (L.) Gaertn.]. Plant Archives, 14, 823–829.

    Google Scholar 

  • Jha, P., Shashi, Rustagi, A., Agnihotri, P. K., Kulkarni, V. M., & Bhat, V. (2011). Efficient Agrobacterium-mediated transformation of Pennisetum glaucum (L.) R. Br. using shoot apices as explant source. Plant Cell, Tissue and Organ Culture, 107, 501–512.

  • Jha, P., Yadav, C. B., Anjaiah, V., & Bhat, V. (2009). In vitro plant regeneration through somatic embryogenesis and direct shoot organogenesis in Pennisetum glaucum (L.) R. Br. In Vitro Cellular and Developmental Biology-Plant, 45, 145–154.

    Article  Google Scholar 

  • Joshi, A., & Kothari, S. L. (2007). High cooper levels in the medium improves shoot bud differentiation and elongation from the cultured cotyledons of Capsicum annuum L. Plant Cell, Tissue and Organ Culture, 88, 127–133.

    Article  CAS  Google Scholar 

  • Joshi, J. B., Yathish, K. R., Joel, A. J., Kumar, K. K., Kokiladevi, E., Arul, L., et al. (2014). A high-throughput regeneration protocol for recalcitrant tropical Indian maize (Zea mays L) inbreds. Maydica, 59, 211–216.

    Google Scholar 

  • Kaur, P., & Kothari, S. L. (2004). In vitro culture of kodo millet: Influence of 2,4-D and picloram in combination with kinetin on callus initiation and regeneration. Plant Cell, Tissue and Organ Culture, 77, 73–79.

    Article  CAS  Google Scholar 

  • Kishore, N. S., Visarada, K. B. R. S., Lakshmi, Y. A., Pashupatinath, E., Rao, S. V., & Seetharama, N. (2006). In vitro culture methods in sorghum with shoot tip as the explants material. Plant Cell Report, 25, 174–182.

    Article  CAS  Google Scholar 

  • Kothari, S. L., Agarwal, K., & Kumar, S. (2004). Inorganic nutrient manipulation for highly improved in vitro plant regeneration in finger millet- Eleusine coracana (L.) Gaertn. In Vitro Cellular and Developmental Biology-Plant, 40, 515–519.

    Article  CAS  Google Scholar 

  • Kothari, S. L., Kumar, S., Vishnoi, R. K., Kothari, A., & Watanabe, K. N. (2005). Applications of biotechnology for improvement of millet crops: Review of progress and future prospects. Plant Biotechnology, 22, 81–88.

    Article  CAS  Google Scholar 

  • Kothari-Chajer, A., Sharma, M., Kachhwaha, S., & Kothari, S. L. (2008). Micronutrient optimization results into highly improved in vitro plant regeneration in kodo (Paspalum Scrobiculatum L.) and finger (Eleusine coracana (L.) Gaertn.) millets. Plant Cell, Tissue and Organ Culture, 94, 105–112.

    Article  CAS  Google Scholar 

  • Krishania, S., & Agarwal, K. (2012). Effects of heavy metals on Eleusine coracana (L.) Gaertn. Research in Plant Biology, 2, 43–54.

    Google Scholar 

  • Kumar, S., Agarwal, K., & Kothari, S. L. (2001). In vitro induction and enlargement of apical domes and formation of multiple shoots in finger millet, Eleusine coracana (L.) Gaertn and crowfoot grass, Eleusine indica (L.) Gaertn. Current Science, 81, 1482–1485.

    CAS  Google Scholar 

  • Kumar, V., & Parvatam, G. (2009). AgNO3—A potent growth regulator of ethylene activity and plant growth modulator. Electronic Journal of Biotechnology, 12, 1–15.

    Article  CAS  Google Scholar 

  • Lambe, P., Dinant, M., & Matagneb, R. F. (1995). Differential long-term expression and methylation of the hygromycin phosphotransferase (hph) and P-glucuronidase (GUS) genes in transgenic pearl millet (Pennisetum glaucum) callus. Plant Science, 108, 51–62.

    Article  CAS  Google Scholar 

  • Lambe, P., Mutambel, H. S. N., Deltour, R., & Dinant, M. (1999). Somatic embryogenesis in pearl millet (Pennisetum glaucum): Strategies to reduce genotype limitation and to maintain long-term totipotency. Plant Cell, Tissue and Organ Culture, 55, 23–29.

    Article  Google Scholar 

  • Latha, A. M., Rao, K. V., & Reddy, V. D. (2005). Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn). Plant Science, 169, 657–667.

    Article  CAS  Google Scholar 

  • Latha, A. M., Rao, K. V., Reddy, T. P., & Reddy, V. D. (2006). Development of transgenic pearl millet (Pennisetum glaucum (L.) R. Br.) plants resistant to downy mildew. Plant Cell Report, 25, 927–935.

    Article  CAS  Google Scholar 

  • Liu, G., & Godwin, I. D. (2012). Highly efficient sorghum transformation. Plant Cell Report, 31, 999–1007.

    Article  CAS  Google Scholar 

  • Liu, Y., Yu, J., Zhao, Q., Zhu, D. & Ao, G. (2005) Genetic transformation of millet (Setaria italica) by Agrobacterium-mediated. Chinese Journal of Agricultural Biotechnology, 13, 32–37.

    CAS  Google Scholar 

  • Liu, G. Q., Gilding, E. K., & Godwin, I. D. (2013). Additive effects of three auxins and copper on sorghum in vitro root induction. In Vitro Cellular and Developmental Biology-Plant, 49, 191–197.

    Article  CAS  Google Scholar 

  • Liu, G., Gilding, E. K., & Godwin, I. D. (2015). A robust tissue culture system for sorghum [Sorghumbicolor (L.) Moench]. South African Journal of Botany, 98, 157–160.

    Article  CAS  Google Scholar 

  • Maksymiec, W. (1997). Effect of copper on cellular processes in higher plants. Photosynthetica, 34, 321–342.

    Article  CAS  Google Scholar 

  • Mandour, H. M., Soliman, S. S. A., Abd El-Hady, M. S., Mahmoud, A. A., & EI Naggar, H. M. (2015). In vitro selection for drought tolerance in wheat (Triticum aestivum L.). International Journal of ChemTech Research, 8, 318–333.

    Google Scholar 

  • Martins, P. K., Nakayama, T. J., Ribeiro, A. P., Cunha, B. A. D. B. D., Nepomuceno, A. L., Harmon, F. G., et al. (2015). Setaria viridis floral-dip: A simple and rapid Agrobacterium-mediated transformation method. Biotechnology Reports, 6, 61–63.

    Article  Google Scholar 

  • Mohanty, B. D., Gupta, S. D., & Ghosh, P. D. (1985). Callus initiation and plant regeneration in ragi (Eleusine coracana Gaertn). Plant Cell, Tissue and Organ Culture, 5, 147–150.

    Article  CAS  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay for tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  • Mythili, P. K., Satyavathi, V., Pavankumar, G., Rao, M. V. S., & Manga, V. (1997). Genetic analysis of short term callus culture and morphogenesis in pearl millet, Pennisetum glaucum. Plant Cell, Tissue and Organ Culture, 50, 171–178.

    Article  Google Scholar 

  • Nethra, N., Gowda, R., & Gowda, P. H. R. (2009). Influence of culture medium on callus proliferation and morphogenesis in finger millet. In: Tadele, Z. (Ed.) New approaches to plant breeding of orphan crops in Africa. In Proceedings of an International Conference, September 19–21, 2007. Bern, Switzerland. Univ. Bern. pp. 167–178.

  • Niedz, R. P., & Evens, T. J. (2007). Regulating plant tissue growth by mineral nutrition. In Vitro Cellular and Developmental Biology-Plant, 43, 370–381.

    Article  CAS  Google Scholar 

  • Nirwan, R. S., & Kothari, S. L. (2003). High copper levels improve callus induction and plant regeneration in Sorghum bicolor (L.) Moench. In Vitro Cellular and Developmental Biology-Plant, 39, 161–164.

    Article  CAS  Google Scholar 

  • O’Kennedy, M. M., Burger, J. T., & Botha, F. C. (2004). Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Report, 22, 684–690.

    Article  CAS  Google Scholar 

  • O’Kennedy, M. M., Crampton, B. G., Lorito, M., Chakauya, E., Breese, W. A., Burger, J. T., et al. (2011). Expression of a β-1,3-glucanase from a biocontrol fungus in transgenic pearl millet. South African Journal of Botany, 77, 335–345.

    Article  CAS  Google Scholar 

  • Oldach, K. H., Morgenstern, A., Rother, S., Girgi, M., O’Kennedy, M., & Lorz, H. (2001). Efficient in vitro plant regeneration from immature zygotic embryos of pearl millet [Pennisetum glaucum (L.) R. Br.] and Sorghum bicolor (L.) Moench. Plant Cell Report, 20, 416–421.

    Article  CAS  Google Scholar 

  • Pande, A., Dosad, S., Chawla, H. S., & Arora, S. (2015). In vitro organogenesis and plant regeneration from seed-derived callus cultures of finger millet (Eleusine coracana). Brazilian Journal of Botany, 38, 19–23.

    Article  Google Scholar 

  • Patil, S. M., Sawardekar, S. V., Bhave, S. G., Sawant, S. S., Jambhale, N. D., & Gokhale, N. B. (2009). Development of somaclones and their genetic diversity analysis through RAPD in Finger millet (Eleusine coracana L. Gaertn.). Indian Journal of Genetics, 69, 132–139.

    CAS  Google Scholar 

  • Pius, J., Eapen, S., George, L., Rao, P. S., & Raut, R. S. (1999). Performance of plants regenerated through somatic embryogenesis in finger millet (Eleusine coracana Gaertn.). Tropical Agricultural Research and Extention, 2, 87–90.

    Google Scholar 

  • Pius, J., George, L., Eapen, S., & Rao, P. S. (1994). Influence of genotype and phytohormones on somatic embryogenesis and plant regeneration in Finger millet. Proceedings of the Indian natninal Science Academy, 60, 53–56.

    Google Scholar 

  • Plaza-Wuthrich, S., & Tadele, Z. (2012). Millet improvement through regeneration and transformation. Biotechnology and Molecular Biology Review, 7, 48–61.

    Google Scholar 

  • Poddar, K., Vishnoi, R. K., & Kothari, S. L. (1997). Plant regeneration from embryogenic callus of finger millet Eleusine coracana (L) Gaertn. On higher concentrations of NH4NO3 as a replacement of NAA in the medium. Plant Science, 129, 101–106.

    Article  CAS  Google Scholar 

  • Popelka, J. E., & Altpeter, F. (2001). Interactions between genotypes and culture media components for improved in vitro response of rye (Secale cereale L.) inbred lines. Plant Cell Report, 20, 575–582.

    Article  CAS  Google Scholar 

  • Purnhauser, L. (1991). Stimulation of shoot and root regeneration in wheat (Triticum aestivum) callus cultures by copper. Cereal Research Communications, 19, 419–423.

    CAS  Google Scholar 

  • Ramadevi, R., Rao, K. V., & Reddy, V. D. (2014). Agrobacterium tumefaciens-mediated genetic transformation and production of stable transgenic pearl millet (Pennisetum glaucum [L.] R. Br.). In Vitro Cellular and Developmental Biology-Plant, 50, 392–400.

    Article  CAS  Google Scholar 

  • Ramegowda, Y., Venkategowda, R., Jagadish, P., Govind, G., Hanumanthareddy, R. R., Makarla, U., et al. (2013). Expression of a rice Zn transporter, OsZIP1, increases Zn concentration in tobacco and finger millet transgenic plants. Plant Biotechnology Reports, 7, 309–319.

    Article  Google Scholar 

  • Rangan, T. S. (1974). Morphogenic investigations on tissue cultures of Panicum miliaceum. Zeitschrift für Pflanzenphysiologie, 72, 456–459.

    Article  Google Scholar 

  • Rangan, T. S. (1976). Growth and plantlet regeneration in tissue cultures of some Indian millets: Paspalum scrobiculatum L., Eleusine coracana GAERTN. and Pennisetum typhoideum PERS. Zeitschrift fur Pflanzenphysiologie, 78, 208–216.

    Article  CAS  Google Scholar 

  • Rao, A. M., Kavi-Kishore, P. B., Reddy, L. A., & Vaidyanath, K. (1988). Callus induction and high frequency plant regeneration in Italian millet (Setaria italica). Plant Cell Report, 7, 557–559.

    Article  CAS  Google Scholar 

  • Reddy, L. A., & Vaidyanath, K. (1990). Callus formation and regeneration in two induced mutants of foxtail millet (Setaria italica). Journal of Genetics and Breeding, 44, 133–138.

    Google Scholar 

  • Rout, G. R., Samantaray, S., & Das, P. (1997). Regeneration of a metal tolerant grass Echinochloa colona via somatic embryogenesis from suspension culture. Biologia Plantarum, 40, 17–23.

    Article  Google Scholar 

  • Rout, G. R., Samantaray, S., & Das, P. (1998). In vitro selection and characterization of Ni-tolerant callus lines of Setaria italica L. Acta Physiologiae Plantaru, 20, 269–275.

    Article  CAS  Google Scholar 

  • Sah, S. K., Kaur, A., & Sandhu, J. S. (2014). High frequency embryogenic callus induction and whole plant regeneration in Japonica rice cv. kitaake. Rice Research, 2, 125. doi:10.4172/jrr.1000125.

    Google Scholar 

  • Saha, P., & Blumwald, E. (2016). Spike-dip transformation of Setaria viridis. The Plant Journal, 86, 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Sahrawat, A. K., & Chand, S. (1999). Stimulatory effect of copper on plant regeneration in indica rice (Oryza sativa L.). Journal of Plant Physiology, 154, 517–522.

    Article  CAS  Google Scholar 

  • Samantaray, S., Rout, G. R., & Das, P. (1995). In vitro plant regeneration from leaf base and mesocotyl cultures of Echinochloa colona. Plant Cell, Tissue and Organ Culture, 40, 37–41.

    Article  Google Scholar 

  • Samantaray, S., Rout, G. R., & Das, P. (1997). Regeneration of plants via somatic embryogenesis from leaf base and leaf tip segments of Echinochloa colona. Plant Cell, Tissue and Organ Culture, 47, 119–125.

    Article  Google Scholar 

  • Samantaray, S., Rout, G. R., & Das, P. (2001). Induction, selection and characterization of Cr and Ni-tolerant cell lines of Echinochloa colona (L.) Link in vitro. Journal of Plant Physiology, 158, 1281–1290.

    Article  CAS  Google Scholar 

  • Sankhla, A., Davis, T. M., Sankhla, D., Sankhla, N., Upadhyayan, A., & Joshi, S. (1992). Influence of growth regulators on somatic embryogenesis, plantlet regeneration and post transplant survival of echinochloa fumentacea. Plant Cell Report, 11, 368–371.

    Article  CAS  Google Scholar 

  • Satish, L., Ceasar, S. A., Shilpha, J., Rency, A. S., Rathinapriya, P., & Ramesh, M. (2015). Direct plant regeneration from in vitro-derived shoot apical meristems of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cellular and Developmental Biology-Plant, 51, 192–200.

    Article  Google Scholar 

  • Satish, L., Rathinapriya, P., Ceasar, S. A., Rency, A. S., Pandian, S., Rameshkumar, R., et al. (2016a). Effects of cefotaxime, amino acids and carbon source on somatic embryogenesis and plant regeneration in four Indian genotypes of foxtail millet (Setaria italica L.). In Vitro Cellular and Developmental Biology-Plant, 52, 140–153.

    Article  CAS  Google Scholar 

  • Satish, L., Rency, A. S., Rathinapriya, P., Ceasar, S. A., Pandian, S., Rameshkumar, R., et al. (2016b). Influence of plant growth regulators and spermidine on somatic embryogenesis and plant regeneration in four Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn). Plant Cell, Tissue and Organ Culture, 124, 15–31.

    Article  CAS  Google Scholar 

  • Satyavathi, V., Rao, S. M. V., Manga, V., & Chittibabu, M. (2006). Genetics of some in vitro characters in pearl millet. Euphytica, 148, 243–249.

    Article  CAS  Google Scholar 

  • Sharma, M., Kothari-Chajer, A., Jagga-Chugh, S., & Kothari, S. L. (2011). Factors influencing Agrobacterium tumefaciens-mediated genetic transformation of (Eleusine coracana (L.) Gaertn). Plant Cell, Tissue and Organ Culture, 105, 93–104.

    Article  CAS  Google Scholar 

  • Shrivastava, S., Singh, N., & Chawla, H. S. (2000). Role of growth regulators and glutamine for enhancing regeneration response in wheat (Triticum aestivum L.). Journal of Genetics and Breeding, 54, 71–75.

    CAS  Google Scholar 

  • Sivadas, P., Kothari, S. L., & Chandra, N. (1990). High frequency embryoid and plantlet formation from tissue cultures of the Finger millet-Eleusine coracana (L.) Gaertn. Plant Cell Report, 9, 93–96.

    Article  CAS  Google Scholar 

  • Skoog, F., & Miller, C. O. (1957). Chemical regulation of growth and organ formation in plant tissue cultured. In Vitro Symposia of the Society for Experimental Biology, 11, 118–130.

    CAS  PubMed  Google Scholar 

  • Tahiliani, S., & Kothari, S. L. (2004). Increased copper content of the medium improves plant regeneration from immature embryo derived callus of wheat (Triticum aestivum). Journal of Plant Biochemistry and Biotechnology, 13, 85–88.

    Article  Google Scholar 

  • Talwar, M., & Rashid, A. (1989). Somatic embryo formation from unemerged inflorescences and immature embryos of a graminaceous crop Echinochloa. Annals of Botany, 64, 195–199.

    Google Scholar 

  • Taylor, M. G., Vasil, V., & Vasil, I. K. (1991). Histology of, and physical factors affecting, transient GUS expression in pearl millet (Pennisetum glaucum (L.) R. Br.) embryosfollowing microprojectile bombardment. Plant Cell Report, 10, 120–125.

    Article  CAS  Google Scholar 

  • Tiecoura, K., Kouassi, A. B., Oulo, N., Gonedele Bi, S., Dinant, M., & Ledou, L. (2015). In vitro transformation of pearl millet (Pennisetum glaucum (L). R. BR.): Selection of chlorsulfuron-resistant plants and long term expression of the gus gene under the control of the emu promoter. African Journal of Biotechnology, 14, 3112–3123.

    Article  Google Scholar 

  • Tiwari, A. K., Shamim, Md, Saxena, R. P., & Singh, K. D. N. (2012). Plant regeneration efficiency of two scented Indica rice varieties Pusa Basmati 1 and Kalanamak. Plant Tissue Culture and Biotechnology, 22, 163–169.

    Google Scholar 

  • Vasil, I. K. (1982). Plant cell culture and somatic cell genetics of cereals and grasses. In I. K. Vasil, W. R. Scowcroft, & K. J. Frey (Eds.), Plant improvement and somatic cell genet (pp. 179–203). New York: Academic Press.

    Chapter  Google Scholar 

  • Vikrant, A., & Rashid, A. (2001). Direct as well as indirect somatic embryogenesis from immature (unemerged) inflorescence of a minor millet Paspalum scrobiculatum L. Euphytica, 120, 167–172.

    Article  CAS  Google Scholar 

  • Vikrant, A., & Rashid, A. (2002a). Induction of multiple-shoots from thidiazuron on culture of mature caryopses of a minor millet Paspalum scrobiculatum L. and its effect on regeneration of embryogenic cultures. Plant Cell Report, 21, 9–13.

    Article  CAS  Google Scholar 

  • Vikrant, A., & Rashid, A. (2002b). Somatic embryogenesis from immature and mature embryos of a minor millet Paspalum scrobiculatum L. Plant Cell, Tissue and Organ Culture, 69, 71–77.

    Article  CAS  Google Scholar 

  • Vikrant, A., & Rashid, A. (2003). Somatic embryogenesis from mesocotyl and leaf base segments of Paspalum scrobiculatum L., minor millet. In Vitro Cellular and Developmental Biology-Plant, 39, 485–489.

    Article  Google Scholar 

  • Vishnoi, R. K., & Kothari, S. L. (1996). Somatic embryogenesis and efficient plant regeneration in immature inflorescence culture of Setaria italic (L.) Beauv. Cereal Research Communications, 24, 291–297.

    Google Scholar 

  • Wang, J., Nie, J., Pattanaik, S., & Yuan, L. (2016). Efficient Agrobacterium-mediated transformation of Artemisia annua L. using young inflorescence. In Vitro Cellular and Developmental Biology-Plant, 52, 204–211.

    Article  CAS  Google Scholar 

  • Wang, M., Pan, Y., Li, C., Liu, C., Zhao, Q., Ao, G., et al. (2011). Culturing of immature inflorescences and Agrobacterium-mediated transformation of foxtail millet (Setaria italica). African Journal of Biotechnology, 10, 16466–16479.

    CAS  Google Scholar 

  • Wakizuka, T., & Yamaguchi, T. (1987) The induction of enlarged apical domes in vitro and multi-shoot formation from finger millet (Eleusine coracana). Annals of Botany, 60, 331–336.

    Google Scholar 

  • Wani, S. H., Sanghera, G. S., & Gosal, S. S. (2011). An efficient and reproducible method for regeneration of whole plants from mature seeds of a high yielding Indica rice (Oryza sativa L.) variety PAU 201. New Biotechnology, 28, 418–422.

    Article  CAS  PubMed  Google Scholar 

  • Wojnarowiez, G., Jacquard, C., Devaux, P., Sangwan, R. S., & Clement, C. (2002). Influence of copper sulfate on anther culture in barley (Hordeum vulgare L.). Plant Science, 162, 843–847.

    Article  CAS  Google Scholar 

  • Wu, L. M., Wei, Y. M., & Zhang, Y. L. (2006). Effect of silver nitrate on the tissue culture of immature wheat embryos. Russian Journal of Plant Physiology, 53, 530–534.

    Article  CAS  Google Scholar 

  • Xu, Z., Wang, D., Yang, L., & Wei, Z. (1984). Somatic embryogenesis and plant regeneration in callus cultured immature inflorescence of Setaria italica. Plant Cell Report, 3, 149–150.

    Article  CAS  Google Scholar 

  • Yadav, R., & Chawla, H. S. (2002). role of genotypes, growth regulators and amino acids on callus induction and plant regeneration from different developmental stages of inflorescence in wheat. Indian Journal of Genetics, 62, 55–60.

    Google Scholar 

  • Yadav, T., Kothari, S. L., & Kachhwaha, S. (2011). Evaluation of regeneration potential of mature embryo derived callus in Indian cultivars of barley (Hordeum vulgare L.). Journal of Plant Biochemistry and Biotechnology, 20, 166–172.

    Article  Google Scholar 

  • Yang, L., & Xu, Z. (1985). Somatic embryogenesis and plant regeneration from cell suspension culture of Stearia italica (L) Beauv. Acta Biologiae Experimentalis Sinica, 18, 493–498.

    Google Scholar 

  • Yang, Y. S., Zheng, Y. D., Chen, Y. L., & Jain, Y. Y. (1999). Improvement of plant regeneration from long term cultured calluses of Tipei-309, a model rice variety in in vitro studies. Plant Cell, Tissue and Organ Culture, 57, 199–206.

    Article  Google Scholar 

  • Yemets, A. I., Bayer, G. Y., & Blume, Y. B. (2013). An effective procedure for in vitro culture of Eleusine coracana (L.) and its application. ISRN Botany. doi:10.1155/2013/853121.

    Google Scholar 

  • Yemets, A., Radchuk, V., Bayer, O., Bayer, G., Pakhomov, A., Baird, W. V., et al. (2008). The development of transformation vectors based upon a modified plant α-tubulin gene as the selectable marker. Cell Biology International, 32, 566–570.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Cho, M. J., Koprek, T., Yun, R., Bregitzer, P., & Lemaux, P. G. (1999). Genetic transformation of commercial cultivars of oat and barley using in vitro shoot meristematic cultures derived from germinating seedlings. Plant Cell Report, 18, 959–966.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sweta Dosad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dosad, S., Chawla, H.S. In vitro plant regeneration and transformation studies in millets: current status and future prospects. Ind J Plant Physiol. 21, 239–254 (2016). https://doi.org/10.1007/s40502-016-0240-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-016-0240-5

Keywords

Navigation