Skip to main content
Log in

Regulating plant tissue growth by mineral nutrition

  • Physiology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The objective of this study was to determine if the growth of sweet orange (Citrus sinensis (L.) Osbeck cv. ‘Valencia’) nonembryogenic callus could be regulated and controlled via the mineral nutrient components of the medium. The 14 salts comprising Murashige and Skoog (MS) basal medium were subdivided into five component groups. These five groups constituted the independent factors in the design. A five-dimensional hypervolume constituted the experimental design space. Design points were selected algorithmically by D-optimality criteria to sample of the design space. Growth of the callus at each design point was measured as % increase of fresh weight at 14 d. An analysis of variance was conducted and a response surface polynomial model generated. Model validation was conducted by mining the polynomial for design points to two regions—“MS-like” growth and MS + 25% growth and comparing callus growth to predicted growth. Five of the eight selected MS-like points and three of the six MS + 25% growth points validated, indicating regions within the design space where growth was equivalent to MS, but the salt combinations were substantially different from MS, and a smaller region where growth exceeded MS by greater than 25%. NH4NO3 and Fe were identified as important factors affecting callus growth. A second experiment was conducted where NH4NO3 and Fe were varied, thus creating a two-dimensional slice through the region of greatest callus growth and provided increased resolution of the response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Anderson, M. J.; Whitcomb, P. J. RSM simplified: optimizing processes using response surface methods for design of experiments. New York, NY: Productivity Press; 2005:120–121, 226–228.

    Google Scholar 

  • Attree, S.M.; Dunstan, D. I.; Fowke, L. C. Initiation of embryogenic callus and suspension cultures, and improved embryo regeneration from protoplasts, of white spruce (Picea glauca). Can. J. Bot. 67: 1790–1795; 1989.

    Google Scholar 

  • Bouman, H. M. B. T. A. Development of new tissue culture media, using the relation between mineral composition of plant and medium. Acta Horticulturae 560: 373–376; 2001.

    CAS  Google Scholar 

  • Box, G. E. P.; Cox, D. R. An analysis of transformations. J. Royal Stat. Soc. Series B 26:211; 1964.

    Google Scholar 

  • Box, G .E .P.; Hunter, J. S.; Hunter, W. G. Statistics for experimenters: design, innovation, and discovery, 2nd edition. John Wiley & Sons, Hoboken, New Jersey. 2005.

    Google Scholar 

  • Carvalho, M. H. C.; Bui,V. L.; Zuily-Fodil, Y.; Thi, A. T. P.; Tran, T. V. Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell-layer culture and silver nitrate. Plant Sci. 159: 223–232; 2000.

    Article  Google Scholar 

  • Chandramu, C.; Rao, D. M., Reddy, V. D. High frequency induction of multiple shoots from nodal explants of Vitex negundo L. using sodium sulphate. J. Plant Biotech. 5:107–113; 2003.

    Google Scholar 

  • Chauhan, M.; Kothari, S. L. Optimization of nutrient levels in the medium increases the efficiency of callus induction and plant regeneration in recalcitrant Indian barley (Hordeum vulgare L.) Cell. Dev. Biol. Plant 40: 520–527; 2004.

    Article  CAS  Google Scholar 

  • De Fossard, R. A.; Myint, A.; Lee, E. C. M. A broad spectrum tissue culture experiment with tobacco (Nicotiana tabacum) pith tissue callus. Physiol Plant 30: 125–130; 1974.

    Article  Google Scholar 

  • Derringer, G. C.; Suich, R. Simultaneous optimization of several variables. J. Qual. Tech. 12:214–219; 1980.

    Google Scholar 

  • Design-Expert® 7 User Manual, Stat-Ease, Inc, Minneapolis, MN; 2005.

  • Elkonin, L. A.; Pakhomova, N. V. Influence of nitrogen and phosphorus on induction embryogenic callus of sorghum. Plant Cell Tissue Org. Cult. 61:115–123; 2000.

    Article  Google Scholar 

  • Epstein, E.; Bloom, A.J. Mineral nutrition of plants: principles and perspectives. Sinauer Associates; 2nd edition, Sunderland, MA. 2005.

    Google Scholar 

  • Gautheret, R.J. Sur la possibilité de réaliser la culture indefinite des tissues tubercule de carotte. Compt. Rend. Acad. Sci. Paris 208:118; 1939.

    Google Scholar 

  • Gomez, M. P.; Segura, J. Factors controlling adventitious bud induction and plant regeneration in mature Juniperus oxycedrus leaves cultured Cell. Dev. Biol. Plant 30:210–218; 1994.

    Article  Google Scholar 

  • Halperin, W.; Wetherell, D. F. Ammonium requirement for embryogenesis. Nature 205:519–520; 1965.

    Article  Google Scholar 

  • Heller, R. Researches on the mineral nutrition of plant tissues. Ann. Sci. Nat. Bot. Biol. Vég., 11th Ser. 14:1–223; 1953.

    Google Scholar 

  • Hildebrandt, A. C.; Riker, A. J.; Duggar, B. M. 1946. The influence of the composition of the medium on growth of excised tobacco and sunflower tissues. Amer J Bot 33: 591–597; 1946.

    Article  CAS  Google Scholar 

  • Hyndman, S. E.; Hasegawa, P. M.; Bressan, D. A. The role of sucrose and nitrogen in adventitious root formation on cultured rose shoots. Plant Cell Tiss. Org. Cult. 1:229–238; 1982.

    Article  CAS  Google Scholar 

  • Kothari, S.L.; Agarwal, K.; Kumar, S. Inorganic nutrient manipulation for highly improved plant regeneration in finger millet—Eleusine coracana (L.) Gaertn. Cell. Dev. Biol. Plant 40:515–519; 2004.

    Article  CAS  Google Scholar 

  • Leblay, C.; Chevreau, E.; Raboin, L.M. Adventitious shoot regeneration from leaves of several pear cultivars (Pyrus communis L.). Plant Cell Tiss. Org. Cult. 25:99–105; 1991.

    CAS  Google Scholar 

  • Leljak-Levanic´, D.; Bauer, N.; Mihaljevic´, S.; Jelaska, S. Somatic embryogenesis in pumpkin (Cucurbita pepo L.): control of somatic embryo development by nitrogen compounds. J. Plant Physiol. 161: 229–236; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Margara, J. La multiplication vegetative de la betterave (Beta vulgaris L.) en culture. Comptes Rendus Académies des Sciences (Paris) 282D: 1041–1044; 1977.

    Google Scholar 

  • Margara, J. Mise au point d’une gamme de milieux minéraux pour les conditions de la culture in vitro. Comptes Rendus de L’Académie d’Agriculture de France 64: 654–661; 1978.

    CAS  Google Scholar 

  • McCoy, T. J.; Smith, L. Y. Interspecific hybridization of perennial Medicago species using ovule-embryo culture. Tag 71: 772–783; 1986.

    Google Scholar 

  • McLaughlin, J.; Karnosky, D.F. Controlling vitrification in Larix decidua via culture media manipulation. Can. J. For. Res. 19:1334–1337; 1989.

    Google Scholar 

  • Meijer, E. G. M.; Brown, D. C. W. Role of exogenous reduced nitrogen and sucrose in rapid high frequency somatic embryogenesis in Medicago sativa. Plant Cell Tissue Org. Cult. 10:11–19; 1987.

    Article  CAS  Google Scholar 

  • Monteiro, A. C. B. D.; Higashi, E. N.; Goncalves, A. N.; Rodriguez, A. P. M. A novel approach for the definition of the inorganic medium components for micropropagation of yellow passionfruit (Passiflora edulis Sims. F-flavicarpa Deg.). Cell. Dev. Biol. Plant 36: 527–531; 2000.

    Article  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Murashige, T., Tucker, D.P.H. Growth factor requirements of citrus tissue culture. Proc. 1st Int. Citrus Symp., 3, 1155–1161; 1962.

    Google Scholar 

  • Myers, R. H.; Montgomery, D.C. Response surface methodology: process and product optimization using designed experiments, 2nd edition. New York, NY:John Wiley & Sons; 2002:71–73.

    Google Scholar 

  • Nas, M. N.; Read, P. E. A hypothesis for the development of a defined tissue culture medium of higher plants and micropropagation of hazelnuts. Sci. Hort. 101: 189–200; 2004.

    Article  CAS  Google Scholar 

  • Niedz, R. P.; Evens, T. J. A solution to the problem of ion confounding in experimental biology. Nature Methods 3:417; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Nitsch, J. P.; Nitsch, C. Auxin-dependent growth of excised Helianthus tissues. Am. J. Bot. 43:839–851; 1956.

    Article  CAS  Google Scholar 

  • Poddar, K.; Vishnoi, R. K.; Kothari, S. L. Plant regeneration from embryogenic callus of finger millet Eleusine coracana (L.) Gaertn. on higher concentrations of NH4NO3 as a replacement of NAA in the medium. Plant Sci. 129:101–106; 1997.

    Article  CAS  Google Scholar 

  • Preece, J. Can nutrient salts partially substitute for plant growth regulators? Plant Tiss. Cult. Biotech. 1:26–37; 1995.

    Google Scholar 

  • Ramage, C. M.; Williams, R. R. Mineral nutrition and plant morphogenesis. Cell. Dev. Biol. Plant 38:116–124; 2002.

    Article  CAS  Google Scholar 

  • Reinert, J.; Tazawa, M.; Semenoff, S. 1967. Nitrogen compounds as factors of embryogenesis in vitro. Nature 216: 1215–1216; 1967.

    Article  PubMed  CAS  Google Scholar 

  • Sha, L.; McCrown, B. H.; Peterson, L. A. Occurrence and cause of shoot-tip necrosis in shoot cultures. J. Amer. Soc. Hort. Sci. 110: 631–634; 1985.

    Google Scholar 

  • Sivakumar, G.; Kim, S. J.; Hahn, E. J.; Paek, K. Y. Optimizing environmental factors for large-scale multiplication of Chrysanthemum (Chrysanthemum grandiflorum) in balloon-type bioreactor culture. Cell. Dev. Biol. Plant 41:822–825; 2005.

    Article  CAS  Google Scholar 

  • Spaargaren, D. H. The design of culture media based on elemental composition of biological material. J Biotech. 45: 97–102; 1996.

    Article  CAS  Google Scholar 

  • Staikidou, I.; Selby, C.; Hanks, G.R. Development of a medium for in vitro culture of Galanthus species based on the mineral composition of bulbs. J. Hort. Sci. Biotech. 81:537–545; 2006.

    Google Scholar 

  • White, P.R. Plant tissue cultures. Ann. Rev. Biochem. 11:615–628; 1942.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Eldridge Wynn for initiating and maintaining the cell line used in this study and his excellent work in setting up all the treatment combinations and careful data collection. We thank the folks at Stat-Ease for the extremely informative discussions on the various statistical aspects of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall P. Niedz.

Additional information

Editor: T. J. Jones

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niedz, R.P., Evens, T.J. Regulating plant tissue growth by mineral nutrition. In Vitro Cell.Dev.Biol.-Plant 43, 370–381 (2007). https://doi.org/10.1007/s11627-007-9062-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-007-9062-5

Keywords

Navigation