Skip to main content
Log in

In vitro plant regeneration through somatic embryogenesis and direct shoot organogenesis in Pennisetum glaucum (L.) R. Br.

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

An efficient in vitro plant regeneration protocol through somatic embryogenesis and direct shoot organogenesis has been developed for pearl millet (Pennisetum glaucum). Efficient plant regeneration is a prerequisite for a complete genetic transformation protocol. Shoot tips, immature inflorescences, and seeds of two genotypes (843B and 7042-DMR) of pearl millet formed callus when cultured on Murashige and Skoog (MS) medium supplemented with varying levels of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9, 13.5, and 18 μM). The level of 2,4-D, the type of explant, and the genotype significantly effected callus induction. Calli from each of the three explant types developed somatic embryos on MS medium containing 2.22 μM 6-benzyladenine (BA) and either 1.13, 2.25, or 4.5 μM of 2,4-D. Somatic embryos developed from all three explants and generated shoots on MS medium containing high levels of BA (4.4, 8.8, or 13.2 μM) combined with 0.56 μM 2,4-D. The calli from the immature inflorescences exhibited the highest percentage of somatic embryogenesis and shoot regeneration. Moreover, these calli yielded the maximum number of differentiated shoots per callus. An efficient and direct shoot organogenesis protocol, without a visible, intervening callus stage, was successfully developed from shoot tip explants of both genotypes of pearl millet. Multiple shoots were induced on MS medium containing either BA or kinetin (4.4, 8.8, 17.6, or 26.4 μM). The number of shoots formed per shoot tip was significantly influenced by the level of cytokinin (BA/kinetin) and genotype. Maximum rooting was induced in 1/2 strength MS with 0.8% activated charcoal. The regenerated plants were transferred to soil in pots, where they exhibited normal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Botti C.; Vasil I. K. Ontogeny of somatic embryos of Pennisetum americanum in cultured immature inflorescences. Can. J. Bot. 62: 1629–1635; 1983. doi:10.1139/b84-218.

    Article  Google Scholar 

  • Cai T.; Butler L. Plant regeneration from embryogenic callus initiated from immature inflorescences of several high-tanin sorghum. Plant Cell, Tissue Organ Cult. 20: 101–110; 1990. doi:10.1007/BF00114707.

    Article  Google Scholar 

  • Devi P.; Zhong H.; Sticklen M. B. In vitro morphogenesis of pearl millet [Pennisetum glaucum (L.) R. Br.]: efficient production of multiple shoots and inflorescences from shoot apices. Plant Cell Rep. 19: 546–550; 2000. doi:10.1007/s002990050771.

    Article  CAS  Google Scholar 

  • F. A. O. Production year book vol. 52, FAO. United Nations, Rome1998.

    Google Scholar 

  • Goldman J. J.; Hanna W. W.; Fleming G.; Ozias-Akins P. Fertile transgenic pearl millet [Pennisetum glaucum (L.) R.Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem-, inflorescence-, and immature embryo derived embryogenic tissues. Plant Cell Rep. 21: 999–1009; 2003. doi:10.1007/s00299-003-0615-8.

    Article  PubMed  CAS  Google Scholar 

  • Guo J. H.; Liang G. H. Callus induction and plant regeneration of cultivated and wild sorghums. Cytologia 58: 203–210; 1993.

    Google Scholar 

  • Gupta S.; Khanna V. K.; Singh R.; Garg G. K. Effect of media and explant on callus formation and plant regeneration in sorghum. J. Plant Biol. 29: 39–44; 2002.

    Google Scholar 

  • Haydu Z.; Vasil I. K. Somatic embryogenesis and plant regeneration from leaf tissues and anthers of Pennisetum purpureum Schumacher. Theor. Appl. Genet. 59: 269–273; 1981. doi:10.1007/BF00264978.

    Article  Google Scholar 

  • Lambe P.; Mutambel H. S. N.; Deitour R.; Dinant M. Somatic embryogenesis in pearl millet (Pennisetum glaucum): Strategies to reduce genotype limitation and to maintain long-term totipotency. Plant Cell Tissue Organ Cult. 55: 23–29; 1999. doi:10.1023/A:1026402229460.

    Article  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15: 473–497; 1962. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Mythili P. K.; Madhavi A.; Reddy V. D.; Seetharama N. Efficient regeneration of pearl millet (Pennisetum glaucum [L.] R. Br.) from shoot tip cultures. Indian J. Exp. Biol. 39: 1274–1279; 2001.

    PubMed  CAS  Google Scholar 

  • Mythili P. K.; Satyavathi V.; Kumar G. P.; Rao M. V. S.; Manga V. Genetic analysis of short term callus culture and in vitro morphogenesis in pearl millet, Pennisetum glaucum. Plant Cell Tissue Organ Cult. 50: 171–178; 1997. doi:10.1023/A:1005919306646.

    Article  Google Scholar 

  • O’Kennedy M. M.; Burger J. T.; Botha F. C. Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep. 22: 684–690; 2004. doi:10.1007/s00299-003-0746-y.

    Article  PubMed  Google Scholar 

  • Oldach K. H.; Morgenstern S.; Rother S.; Girgi M.; O’Kennedy M.; Lorz H. Efficient in vitro plant regeneration from immature zygotic embryos of pearl millet [Pennisetum glaucum (L.) R.Br.] and Sorghum bicolor (L.) Moench. Plant Cell Rep. 20: 416–421; 2001. doi:10.1007/s002990100335.

    Article  CAS  Google Scholar 

  • Pius J.; George L.; Eapen S.; Rao P. S. Enhanced plant regeneration in pearl millet (Pennisetum americanum) by ethylene inhibitors and cefotaxime. Plant Cell Tissue Organ Cult. 32: 91–96; 1993. doi:10.1007/BF00040121.

    Article  CAS  Google Scholar 

  • Rajashekharan K.; Hein M. B.; Vasil I. K. Endogenous abscisic acid and indole-3-acetic acid and somatic embryogenesis in cultured leaf explants of Pennisetum purpureum Schum. Plant Physiol. 84: 47–51; 1987. doi:10.1104/pp.84.1.47.

    Article  Google Scholar 

  • Rao S. M. V.; Nitzsche W. Genotypic differences in callus growth and organogenesis of eight pearl millet lines. Euphytica 33: 923–928; 1984. doi:10.1007/BF00021922.

    Article  Google Scholar 

  • Vasil V.; Vasil I. K. Somatic embryogenesis and plant regeneration from suspension cultures of pearl millet (Pennisetum americanum). Ann. Bot. 47: 669–678; 1981a.

    Google Scholar 

  • Vasil V.; Vasil I. K. Somatic embryogenesis and plant regeneration from tissue cultures of Pennisetum americanum, and P. americanum X P. purpureum hybrid. Am. J. Bot. 68: 864–872; 1981b. doi:10.2307/2443193.

    Article  Google Scholar 

  • Vasil V.; Vasil I. K. Characterization of an embryogenic cell suspension culture derived from cultured inflorescences of Pennisetum americanum (pearl millet, gramineae). Am. J. Bot. 69: 1441–1449; 1982. doi:10.2307/2443105.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Professor S. K. Sopory, Plant Molecular Biology, ICGEB, New Delhi, for kindly going through the manuscript and for critical suggestions. We wish to duly acknowledge Dr. K. N. Rai, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, A. P., for providing the seeds of pearl millet for this study. We wish to thank Mr. S. K. Dass for the help with photography. Pooja Jha wishes to acknowledge Council for Scientific and Industrial Research India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bhat.

Additional information

Editor: Susanna Devilliers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, P., Yadav, C.B., Anjaiah, V. et al. In vitro plant regeneration through somatic embryogenesis and direct shoot organogenesis in Pennisetum glaucum (L.) R. Br.. In Vitro Cell.Dev.Biol.-Plant 45, 145–154 (2009). https://doi.org/10.1007/s11627-009-9198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9198-6

Keywords

Navigation